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A B S T R A C T

Semiarid grasslands contribute significantly to net terrestrial carbon flux as plant productivity and heterotrophic
respiration in these moisture-limited systems are correlated with metrics related to water availability (e.g.,
precipitation, Actual EvapoTranspiration or AET). These variables are also correlated with remotely sensed
metrics such as the Normalized Difference Vegetation Index (NDVI). We used measurements of growing season
net ecosystem exchange of carbon (NEE), NDVI from eMODIS and AVHRR, precipitation, and volumetric soil
water content (VSWC) from grazed pastures in the semiarid, shortgrass steppe to quantify the correlation of NEE
with these driving variables. eMODIS NDVI explained 60 and 40% of the variability in daytime and nighttime
NEE, respectively, on non-rain days; these correlations were reduced to 41 and 15%, respectively, on rain days.
Daytime NEE was almost always negative (sink) on non-rain days but positive on most rain days. In contrast,
nighttime NEE was always positive (source), across rain and non-rain days. A model based on eMODIS NDVI,
VSWC, daytime vs. nighttime, and rain vs. non-rain days explained 48% of observed variability in NEE at a daily
scale; this increased to 62% and 77%, respectively, at the weekly and monthly scales. eMODIS NDVI explained
50–52% of the variability in AET regardless of rain or non-rain days. A model based on eMODIS NDVI, VSWC,
Potential EvapoTranspiration (or PET), and rain vs. non-rain days explained 70% of the observed variability in
AET at a daily scale; this increased to 90 and 96%, respectively, at weekly and monthly scales. Models based on
AVHRR NDVI showed similar patterns as those using eMODIS, but correlations with observations were lower.
We conclude that remotely-sensed NDVI is a robust tool, when combined with VSWC and knowledge of rain
events, for predicting NEE and AET across multiple temporal scales (day to season) in semiarid grasslands.

1. Introduction

Grasslands cover over 30% of the Earth’s terrestrial surface (Adams
et al., 1990; Reynolds et al., 2007), store large amounts of carbon (C) in
soil organic matter strongly influence interannual variability in atmo-
spheric carbon dioxide (CO2) flux (Huang et al., 2016), and support
rural economies through livestock grazing (Dunn et al., 2010). Recent
analyses suggests that although water-limited, semiarid ecosystems
account for only about 16% of global terrestrial NPP, they are re-
sponsible for about 29% of interannual variation in NPP, and drought is
a primary driver (Huang et al., 2016). Consequently, it is important to
improve understanding and better predict how key drivers, such as
weather, drive the processes (photosynthesis, plant and microbial re-
spiration) that control biomass production and net carbon flux in these

systems. Net primary productivity (NPP) as well as net ecosystem ex-
change of carbon (NEE) in water-limited, semiarid grasslands are ty-
pically controlled by indices related to soil water (e.g., precipitation,
soil water content, actual evapotranspiration) to a greater extent than
other environmental controls (e.g., temperature, solar radiation). It is
well established that NPP and NEE are correlated with normalized
difference vegetation index (NDVI) and weather variables, particularly
precipitation, at global scales (Del Grosso et al., 2008) and across the
US Great Plains (Zhang et al., 2010; Gilmanov et al., 2005). Hetero-
trophic respiration also is limited by moisture in semiarid ecosystems
and is particularly sensitive to rainfall events onto previously dry soil
(Huxman et al., 2004).

Previously, Parton et al. (2012) presented empirical equations re-
lating NEE observed in a shortgrass steppe grassland in Colorado, USA,
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to soil water content, photosynthetically active radiation, live biomass,
air temperature and relative humidity. Models based on these factors
explained up to 65% of the variability in observed daytime NEE, but
live biomass, which was the most important factor, relied on ground
based measurements. In this paper we use flux tower data from short-
grass steppe pastures to demonstrate (1) that NEE is correlated with
NDVI and soil water content, (2) that actual evapotranspiration (AET) is
correlated with NDVI, soil water content, and potential evapo-
transpiration (PET), and (3) that precipitation events modify these re-
lationships. We then develop and evaluate models to predict NEE and
AET based on remotely-sensed NDVI from two satellite platforms,
Moderate Resolution Imaging Spectroradiometer (eMODIS) and Ad-
vanced Very High Resolution Radiometer (AVHRR) combined with the
weather related variables mentioned above. Lastly, we apply the model
to quantify the importance of rain induced respiration on NEE and to
compare the impact of increasing rainfall frequency, while keeping
seasonal total constant, on NEE.

2. Materials and methods

2.1. Data sets used

NEE, AET and soil water content were observed at the USDA-ARS
Central Plains Experimental Range (CPER), lat. 40° 50′ N. long. 104°
43′. The CPER, a Long-Term Agro-ecosystem Research (LTAR) network

site, is about 12 km northeast of Nunn, Colorado, USA. Mean annual
precipitation is 340 mm with 242 mm occurring during the spring and
early summer growing season (April–August) and mean air tempera-
tures are 15.6 °C in summer and 0.6 °C in winter. Vegetative basal cover
ranges from 23% to 35% (Milchunas et al., 1989) and is comprised of a
mixture of C4 and C3 perennial grasses, a sub-frutescent shrub (Arte-
mesia frigida), forbs, and cacti, with the majority of the aboveground
plant production coming from Bouteloua gracilis (C4 perennial grass).
The CPER site, used as an experimental range since 1937, has been
grazed by livestock during the past 150 years, with grazing by Amer-
ican Bison prior to European settlement in the 1850s.

Measurements were obtained from two consecutive grazing ex-
periments at the CPER, one conducted from 2001 to 2003, and the other
during 2004 to 2006. The earlier grazing study considered three grazing
intensities (none, moderate, and heavy) while the latter only had
moderate and heavy grazing (Morgan et al., 2016). Bowen ratio CO2

energy balance (BREB) flux towers were used to infer NEE and AET.
Remotely sensed 7-day 250 m resolution NDVI were calculated for the
pastures using eMODIS data from the expedited Moderate Resolution
Imaging Spectroradiometer (eMODIS) product (Jenkerson et al., 2010)
and from bi-weekly 8-km AVHRR (Advanced Very High Resolution
Radiometers) data (Tucker et al., 2005). Daily NDVI values for both
eMODIS and AVHRR were inferred by linearly interpolating between
days with consecutive observations. Volumetric soil water content
(VSWC) was measured daily at 0–15 cm depth using calibrated water

Fig. 1. Net ecosystem carbon exchange (NEE) (a)
and actual evapotranspiration (AET) (b) with NDVI
from eMODIS and AVHRR for shortgrass steppe
during the 2001 growing season.
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content reflectometers (Model CS615, Campbell Scientific Inc., Logan,
UT, USA). Daily PET was calculated from max/min air temperature and
day length based on a simplified Penmen-Montieth equation (Allen
et al., 1998).

Observations of NEE, AET, NDVI, and soil water content from the
moderately and heavily grazed pastures were averaged. We concentrate
on the growing season because NEE during the dormant season was not
well correlated with any of the driving variables (Parton et al., 2012).
Note that partitioning of daytime vs. nighttime NEE was based on
changes in actual day length throughout the growing season. AET from
the 2001 to 2003 experiment was used for model calibration while AET
from another pasture during 2001 to 2006 was used for model vali-
dation. Unfortunately, independent data for NEE validation were not
available. However, we used independent biomass observations
(Lauenroth, 2013) to test how well above ground NPP was correlated
with modeled gross primary productivity (GPP).

2.2. NEE and AET model development

NEE patterns vary diurnally with C uptake due to photosynthesis
during daytime typically exceeding respiration leading to negative
daytime C flux values while C flux values are always positive during
nighttime due to lack of photosynthesis. Consequently, we partitioned
the observations diurnally. We then plotted time series of daytime NEE
and NDVI for a particular year (2001) and this showed that NEE was
negatively correlated with NDVI (Fig. 1a) with maximum C uptake and
highest NDVI values occurring in June when plant above ground bio-
mass is also typically at its peak (Parton et al., 2012). AET was posi-
tively correlated with NDVI with peak values also occurring during
June (Fig. 1b). Fig. 1 also shows that NDVI obtained from eMODIS was
more dynamic than NDVI from AVHRR. NEE and AET patterns are also
influenced by precipitation events so we partitioned the observations by
precipitation (rain days vs. non-rain days). Similar to Parton et al.
(2012), precipitation days are defined as those that received any
amount of recorded rainfall plus the two subsequent days if the sum of
precipitation during the previous two days exceeded 5 mm. This criteria
is supported by observations showing that small (2 mm) rainfall events
enhance soil respiration rates for about 24 h whereas larger events
(5 mm or greater) enhance respiration rates for up to two days (Munson
et al., 2010).

Scatterplots and best fitting linear equations of NEE vs. NDVI
showed that for a given NDVI value, daytime NEE was more negative
and nighttime NEE less positive on non-rain days (Fig. 2a, b). The
magnitudes of the correlations between NEE and NDVI were also
strongly influenced by precipitation events and day vs. night with the
highest coefficients observed during day on non-rain days and lowest
values during night on rain days (Fig. 2a, b). For a given value of NDVI,
AET was higher in rain days while the correlation coefficients between
AET and NDVI differed little between rain and non-rain days (Fig. 2c).
In addition to NDVI, NEE was weakly correlated with soil water content
except during nighttime on rain days (Fig. 3) but not with temperature
(data not shown). AET was weakly correlated with soil water content on
both rain and non-rain days and with PET on non-rain days only
(Fig. 4).

Because the relationships between NEE and the driving variables
were significantly different based on precipitation events and day vs
night (Figs. 2 and 3), we optimized four separate eMODIS NDVI,
AVHRR NDVI, and water equations (day non-rain, night non-rain, day
rain, night rain) by minimizing the root mean square error between
modeled [NEE = F(NDVI)*F(VSWC)] and observed NEE. We con-
sidered linear and exponential functional forms for both the NDVI and
VSWC functions. Note that the four VSWC functions were optimized
with the NDVI functions based on eMODIS and AVHRR simultaneously.
The models based on eMODIS and AVHRR NDVI were evaluated by
comparting observed and predicted total NEE at various temporal scales
(daily, weekly, monthly, and annually) and by considering the four sub-

models separately (day no rain, night no rain, day rain, night rain). We
also isolated modeled daytime NEE on non-rain days and assumed that
this approximates growing season GPP. We then compared how well
modeled GPP was correlated with independent observations of above
ground NPP from the CPER (Lauenroth, 2013) during 1983–2014 for
the AVHRR model and 2000–2014 for the eMODIS model.

Development of the AET models was similar as those for NEE except
AET for day and night were combined and PET was included in the
equations: [AET = F(NDVI)*F(VSWC)*F(PET)]. PET was included in
the AET models because PET is a major driver of AET (Parton et al.,
1981). Model evaluation was also similar; i.e. observed and predicted
AET were compared at different time scales and for rain and non-rain
days separately. In addition, the AET models were validated and tested
using independent AET data during 2001–2006 from different pastures.

Fig. 2. Net ecosystem carbon exchange (NEE) during daytime (a) and nighttime (b) and
actual evapotranspiration (AET) (c) regressed with NDVI from eMODIS for shortgrass
steppe on rain and non-rain days. Daily eMODIS NDVI values were inferred by linearly
interpolating between days with consecutive observations.
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2.3. NEE model application

For a model application, we ran the AVHRR NEE model using NDVI,
VSWC, and precipitation data from the CPER during 1983–2014 and
the eMODIS NDVI model from 2000 to 2014. We then ran the model
assuming no rain days and subtracted these results from those using
actual precipitation to isolate rain induced respiration. Rain induced
respiration was then compared with modeled NEE to investigate the
influence of rain induced respiration on seasonal NEE. To explore the
impact of altering rainfall frequency on NEE we aggregated rainfall
events so that one event (at the most) occurred per week during the
growing season while keeping seasonal rainfall constant. We then
compared long-term NEE (1983–2014 for AVHRR and 2000–2014 for
eMODIS) predicted using the actual and modified weather files.

3. Results

3.1. Model equations

For NDVI, simple linear functions performed as well as exponential
functions but exponential functions performed better than linear for
VSWC. Best fitting functions for the response of daytime NEE to NDVI
from both eMODIS and AVHRR had nearly identical slopes with the
intercept being larger (more positive) on rain days (green and blue lines
in Fig. 5a and b) while the functions for nighttime NEE had different
slopes and intercepts (purple and red lines in Fig. 5a and b). Best fitting
water functions had exponential form with high sensitivity at low
VSWC values and decreasing sensitivity as VSWC increased (Fig. 5c).
This functional form is consistent with previous results from grasslands
showing that soil respiration increased substantially with increasing

Fig. 3. Net ecosystem carbon exchange (NEE) during daytime
(a) and nighttime (b) regressed with volumetric soil water
content (VSWC) for shortgrass steppe on rain and non-rain
days.
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VSWC at low values and little further increase above about 60% of
water holding capacity (Del Grosso et al., 2005).

Best fitting functions for the response of AET to NDVI from both
eMODIS and AVHRR had intercepts of 0 and greater slopes on rain than
non-rain days (Fig. 6a). The slope of the VSWC function was larger on
non-rain days (Fig. 6b), likely due to increased evaporation con-
tributing a larger portion of AET on rain days whereas on non-rain days
AET is dominated by transpiration which is more sensitive to soil water
content (Parton et al., 1981).

Observations (Fig. 2a, b) and optimized equations show (Fig. 5a, b)
that C uptake for a given value of NDVI was greater on non-rain days
(e.g. the blue line on Fig. 5a) during the day while C losses at night were
greater on rain days (e.g. the purple line on Fig. 5a). Optimized equa-
tions show that the impact of volumetric soil water content (0–15 cm
depth) on NEE increased rapidly until it exceeded about 10–15% then
leveled off (Fig. 5c). As NDVI increased, AET increased at a greater rate
on rain than non-rain days (Fig. 6a). Impacts of soil water content and
PET on AET increased at a greater rate on non-rain days (Fig. 6b, c).

3.2. Model evaluation and application

On rain days, eMODIS NDVI alone accounted for 41% of NEE
variability; including the VSWC multiplier only marginally increased

this to 44% (Table 1). NDVI explained a majority (60%) of the varia-
bility in daytime NEE on non-rain days; including VSWC in the model
improved model performance (r2 = 0.70, Table 1). For night-time NEE,
NDVI explained much less variability on both rain (15%) and non-rain
(29%) days. Addition of VSWC did not increase model performance on
rain days, but did increase for non-rain days to 40%. In sum, the model
performed better during daytime compared to night and on non-rain
compared to rain days.

When results were combined (i.e, day + night NEE on rain and non-
rain days) modeled and observed net NEE were moderately well cor-
related at the daily time scale (Fig. 7a) and correlations improved as
NEE was aggregated to coarser time scales (Fig. 7b and c). When NEE
was aggregated to the entire growing season, the model exhibited
patterns of the shortgrass steppe functioning as a net sink (C seques-
tration) during 2001, 2003, 2005, and 2006, and a net source (C loss) in
dry years of 2002 and 2004. Sink strength was over-estimated in 2001
and under-estimated in 2006 (Fig. 8a).

To further investigate seasonal patterns we partitioned observed
and modeled NEE by daytime vs. nighttime and rain vs. non-rain days
(Fig. 8b–e). For seasonal NEE on non-rain days, both observations and
the model always showed daytime net C uptake, although the model
over-estimated during 2001 and under-estimated in 2006 (Fig. 8b). For
rain days, daytime seasonal C exchange can be positive, negative, or

Fig. 4. Actual evapotranspiration (AET) regressed with vo-
lumetric soil water content (VSWC) (a) and potential evapo-
transpiration (PET) (b) for shortgrass steppe on rain and non-
rain days.
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neutral (Fig. 8c). The model showed fairly good agreement with the
observations except during 2001 when C uptake was over-estimated
and 2006, when observations showed a small sink and the model pre-
dicted a small source (Fig. 8b). Although the model did not perform
very well for nighttime NEE at the daily time scale (Table 1), there was
good agreement with observations when aggregating both rain and
non-rain days to the seasonal scale (Fig. 8d, e). In aggregate, the model
did a very good job (R2 = 0.93) at representing differences in seasonal
NEE related to day vs. night and rain vs. non-rain days (Fig. 7d). We
further evaluated the model by comparing seasonal NEE for non-rain
days (a surrogate for GPP) with long term above ground NPP ob-
servations at the CPER and found good correlations (R2 = 0.53 for the
model based on eMODIS using 15 years of NPP observations and
R2 = 0.56 for the model based on AVHRR using 32 years of NPP

Fig. 5. Best fitting linear equations representing the response of net ecosystem carbon
exchange (NEE) to NDVI based on eMODIS (a) and AVHRR (b) and best fitting ex-
ponential equations representing the impact of volumetric soil water content (VSWC) on
NEE (c). Daily NDVI values for both eMODIS and AVHRR were inferred by linearly in-
terpolating between days with consecutive observations. (For interpretation of the re-
ferences to color in the text, the reader is referred to the web version of this article.)

Fig. 6. Best fitting linear equations representing the response of actual evapotranspiration
(AET) to NDVI (a) and the impacts of volumetric soil water content (VSWC) (b) and
potential evapotranspiration (PET) (c) on AET. Daily NDVI values for both eMODIS and
AVHRR were inferred by linearly interpolating between days with consecutive observa-
tions.

Table 1
Net ecosystem exchange (NEE) of C predicted from NDVI and volumetric soil water
content (VSWC, 0–15 cm depth) for shortgrass steppe during the growing season.

eMODIS AVHRR

Model R2 day R2 night R2 day R2 night

rain days NEE = F(NDVI) 0.41 0.15 0.28 0.12
rain days NEE = F(NDVI)*F

(VSWC)
0.44 0.15 0.35 0.12

non-rain days NEE = F(NDVI) 0.60 0.29 0.37 0.15
non-rain days NEE = F(NDVI)*F

(VSWC)
0.70 0.40 0.58 0.36
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observations). This is a crude test, but provides some indication of
model performance because GPP is correlated with NPP (e.g., Hao
et al., 2013, 2017).

Similar to NEE, NDVI was the dominant driver for AET during both
rain and non-rain days, with a higher portion of variability explained on
non-rain days. eMODIS NDVI performed better than AVHRR NDVI
(Table 2). Unlike NEE, a driver involving temperature (PET) was cor-
related with AET and including PET improved model fit (Table 2). Like
NEE, the overall model showed better correlations with observed AET
when aggregated to longer time scales (Fig. 9). Models based on
eMODIS and AVHRR also performed well at the daily scale (n = 1199)
with independent data from different pastures, with the eMODIS model
doing slightly better (R2 = 0.64) than AVHRR (R2 = 0.60). Using the
eMODIS model, coefficients improved to 0.78, and 0.83 at the weekly
and monthly scales, respectively.

We applied the model to isolate rain induced respiration and see if
this influences seasonal NEE. We found that the portion of modeled
respiration that was due to rain events was close to 50% on average and
ranged from about 40–60%. Furthermore, there were moderate corre-
lations (R2 = 0.51 for eMODIS and 0.44 for AVHRR) between the
portion of total respiration due to rain events and NEE with NEE be-
coming more negative (greater sink) as this portion decreased. Using
actual weather, the average portion of total respiration associated with
rainfall events was 47% for the AVHRR model and 52% for the eMODIS
model; these portions decreased to 41% for AVHRR and 46% for
eMODIS when using the modified weather file with precipitation ag-
gregated to single weekly events. Using the modified weather file also

increased net carbon uptake by on average 38 g C m−2 per season for
AVHRR and 32 g C m−2 per season for eMODIS. These increases were
due to both increased plant uptake from higher VSWC and decreased
amount of rainfall induced respiration. Note that these results are in-
complete because in addition to altering soil water dynamics, con-
centrating rainfall into large events would also likely impact NDVI, but
we could not account for this.

4. Discussion

Simple models based on land surface environmental factors and
remotely-sensed data explained a large portion of the variability in NEE
and AET patterns for the semiarid shortgrass steppe in Colorado. The
major control on both NEE and AET was NDVI which is consistent with
previous research showing that NDVI is correlated with plant growth in
water-limited, semiarid grasslands (Morgan et al., 2016; Hermance
et al., 2015; Zhang et al., 2010). However, the nature of the relation-
ships between NDVI and NEE or AET was influenced by rainfall events.
For a given NDVI value, daytime C uptake was higher on non-rain days
whereas AET and nighttime C losses were higher on rain days (Fig. 2).
Rainfall events stimulate heterotrophic respiration rates (Parton et al.,
2012) and respiration (C loss) on rain days often equals or exceeds
photosynthesis (C gain) at daily (Fig. 2a) and even sometimes on sea-
sonal (Fig. 8c) time scales. In contrast, on non-rain days seasonal day-
time C uptake always exceeds respiration (Fig. 8b) and daily C uptake
almost always exceeds respiration (Fig. 2a). Dependence of C flux on
precipitation events has been previously observed by Huxman et al.

Fig. 7. Modeled (based on eMODIS NDVI) vs. observed net ecosystem carbon exchange (NEE) aggregated to daily (a), weekly (b), monthly (c), and growing season (d) time periods for
shortgrass steppe.
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(2004) who noted that microbial respiration responds immediately to
even very small (2 mm) events. Stimulation of microbial activity by
small rain events also helps to explain the pattern that including VSWC
in the model improved correlation coefficients during rain days only
marginally for daytime NEE and not at all for night-time NEE (Table 1).
Our results support prior observations (Huxman et al., 2004) that mi-
crobial activity and C loss is stimulated by rainfall events regardless of
size; sufficiently large rain events that wet the subsurface soil layers are
required to enhance plant growth enough to lead to net C uptake
(Parton et al., 2012; Heisler-White et al., 2008).

eMODIS NDVI explained 60% of the variability in daytime NEE on
non-rain days whereas AVHRR NDVI explained just 37% (Table 1).
There are two related reasons to explain the better performance of

Fig. 8. Seasonal observed and modeled (based on eMODIS NDVI) net ecosystem carbon exchange (NEE) disaggregated to days with no rain (a), days with rain (b), nights with no rain (c)
and nights with rain (d) for shortgrass steppe.

Table 2
Actual evapotranspiration (AET) predicted from NDVI, volumetric soil water content
(VSWC, 0–15 cm depth), and potential evapotranspiration (PET) for shortgrass steppe
during the growing season.

Model R2 eMODIS R2 AVHRR

rain days AET = F(NDVI) 0.50 0.40
rain days AET = F(NDVI)*F(VSWC) 0.55 0.48
rain days AET = F(NDVI)*F(VSWC)*F(PET) 0.57 0.52
non-rain days AET = F(NDVI) 0.52 0.28
non-rain days AET = F(NDVI)*F(VSWC) 0.64 0.50
non-rain days AET = F(NDVI)*F(VSWC)*F(PET) 0.72 0.61
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eMODIS NDVI; eMODIS has higher spatial and temporal resolution than
AVHRR and eMODIS integrates mean values within the sampled area
whereas AVHRR picks the highest value within the sampled area.
Compared to eMODIS, including a soil water multiplier in the model

improved model fit to a greater extent when using AVHRR NDVI
(Table 1). One reason for this is because AVHRR does not explain as
much variance on its own so other variables can have greater influence.
Another possible reason is related to AVHRR being less resolved spa-
tially and temporally than eMODIS and including daily pasture level
VSWC model inputs could partially compensate for this limitation.
Another pattern evident from Fig. 2 and Table 1 is that daytime NEE is
more highly correlated with NDVI than nighttime NEE. This may be
related to NDVI being a metric of photosynthesis which is often the
dominant process driving C flux during the daytime.

Addition of VSWC improved correlations compared to NDVI alone
except for nighttime NEE during rain days and the improvements were
larger on non-rain than rain days (Table 1). This variance in the sen-
sitivity of NEE to VSWC and the observation that respiration often ex-
ceeded C uptake on rain days support previous suggestions that mi-
crobes inhabiting surface and near-surface soil layers become hydrated
by small rain events that do not appreciably affect autotrophic pro-
cesses which are more sensitive to environmental conditions in deeper
soil layers (Huxman et al., 2004).

NDVI based on eMODIS explained more of the variability in AET
compared to AVHRR on rain (50% vs. 40%) and non-rain days (52% vs.
28%). Including multipliers for soil water content and PET significantly
improved model results, especially on non-rain days (Table 2). Similar
to the NEE, including other factors in the models improved results to a
greater extent when using AVHRR compared to eMODIS NDVI. Unlike
NEE, including a temperature dependent factor (PET) in the model
significantly improved the ability to predict AET. This is likely due to
the direct effect of PET on the evaporation component of AET (Parton
et al., 1981). Likewise, enhanced evaporation on rain days from water
intercepted by biomass, litter, and bare soil likely contributes to the
observation that for a given value of NDVI, AET was higher on rain days
(Fig. 2c). This is consistent with assumptions in other models that
precipitation intercepted by biomass is evaporated (e.g., Zhang and
Wegehenkel, 2006).

Our simple eMODIS based model explained close to 50% of the
variability in daily NEE which is similar to previous work involving
more complex models. For example, an NEE regression tree model for
the conterminous United States based on eMODIS surface temperature,
enhanced vegetation index, and normalized difference water index
explained 53% of the variability in observed NEE (Xiao et al., 2008).
Also similar to Xiao et al. (2008), model performance tended to improve
as NEE was aggregated to longer time scales (Fig. 7). One reason for the
substantial increase in correlation coefficient from 0.48 for NEE at the
daily scale to 0.62 for NEE at the weekly scale is that the eMODIS data
represent 7 day composite values. The fact that we used linear inter-
polation to derive daily NDVI values likely contributed to model error
at the finer scale. Our simple eMODIS AET model achieved a daily r2

value of 0.72 for the parameterization data set and correlations im-
proved to 0.90 when aggregated at the weekly scale and to 0.96 at the
monthly scale (Fig. 9). Similar to the above for NEE, using linear in-
terpolation to derive daily NDVI values likely contributed to AET model
error at the daily scale. For the independent data set, correlation
coefficients were 0.64, 0.78, and 0.83 at the daily, weekly, and monthly
scales, respectively. For comparison, a more complex model based on
radiation, enhanced vegetation index, and diurnal temperature range as
an indicator of soil moisture in the top 5 cm layer was able to explain
89–98% of the variability in observed 16 day AET values for sites across
the US (Wang and Liang, 2008). These comparisons suggest that our
simple models based on readily available remotely sensed and land
surface environmental drivers perform as well, or nearly as well, as
more complex models.

Although our simple models performed reasonably well, they are
limited in that factors such as plant phenology, carbohydrate storage,
and soil nitrogen accumulation that can influence NEE and AET were
not explicitly included. There is evidence that the response time of peak
NDVI to rainfall events in the shortgrass steppe decreases from about

Fig. 9. Modeled (based on eMODIS NDVI) vs. observed actual evapotranspiration (AET)
aggregated to daily (a), weekly (b) and monthly (c) time periods for shortgrass steppe.
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two weeks early in the growing season to 12 days in the late growing
season, related to physiological traits of C3 vs. C4 grasses (Hermance
et al., 2015). In addition, Hermance et al. (2015) suggested that accu-
mulation of soil nitrogen during drought years contributes to higher
than expected plant production during the subsequent post drought
year. Although such factors were not explicitly represented in our
models, they do influence NDVI and so are implicitly included.

To investigate the impacts of precipitation events we ran the NEE
models using actual precipitation data and assuming no rain days to
isolate the impact of rain induced CO2 pulses. Our findings suggest that
as the portion of seasonal respiration due to rainfall events increases,
net carbon uptake tends to decrease. To explore the impact of altered
precipitation frequency, we compared long term modeled NEE using
actual weather and aggregated rainfall events at a weekly scale during
the growing season. This resulted in increased net carbon uptake which
provides evidence that the frequency distribution of precipitation is
important to C dynamics. This is consistent with previous work in this
semiarid grassland showing that increasing event size and decreasing
frequency while keeping seasonal rainfall constant increased above
ground NPP (Heisler-White et al., 2008). Similarly, Thomey et al.
(2011) found that grassland plots in New Mexico receiving a single
large rainfall event each month had higher ANPP than plots receiving
multiple smaller events. Our results are also similar to those of Jia et al.
(2016) who found multiple small rainfall events did not sufficiently wet
soil, leading to suppressed plant production and positive annual NEE.

5. Conclusions

Four main conclusions can be drawn from this work: 1) NDVI is a
main driver of NEE and AET, with eMODIS NDVI performing better
than AVHRR NDVI, 2) daily pasture level VSWC improves modeled
NEE, and VSWC and PET improve modeled AET, 3) using separate
equations for rain vs. non-rain days improves optimization of model
performance, and 4) simple models based on remotely sensed NDVI and
weather related environmental factors explained a large portion of the
variability in shortgrass steppe NEE and AET, especially when ag-
gregated to weekly and greater time scales. Separating rain vs. non-rain
days is the most novel aspect of our modeling approach and provides
evidence that enhanced microbial respiration on rain days has a sub-
stantial impact on NEE. One implication is that predicted climate
changes in the alteration of frequency, intensity, or timing of rainfall
events, but not necessarily total annual precipitation, will have sub-
stantial effects on NEE. Specifically, small-sized, frequent rainfall events
lead to C loss (Munson et al., 2010) whereas larger rainfall events lead
to C uptake (Li et al., 2017) and enhanced ANPP (Heisler-White). By
including separate relationships for rain vs. non-ran days, our model
helps to quantify these impacts and can be applied to project how
changes in precipitation patterns will impact NEE in the shortgrass
steppe.
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