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Abstract
Forecasting peak standing crop (PSC) for the coming grazing season can help 
ranchers make appropriate stocking decisions to reduce enterprise risks. 
Previously developed PSC predictors were based on short-term experimen-
tal data (<15 yr) and limited stocking rates (SR) without including the effect 
of SR on PSC explicitly. Here we used long-term (30 yr) measured data of 
PSC and steer weight gain (SWG), extended with the help of a model for SR 
effect, to develop multiple-variable regression functions for predicting PSC 
and SWG across a wide range of SR (0.2–1.32 steers ha−1 for summer graz-
ing season, June to mid-October) on a loam soil in a northern mixed-grass 
prairie. April to June rainfall was the primary weather variable influencing 
PSC (R2 = 0.45); inclusion of SR and soil water content on 1 April improved 
the accuracy in predicting PSC (R2 = 0.64). Combining the response of PSC 
to SR and the response of SWG to both PSC and SR enables ranchers to 
explore tradeoffs between economic net return and environmental impact 
(land conservation) as influenced by SR and weather variations. The result 
was further extended from the loam soil at the experimental site to the 
other two soil types (loam sandy and clay loam soils) by using a simple soil 
influence factor. A simple spreadsheet-based decision support tool can be 
developed to facilitate stocking decisions by ranchers in a northern mixed-
grass prairie to adaptively manage rangelands in an effort to increase 
economic net return and reduce land degradation associated with high 
weather variability and SR levels.

Abbreviations: DC, Drought Calculator; HPGRS, High Plains Grasslands Research Station; HPPSC, peak standing 
crop; GPFARM, Great Plains Framework for Agricultural Resource Management; PSC, peak standing crop; SR, 
stocking rate; SWG, steer weight gain; TDN, total intake digestible nutrient.
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Ranchers need to make stocking decisions for the upcoming grazing 
season before the initiation of forage growth. Weather variability (e.g., 

rainfall) is the most important factor influencing forage production in semi-
arid areas (e.g., Milchunas et al., 1994; Biondini et al., 1998; Derner and Hart, 
2007). Relationships between forage production and seasonal or spring (April–
June) precipitation have been well established for many rangelands, such as the 
northern mixed-grass prairie of the United States (Currie and Peterson, 1966; 
Lauenroth and Sala 1992; Derner and Hart, 2007; Derner et al., 2008b, Smart et 
al., 2007; Wiles et al., 2011) and the central grassland region of the United States 
(Sala et al., 1988). Forecasting of spring rainfall, PSC, and cattle weight gain 
before the grazing season would facilitate better decision-making for reducing 
enterprise risk for ranchers.

In addition to spring precipitation, soil water content at the beginning of 
the growing season increases the robustness of predictions of PSC (Briggs and 
Knapp, 1995; Andales et al., 2006; Torell et al., 2011). Dahl (1963) found that soil 
water and depth of moist soil on 15 April were useful indices for predicting grass 
production by early August in rangelands of eastern Colorado. Torell et al. (2011) 
used measured soil water to improve predictions of forage production in range-
lands of New Mexico. Andales et al. (2006) used the Great Plains Framework for 
Agricultural Resource Management (GPFARM)-Range model with different ini-
tial soil water levels in early April to produce improved response functions of 
PSC to spring precipitation in the northern mixed-grass prairie.

Stocking decisions by ranchers are dependent on PSC (Wiles et al., 2011; 
Dunn et al., 2013) as forage availability limits cattle intake and weight gains (e.g., 
Bement 1969; Redmon et al., 1995; Poppi, 1996). The aforementioned studies, how-
ever, did not account for the effect of SR on PSC and cattle weight gain. Recent 
studies have showed that high SR can reduce PSC, such as in the northern mixed-
grass prairie of the United States (Derner and Hart, 2007), and the response of 
PSC or livestock weight gain to weather variables differs with different grazing 
levels (Reeves et al., 2013a, 2013b, 2014). In this context, integrating the effect of 
SR and weather variables on PSC can potentially improve the predictions of PSC 
compared with predictions based on the weather variables alone, thus improve 
stocking decisions. Additionally, the cattle weight gains were not quantified as 
functions of PSC and SR in the previous stocking decision support tools. Thus, 
this precludes economic risk analyses at the different SR levels. Additionally, 
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land degradation due to overgrazing with high SR should also be accounted for 
in making SR decisions (Smart et al., 2010).

In this study, we used PSC and SWG data from a long-term (1982–2012) exper-
iment to create model simulated data sets with much higher (50–150%) SR levels 
than the experimental grazing levels (Derner and Hart 2007; Derner et al., 2008a). 
We then used the extended dataset to (i) obtain better PSC predictions as a func-
tion of spring rainfall, soil water before grazing seasons, and SR and (ii) combine 
the SR effects on SWG and land degradation across different soil types in the PSC 
predictor and help ranchers to make better SR decisions considering both net 
return and land conservations.

MATERIALS AND METHODS
Peak Standing Crop and Steer Weight Gain from  
Long-Term Field Experiments
Peak standing crop was measured annually in mid to late July from a long-term 
grazing experiment on the semiarid northern mixed-grass prairie at the High 
Plains Grasslands Research Station (HPGRS) in Cheyenne, WY (41°11¢ N, 104°53¢ 
W) (Derner and Hart, 2007; Derner et al., 2008a). Mean annual precipitation at the 
site is 381 mm with peaks of precipitation in April, May, and June. The soils are 
medium textured and well drained, largely composed of Albinas, Asclon, and 
Altvan loams and Cascajo gravelly loam (Stevenson et al., 1984).

Season-long (June to mid-October. 4.5 mo), continuous grazing treatments 
were initiated in 1982 with the following three SR levels: light [8 steers per 40 ha 
(0.20 steer ha−1), about 35% below the USDA–NRCS recommended rate], moderate 
[8 steers per 24 ha (0.33 steer ha−1), the USDA–NRCS recommended rate], and heavy 
(8 steers per 18 ha (0.44 steer ha−1), 33% above the USDA–NRCS recommended 
rate) (Hart et al., 1988). Yearling steers were used as grazing animals, and each 
steer was weighed before and after the season and all experimental procedures 
were approved by the HPGRS Animal Care and Use Committee.

Peak Standing Crop and Steer Weight Gain from GPFARM-Range 
Model Simulations
The forage and cattle modules of GPFARM-Range are simplified versions of the 
Simulating Production and Utilization of Rangeland (SPUR) model (Hanson et al., 
1988, 1992). Model details, including functions and equations for both the forage 
and cattle modules, have been published previously (Andales et al., 2005, 2006). 
Recently, the GPFARM-Range model was improved by considering the SR effect 
on PSC and steer weight and the revised model showed a reasonable response of 
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PSC and SWG to different grazing levels across long-term weather conditions as 
shown in Fig. 7–1 (Fang et al., 2014).

The improved model was used to simulate PSC and SWG for four SR greater 
than the above experimental values, in addition to the three experimental SR 
treatments, from 1982 to 2012. The six higher SR levels were 50 to 150% greater 
than the highest experimental SR of 0.44 steer ha−1, including (i) 0.66 steer ha−1 (50% 
greater), (ii) 0.88 steer ha−1 (100% greater), and (iii) 1.10 steer ha−1 (150% greater). See 
Fang et al. (2014) for more detailed information.

Multiple Regression Analysis and Economic Analysis
On the basis of previous studies on the relationships between PSC and weather 
variables (e.g., Eneboe et al., 2002; Derner and Hart, 2007; Patton et al., 2007; Smart 
et al., 2007; Torell et al., 2011; Wiles et al., 2011), the weather variables (precipita-
tion), SR, and soil water on 1 April were used for predicting both experimentally 

Fig. 7–1. GPFARM-Range model evaluations on simulating peak standing crop (PSC) and steer 
weight gain under the three stocking rate experimental treatments from 1982 to 2012 (detailed 
information can be found Fang et al., 2014).
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observed PSC data and GPFARM model simulated PSC. Multivariate stepwise 
regression was used to evaluate the contribution of each of the above variables for 
predicting PSC. The contribution of precipitation was evaluated on a trimonthly 
basis from January to September according to the abovementioned studies in 
the region. Besides PSC, the dependent variables of harvest efficiency and SWG 
were also predicted on the basis of PSC and SR by using the multivariate step-
wise regression method, where interactions between PSC and SR were included. 
The harvest efficiency, defined as the ratio of forage intake to forage production 
(Smart et al., 2010), reflects the grazing pressure and can be used as an impor-
tant indicator for SR decisions (Galt et al., 2000). A stepwise procedure of RSREG 
(Response Surface Regression) in SAS (Statistical Analysis System) (Freund and 
Littell, 1991) was used for the variable selections (P < 0.01), which combines for-
ward selection and backward elimination steps for variable selection.

Because the model does not simulate the carrying costs (such as supplement 
cost, salt, implants, and transportation) of a grazing enterprise, a simple method 
was used to estimate the economic profit based on previous studies in the region 
(Hart et al., 1988; Manley et al., 1997). The purchase price in March and selling 
price in October for the simulation period (1982–2012) in the United States were 
obtained from USDA–NASS (2014), and we estimated carrying costs at $US60 per 
steer. Predicted SWG values from the different SR levels were used to estimate 
economic net returns each year.

Extending the Regression Equations to Other Soils
We simulated PSC and SWG using the seven SR levels for the other two different 
soil types (loam sandy soil and clay loam soil) from 1982 to 2012. These simulated 
data were used to estimate effects of soil types on the responses of PSC and SWG 
to SR under the same climate conditions. To keep this tool simple, we used a sim-
ple soil factor to extend the regression equation from a loam soil (experimental 
site soil) to the other two soil types (clay loam soil and loam sandy soils). The soil 
factor was obtained based on the relationships of PSC or SWG from 1982 to 2012 
between the different soils.

RESULTS AND DISCUSSION
Identifying the Influential Factors for Yearly Variability of Peak 
Standing Crop or Steer Weight Gain
For predicting both observed and model simulated PSC, the trimonthly rainfall 
amounts from January to March or from July to September were not significant 
for predicting PSC across the different SR levels (Table 7–1). The April to June 
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(spring) rainfall was identified as the most important factor (P < 0.01, partial R2 
from 0.39 to 0.64) to both observed PSC and model simulated PSC, respectively 
(Table 7–1). Similar results were found with field experiments in this rangeland 
ecosystem (Derner and Hart, 2007; Smart et al., 2007; Derner et al., 2008b; Wiles et 
al., 2011). The effect of SR on PSC was significant (P < 0.01) but with a partial R2 of 
0.08 (observed PSC) and 0.15 (simulated PSC) (Table 7–1). Soil water affected PSC 
for both experimental data and model simulation results, agreeing with prior 
findings (Andales et al., 2006; Torell et al., 2011). Simulated soil water content on 
1 April influenced PSC (P < 0.01) (Table 7–1). A significant positive relationship 
was obtained between the GPFARM simulated soil water content on 1 April with 
the observed PSC (R2 = 0.08, n = 93; P < 0.001) or the simulated PSC (R2 = 0.14, n = 
279; P < 0.001) across the SR levels. This result showcases that including soil water 
content on 1 April improves the PSC predictions over those based on spring rain-
fall only. We also found a significant (P < 0.001) linear relationship between soil 
water content on 1 April and the precipitation in March of the current year and 
December of the previous year, which explained 41 and 18% of the variation in 
soil water content on 1 April across seasons, respectively (Eq. [4] in Table 7–2), and 
other variables of rainfall in January, October, and November of the previous year 
were also significant but explained less variations in soil water content on 1 April. 
This regression equation based on previous precipitation can be used to estimate 

Table 7–1. The most influential variables selected (P < 0.01) with partial R2 values based on the mul-
tivariate regressions for both observed peak standing crop (MPSC) or steer weight gain (OSWG) 
and GPFARM-Range model predicted PSC (SPSC) and weight gain (SSWG) from 1982 to 2012 under 
different stocking rates (steer ha−1) for a 4.5-mo grazing season.†

Variable

Stocking rate for experiment Stocking rate for long-term simulations

0.20 0.33 0.44 Total 0.20 0.33 0.44 0.66 0.88 1.10 1.32 Total

––––––– steer ha−1 ––––––– ––––––––––––––––––– steer ha−1 ––––––––––––––––––––
MPSC SPSC

Rain123 no no no no no no no no no no no no
Rain456 0.39 0.43 0.43 0.38 0.64 0.57 0.54 0.47 0.50 0.51 0.52 0.45
Rain789 no no no no no no no no no no no no
SW 0.03 0.05 0.02 0.03 0.05 0.05 0.07 0.08 0.06 0.04 0.06 0.05
SR – – – 0.08 – – – – – – 0.14

MSWG SSWG
PSC no no no no no no no no 0.79 0.74 0.68 0.04
TDN – – – – 0.87 0.85 0.81 0.74 0.09 0.08 0.08 0.37
SR – – – 0.59 – – – – – – – 0.15

† Climatic variables: rain123, total rainfall (mm) from January to March; rain456, total rainfall (mm) from April to 
June; rain789, total rainfall (mm) from July to September. Other variables: SW, soil water content on 1 April; 
SR, stocking rate; PSC, peak standing crop; TDN, total intake digestible nutrient. The word “no” means this 
variable was not included at P < 0.01 level, and “–” means this variable was not used for regression analysis.
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soil water content on 1 April (before forage growth begins) when the observed 
value is not available.

Peak standing crop was not identified as a significant (P > 0.19) influential fac-
tor for predicting observed SWG for the experimental SR levels (0.20–0.44 steer 
ha−1) (Table 7–1), and similar results were also obtained for the simulated SWG. 
Under higher SR levels from 0.88 to 1.32 steer ha−1, however, PSC became the most 
limiting factor for the simulated SWG with a partial R2 of 0.79 to 0.68. Considering 
all the SR treatments, SR was the most important factor to limiting SWG with a 
partial R2 of 0.59, and this agrees with prior research (Reeves et al., 2013b). For the 
simulated SWG data, however, PSC, total intake digestible nutrient (TDN) and 
SR were all significant in predicting SWG, and a linear relationship between PSC 
and TDN was also found (R2 = 0.50) for these simulated data.

Improving Peak Standing Crop Predictions by Including Soil Water  
and Stocking Rate
Extending the PSC predictions to a wider range of weather and grazing condi-
tions is needed to assist in decision-making for ranchers. The PSC predictions 
from the regression equations based on the spring rainfall (Fig. 7–2a), spring rain-
fall plus SR (Fig. 7–2b), or spring rainfall plus SR and predicted soil water on 1 

Table 7–2. Regression equations for GPFARM-Range simulated peak standing crop when using 
rainfall, stocking rate, and GPFARM-Range simulated soil water (0–50 cm) on 1 April and for 
GPFARM-Range model predicted forage harvest efficiency and steer weight gain using peak stand-
ing crop and stocking rate (Fig. 7–4).† 

Number Variable Equations Statistic results

[1] PSC 4.16 ´ rain456 + 358.41 RMSE = 358,  
R2 = 0.45, N = 217

[2] PSC 620.36 + 4.16 ´ rain456 – 370.04 ´ SR RMSE = 246,  
R2 = 0.588, N = 217

[3] PSC – 370.69 + 3.85 ´ rain456 – 363.17 ´ SR + 5800.05 ´ SWP RMSE = 231,  
R2 = 0.637, N = 217

[4] SWP 0.14483 – 5.61e-4 ´ rain1 + 4.14e-4 ´ rain3 + 5.79e-4 ´ 
prain12 + 2.55e-4 ´ prain10 + 2.71e-4 ´ prain11 

RMSE = 0.0089,  
R2 = 0.647, N = 217

[5] HE 0.47820 – 0.00042531 ´ PSC + 0.94588 ´ SR RMSE = 0.17,  
R2 = 0.87, N = 217

[8] HE 0.00831 + 1.63 ´ SR – 6.71e-4 ´ SR ´ PSC RMSE = 0.15,  
R2 = 0.91, N = 217

[9] SWG –16.54 + 0.04 ´ PSC + 41.15 ´ SR –1.95-e5 ´ PSC2 
–45.60 ´ SR2 + 0.06 ´ SR ´ PSC

RMSE = 9.1,  
R2 = 0.84, N = 217

† Climatic variables: rain456, rainfall from April to June; rain1, rainfall in January; rain3, rainfall in March; prain10, 
monthly rainfall during October in the previous year; prain11, monthly rainfall during November in the previ-
ous year; prain12, monthly rainfall during December in the previous year. Other variables: PSC, peak standing 
crop (kg ha−1); SR, stocking rate (steer ha−1); SWP, GPFARM simulated soil water (cm3 cm−3); HE, harvest effi-
ciency; SWG, steer weight gain (kg ha−1).
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April (Fig. 7–2c) were compared with the earlier Drought Calculator (DC) method 
(Dunn et al., 2013) (Fig. 7–2d). As expected, using variables of spring rainfall and 
SR produced better PSC predictions (RMSE = 246 kg ha−1; R2 = 0.59) than the PSC 
predictions using spring rainfall only (RMSE = 358 kg ha−1; R2 = 0.45). Further, by 
including soil water on 1 April, PSC predictions were improved with an RMSE 
value of 231 kg ha−1 and R2 of 0.64. For the DC method (Dunn et al., 2013), a better 
performance in predicting PSC was obtained when the PSC level was below 1000 
kg ha−1 because of the drought stresses, and obvious under-predictions occurred 
when PSC level was higher than 1000 kg ha−1 when there was no or little drought 
stress (Fig. 7–2d). The regression equations improved the predictions, especially 
at high PSC level with little or no drought stresses, compared with the predictions 
from DC method (RMSE = 435 kg ha−1).

Next, we compared predicted PSC (regression equations in Table 7–2 and 
DC method) and measured data under the three SR levels (Fig. 7–3). Both 
regression equations and DC methods predicted PSC well when measured PSC 

Fig. 7–2. Comparing the performances in predicting peak standing crop (PSC) for the developed 
regression equations based on (a) April to June rainfall (Eq. [1] in Table 7–2), (b) April to June rainfall 
and stocking rate (Eq. [2] in Table 7–2), (c) April to June rainfall, stocking rate, and soil water con-
tent on 1 April (Eq. [3] in Table 7–2), and (d) the Drought Calculator (DC method [Dunn et al., 2013]), 
with PSC values simulated by the GPFARM-Range model. The up-bound in estimated PSC by the DC 
method (d) is the average simulated PSC level from 1982 to 2012.
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was below average levels, but under-predicted PSC occurred when PSC values 
were above average. The regression equation based on GPFARM simulated PSC 
under-predicted PSC because of the GPFARM under-simulated PSC compared 
with measured data (Fig. 7–1). Slightly better predictions of PSC were obtained 
from the regression equation than from the DC method with lower RMSE values 
(Fig. 7–3). The inclusion of the SR effect on PSC in the regression equations 
was demonstrated from a field experiment study (Derner and Hart, 2007). 
The developed regression equations produced a comparable performance in 
predicting PSC to the DC method and can be applied to predict PSC across a 
wider range of SR and weather conditions.

Extending to Forecast Harvest Efficiency and Steer Weight Gain Using 
Stocking Rate and Peak Standing Crop
To assist ranchers with stocking decisions, other indicators, such as forage harvest 
efficiency (total forage intake/PSC as defined by Smart et al. [2010]) and SWG, are 

Fig. 7–3. Comparing the performances in predicting peak standing crop (PSC) for the developed 
regression equations based on (a) April to June rainfall (Eq. [1] in Table 7–2), (b) April to June rainfall 
and stocking rate (Eq. [2] in Table 7–2), (c) April to June rainfall, stocking rate, and soil water con-
tent on 1 April (Eq. [3] in Table 7–2), and (d) the Drought Calculator (DC method [Dunn et al., 2013]), 
with the experimental measured PSC. The up-bound in estimated PSC by the DC method (d) is the 
average simulated PSC level from 1982 to 2012.
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needed to account for SR effect on economic profits (SWG) and environmental 
impacts (land conservation). On the basis of the long-term simulations with a 
wider range of SR levels, the regression equations for simulated harvest efficiency 
or SWG based on the variables of PSC and SR are presented in Table 7–2. For 
predicting SWG or harvest efficiency, interactions between PSC and SR were 
significant (P < 0.01) and were included in the regression equations. This result 
was consistent with previous experimental studies (Derner and Hart, 2007; Smart 
et al., 2010). These regression equations showed good performances in predicting 
forage harvest efficiency (Fig. 7–4a) and SWG (Fig. 7–4b) across these seasons, 
with RMSE values of 0.18 and 9.3 kg ha−1, respectively, which can help ranchers 
predict harvest efficiency and SWG based on the PSC and SR levels and make 
better SR decisions based on the SR effects on land degradation (low PSC level 
associated with high SR levels) and economic net return.

Fig. 7–4. Comparisons between regression equation predicted forage harvest efficiency (HE, Eq. [5] 
in Table 7–2) and steer weight gain (SWG, kg ha−1, Eq. [6] in Table 7–2) with GPFARM-Range model 
simulated data from 1982 to 2012.
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The regression equation developed for SWG in Table 7–2 (Eq. [9]) is based on 
simulated data for all seven SR and thus includes the effect of PSC at all SR levels. 
On the other hand, there was no significant relationship between SWG and PSC 
at the three lower SR used in the experiment for both measured and simulated 
data (Table 7–1), indicating that the PSC was not a limiting factor to SWG under 
the low SR conditions. We explored if Eq. [9] supports this effect. As shown in 
Fig. 7–5a, the response of the predicted SWG to different levels of PSC by the 
regression equation, Eq. [9], was small and apparently insignificant under the 
low SR level (0.20 steer ha−1) compared with the high SR level (0.60 steer ha−1). This 
result was consistent with the measured and simulated data, where no significant 
influence of PSC on SWG at the low SR levels was found (Table 7–1). We further 
compared the predicted SWG from the regression equation, Eq. [9], based on the 
simulated data and another equation based only on experimental measured data 
as a function of SR levels (Fig. 7–5b). Both equations predicted very similar SWG 
at the low SR level. This result indicated that the regression equation based on the 
simulated data (Eq. [9] in Table 7–2) was effective in predicting SWG even under 
the low SR levels. While at higher SR levels, the regression equation based the 
experimental data tended to oversimulate SWG because it did not consider the 
reductions in PSC caused by high SR. Therefore, the regression equation based 
on the simulated data with a wider range of SR was selected since it reflects the 
experimental data.

Extending the Regression Equations to Other Soil Types
We first compared the GPFARM simulated PSC and SWG for the different SR 
levels for the three soils, for example, loam soil (experimental field soil), loam 
sandy soil, and clay loam soil, as shown in Fig. 7–6. For the predicted PSC from 

Fig. 7–5. Comparisons of (a) the response of steer weight gain (SWG) with peak standing crop (PSC) 
between the low (0.20 steer ha−1) and high (0.60 steer ha−1) stocking rates (SR) based on the regres-
sion Eq. [9] in Table 7–2 and (b) the response of SWG to SR between the regression equation based 
on the simulated data (Eq. [9] in Table 7–2) and the experimental data (SWG = 6.03 + 86.73 ´ SR 
based on Table 7–1).
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1982 to 2012, strong linear relationships between loam and clay loam soils or 
between loam and loam sandy soils were found with R2 values of 0.97 or 0.90, 
respectively. The long-term predicted average PSC were slightly lower for clay 
loam soil (slope = 0.94) and loam sandy (slope = 0.93) soils than for loam soils. The 
SR level showed little or no effect on abovementioned relationships between these 
different soils. The abovementioned relationships in PSC among these different 
soil types suggested that the PSC is lower for loam sandy and clay loam soils 
than for loam soil, and a simple soil influence factor on PSC (the slopes for the 
relationships) can be used to extend the regression equation of PSC for loam soil 
to clay loam soil (slope = 0.94) and loam sand soil (slope = 0.93). Such an extension 
method was very simple and was easier for ranchers to adopt.

For the predicted SWG from 1982 to 2012, linear relationships between loam 
and clay loam soils or between loam and loam sandy soils were also found with 
R2 values of 0.92 or 0.87, respectively. The long-term predicted SWG was slightly 
lower for clay loam (slope = 0.96) or loam sandy (slope = 0.91) soils than for loam 
soils, which suggested that different soil factors should be used for the different 
SR levels. Specifically, when SR levels were below 0.88 steer ha−1, the slopes for 
the SWG relationship between loam and loam sandy soils are similar (0.98–0.97), 
and one soil influence factor of 0.97 was used for the SR levels. When SR levels 
were between 1.1 and 1.32 steer ha−1, the soil influence factor of 0.94 was used. 

Fig. 7–6. Comparisons of GPFARM-Range simulated long-term (1982–2012) seasonal peak standing 
crop (PSC) and steer weight gain (SWG) on the loam soil (experimental field soil) to the clay loam 
or loam sandy soils.
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Similarly, when extending the results from loam soil to loam sandy soil, the soil 
influence factor of 0.95 and 0.90 was used for the SR levels below 0.88 steer ha−1 
and above 0.88 steer ha−1, respectively (Table 7–3).The GPFARM-Range predicted 
PSC or SWG and the estimated data from equations based on above soil influence 
factor were very close with a strong linear relationship (slope values between 0.98 
and 1, and R2 values between 0.87 and 0.97). This suggests that it was reasonable 
to extend the regression equations from the loam soil to other soils (such as clay 
loam and loam sandy soils) using the soil influence factor.

Better Stocking Decisions Based on Peak Standing Crop and Steer 
Weight Gain and Economic Analysis
On the basis of the regression equations for PSC and SWG (Table 7–2), ranchers 
can forecast their PSC and SWG before the grazing season, with the National 
Weather Service forecast of rainfall from April to June and soil water on 1 April 
(measured or estimated from previous rainfall based on regression Eq. [4] in 
Table 7–2). The forage harvest efficiency can also be predicted on the basis of the 
predicted PSC and SR levels (Eq. [5] in Table 7–2). These regression equations can 
be developed into a spreadsheet-based decision support tool and help ranchers 
explore the effects of SR and weather on PSC and SWG.

In Fig. 7–7, the responses of regression predicated PSC, harvest efficiency, 
SWG, and economic profits to SR were compared for three different weather 
conditions [normal seasons with average spring rainfall (160 mm), dry seasons 
with 25% below normal rainfall (120 mm), and wet seasons with 25% above 
normal rainfall (200 mm)]. As expected, PSC decreased with increasing SR in 
all cases. Harvest efficiency, however, increased with increasing SR, indicating 

Table 7–3. The linear relationships between GPFARM-Range model simulated steer weight gain 
from 1982 to 2012 between loam soil and clay loam or loam sandy soil across these stocking rates.†

Stocking rate Clay loam soil Loam sandy soil

steer ha−1

0.20 y = 0.99x R2 = 0.84 y = 0.98x R2 = 0.70
0.33 y = 0.98x R2 = 0.82 y = 0.96x R2 = 0.60
0.44 y = 0.98x R2 = 0.88 y = 0.95x R2 = 0.70
0.66 y = 0.98x R2 = 0.93 y = 0.94x R2 = 0.68
0.88 y = 0.97x R2 = 0.93 y = 0.95x R2 = 0.87
1.10 y = 0.95x R2 = 0.92 y = 0.91x R2 = 0.83
1.32 y = 0.94x R2 = 0.85 y = 0.89x R2 = 0.81
0.2–0.88 y = 0.97x R2 = 0.96 y = 0.95x R2 = 0.88
1.10–1.32 y = 0.94x R2 = 0.87 y = 0.90x R2 = 0.82

† The slopes for these linear relationships were used as scaling factor to extend to these different soil types 
under different stocking rate levels.
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overgrazing at the high SR level (harvest efficiency > 1 indicates greater forage 
intake than forage production). The SWG increased quadratically with SR and 
showed higher values for wet seasons than for dry and normal seasons; the 
economic profits responded similarly to SR. In general, the biophysical optimum 
SR levels (that gave the highest SWG) generally increased from dry seasons to 
wet seasons. However, the SR values that yield the optimum economic returns 
were much lower than the biophysical optimums, which are associated with high 
harvest efficiency but also high risk of land degradation. Thus, the practical SR 
levels between 0.33 and 0.44 steer ha−1 are lower than the biophysical optimum SR 

Fig. 7–7. Responses of peaking standing 
crop (PSC), harvest efficiency (HE), steer 
weight gain (SWG), and economic profits 
to stocking rate (SR, steer ha−1) under dry 
(25% below average April–June rainfall, 
120 mm), normal (160 mm), and wet (25% 
above average April–June rainfall, 200 
mm) seasons. (The PSC, HE, and SWG were 
predicted from the equations in Table 7–2, 
where the soil water content was used as 
average value 0.18 cm3 cm−3 from 1982 
to 2012. The economic profits were esti-
mated on the basis of the predicted SWG, 
cattle buy or sale price, and carry cost 
(Hart et al., 1988).
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and close to the experimental SR levels, avoiding negative economic profits and 
land degradation (overgrazing), but they can be higher for wet seasons than for 
dry seasons.

The soil water on 1 April showed positive influences on PSC and SWG and 
economic profits (Fig. 7–8). High soil water on 1 April produced higher PSC with 
lower harvest efficiency and produced higher SWG and economic profits than 
lower soil water on 1 April. The soil water effect on SWG and economic profits 
was pronounced with increased SR levels. The biophysical or economic optimum 

Fig. 7–8. Responses of regression pre-
dicted peaking standing crop (PSC), 
harvest efficiency (HE), steer weight gain 
per area (SWG), and economic profits to 
stocking rate (SR, steer ha−1) as influenced 
by soil water conditions on 1 April (SW) 
(lower SW = 0.15 cm3 cm−3; normal SW 
= 0.18 cm3 cm−3, and high SW = 0.21 cm3 
cm−3) under normal April to June rainfall 
conditions (160 mm). The economic prof-
its were estimated on the basis of the 
predicted SWG, cattle buy or sale price, 
and carry cost (Hart et al., 1988).
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SR levels increased from low to high soil water content on 1 April, suggesting that 
higher practical SR can be applied under higher soil water on 1 April than under 
lower soil water on 1 April.

Another influential factor to SR selections was the economic factor, such as 
cattle purchase or selling price. As shown in Fig. 7–9, the response of economic 
profits to SR as influenced by the cattle price showed that optimum SR levels were 
obtained at 0.3 to 0.5 steer ha−1 for a favorable price year and 0.1 to 0.3 steer ha−1 
for the normal or unfavorable price year. A great difference in economic profits 
occurred with these different economic years (cattle price) and different weather 
conditions. Favorable prices for wet seasons produced high economic profits with 
relatively lower harvest efficiency (Fig. 7–7) when choosing a relatively high SR 
of 0.5 steer ha−1. Unfavorable prices for dry seasons produced very low economic 
profits, and increasing SR can increase SWG (Fig. 7–7) but reduce the economic 
profits (Fig. 7–9).

Fig. 7–9. Responses of regression pre-
dicted economic profits to stocking rate 
(SR, steer ha−1) as influenced by cattle price 
(favorable price: buy at $US1.76 and sell at 
$US1.65; normal price: buy at $US1.61 and 
sell at $US1.48; unfavorable price: buy at 
$US1.54 and sell at $US1.32, according to 
Manley et al. [1997]) under normal April to 
June rainfall conditions (160 mm). The eco-
nomic profits were estimated on the basis 
of the predicted SWG, cattle buy or sale 
price, and carry cost (Hart et al., 1988).
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When extending these results to other soils, for example, clay loam and 
sandy loam soils, the responses of PSC, harvest efficiency, SWG, and economic 
profits to SR levels were similar, but with lower PSC (higher harvest efficiency), 
SWG, and economic profits compared with the results from loam soil, especially 
under high SR levels (Fig. 7–10). This result suggested that loam soil had an 
advantage in producing higher PSC and SWG with higher SR levels compared 
with clay loam and loam sandy soil. While under low SR levels, the response of 
harvest efficiency, SWG, and economic profits were very close among the three 
soil types.

Fig. 7–10. Responses of regression pre-
dicted peaking standing crop (PSC), 
harvest efficiency (HE), steer weight 
gain per area (SWG), and economic 
profits to stocking rate (SR, steer ha−1) 
as influenced soil types [the loam, 
clay loam, and loam sandy soils with 
extended regression equation pre-
dicted data from loam soil (Table 7–3)] 
under normal April to June rainfall con-
ditions (160 mm). The economic profits 
were estimated on the basis of the pre-
dicted SWG, cattle buy or sale price, 
and carry cost (Hart et al., 1988).
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Summary and Conclusions
On the basis of the GPFARM-Range model simulated long-term PSC data, simple 
regression equations can be developed in terms of rainfall from April to June, SR, 
and soil water content on 1 April to significantly improve the PSC predictions. 
Combining soil water content before the growing season and SR provides an 
accurate tool for ranchers to predict PSC before the grazing season and make 
reasonable stocking decisions in the region.

Including the predictions of PSC, SWG, and economic profits can be 
very helpful for ranchers in making better SR decisions, accounting for both 
economic return and environmental impact (land conservations). The regression 
equations can also be used to analyze the effects of weather and soil variations 
on the responses of PSC and SWG to SR levels. These regression equations are 
advantageous to previous methods, such as the Drought Calculator (Dunn et al., 
2013), in that the regression equations consider both economic net return and 
environmental impacts and the coupled responses of PSC to SR and SWG to 
PSC and SR across various weather conditions. These equations can be used to 
develop a spreadsheet-based decisions support tool and help ranchers explore 
the tradeoffs between economic net return and environmental impacts (such as 
land degradation) as influenced by SR and weather variations and make better 
stocking decisions with reduced enterprise risks and land degradations on 
different soils across the northern mixed-grass prairie.

References
Andales, A.A., J.D. Derner, L.R. Ahuja, and R.H. Hart. 2006. Strategic and tactical prediction of 

forage production in northern mixed-grass prairie. Rangeland Ecol. Manag. 59:576–584. 
doi:10.2111/06-001R1.1

Andales, A.A., J.D. Derner, P.N.S. Bartling, L.R. Ahuja, G.H. Dunn, R.H. Hart, and J.D. Hanson. 2005. 
Evaluation of GPFARM for simulation of forage production and cow-calf weights. Rangeland 
Ecol. Manage. 58:247–255. doi:10.2111/1551-5028(2005)58[247:EOGFSO]2.0.CO;2

Bement, R.E. 1969. A stocking-rate guide for beef production on blue-grama range. J. Range Man-
age. 22:83–86. doi:10.2307/3896186

Biondini, M.E., B.D. Patton, and P.E. Nyren. 1998. Grazing intensity and ecosystem processes in a north-
ern mixed-grass prairie. Ecol. Appl. 8:469–479. doi:10.1890/1051-0761(1998)008[0469:GIAE
PI]2.0.CO;2

Briggs, J.M., and A.K. Knapp. 1995. Interannual variability in primary production in tallgrass prairie: 
Climate, soil moisture, topographic position, and fire as determinants of aboveground bio-
mass. Am. J. Bot. 82:1024–1030. doi:10.2307/2446232

Currie, P.O., and G. Peterson. 1966. Using growing-season precipitation to predict crested wheat-
grass yields. J. Range Manage. 19(5):284–288. doi:10.2307/3895721

Dahl, B.E. 1963. Soil moisture as predictive index of forage yield for the sandhills range type. J. 
Range Manage. 16:128–132. doi:10.2307/3895105

Derner, J.D., and R.H. Hart. 2007. Grazing-induced modifications to peak stand-
ing crop in northern mixed-grass prairie. Rangeland Ecol. Manage. 60:270–276. 
doi:10.2111/1551-5028(2007)60[270:GMTPSC]2.0.CO;2

http://dx.doi.org/10.2111/06-001R1.1
2.0.CO
http://dx.doi.org/10.2307/3896186
http://dx.doi.org/10.1890/1051-0761(1998)008[0469%3AGIAEPI]2.0.CO%3B2
http://dx.doi.org/10.1890/1051-0761(1998)008[0469%3AGIAEPI]2.0.CO%3B2
http://dx.doi.org/10.2307/2446232
http://dx.doi.org/10.2307/3895721
http://dx.doi.org/10.2307/3895105
http://dx.doi.org/10.2111/1551-5028(2007)60[270%3AGMTPSC]2.0.CO%3B2


180 Fang et al.

Derner, J.D., R.H. Hart, M.A. Smith, and J.W. Waggoner. 2008a. Long-term cattle gain responses 
to stocking rate and grazing systems in northern mixed-grass prairie. Livest. Sci. 117:60–69. 
doi:10.1016/j.livsci.2007.11.011

Derner, J.D., B.W. Hess, R.A. Olson, and G.E. Schuman. 2008b. Functional group and species 
responses to precipitation in three semi-arid rangeland ecosystems. Arid Land Res. Manage. 
22:81–92. doi:10.1080/15324980701784274

Dunn, G.H., M. Gutwein, L.J. Wiles, T.R. Green, A. Menger, and J. Printz. 2013. The Drought Cal-
culator: Decision support tool for predicting forage growth during drought. Rangeland Ecol. 
Manage. 66(5):570–578. doi:10.2111/REM-D-12-00087.1

Eneboe, E.J., B.F. Sowell, R.K. Heitschmidt, M.G. Karl, and M.R. Haferkamp. 2002. Drought and graz-
ing: IV. Blue grama and western wheatgrass. J. Range Manage. 55:73–79. doi:10.2307/4003266

Fang, Q.X., A.A. Andales, J.D. Derner, L.R. Ahuja, L. Ma, P.N.S. Bartling, J.L. Reeves, and Z. Qi. 2014. 
Modeling weather and stocking rate effects on forage and steer production in northern 
mixed-grass prairie. Agric. Syst. 129:103–114. doi:10.1016/j.agsy.2014.05.011 

Freund, R.J., and R.C. Littell. 1991. SAS system for regression. 2nd ed. SAS Inst., Cary, NC.
Galt, D., F. Molinar, J. Navarro, J. Joseph, and J. Holechek. 2000. Grazing capacity and stocking rate. 

Rangelands 22(6):7–11.
Hanson, J.D., B.B. Baker, and R.M. Bourdon. 1992. SPUR2 Documentation and user guide. GPSR 

Tech. Rep. 1. USDA–ARS, Fort Collins, CO.
Hanson, J.D., J.W. Skiles, and W.J. Parton. 1988. A multispecies model for rangeland plant commu-

nities. Ecol. Modell. 44:89–123. doi:10.1016/0304-3800(88)90084-1
Hart, R.H., M.J. Samuel, P.S. Test, and M.A. Smith. 1988. Cattle, vegetation, and economic responses 

to grazing systems and grazing pressure. J. Range Manage. 41:282–286. doi:10.2307/3899379
Lauenroth, W.K., and O.E. Sala. 1992. Long-term forage production of north american shortgrass 

steppe. Ecol. Appl. 2:397–403. doi:10.2307/1941874
Manley, W.A., R.H. Hart, M.J. Samuel, M.A. Smith, J.W. Waggoner, and J.T. Manley. 1997. Vegeta-

tion, cattle, and economic responses to grazing strategies and pressures. J. Range Manage. 
50:638–646. doi:10.2307/4003460

Milchunas, D.G., J.R. Forwood, and W.K. Lauenroth. 1994. Productivity of long-term graz-
ing treatments in response to seasonal precipitation. J. Range Manage. 47:133–139. 
doi:10.2307/4002821

Patton, B.D., X. Dong, P.E. Nyren, and A. Nyren. 2007. Effects of grazing intensity, precipita-
tion, and temperature on forage production. Rangeland Ecol. Manage. 60(6):656–665. 
doi:10.2111/07-008R2.1

Poppi, D.P. 1996. Predictions of food intake in ruminants from analyses of food composition. Aust. 
J. Agric. Res. 47:489–504. doi:10.1071/AR9960489

Redmon, L.A., F.T. McCollum, III, G.W. Horn, M.D. Cravey, S.A. Gunter, P.A. Beck, J.M. Mieres, and 
R.S. Julian. 1995. Forage intake by beef steers grazing winter wheat with varied herbage 
allowances. J. Range Manage. 48:198–201. doi:10.2307/4002420

Reeves, J., J. Derner, M. Sanderson, J. Hendrickson, S. Kronberg, M. Petersen, and L. Vermeire. 2014. 
Seasonal weather influences on yearling beef steer production in C3-dominated Northern 
Great Plains rangeland. Agric. Ecosyst. Environ. 183:110–117. doi:10.1016/j.agee.2013.10.030

Reeves, J.L., J.D. Derner, M.A. Sanderson, M.K. Petersen, L.T. Vermeire, J.R. Hendrickson, and S.L. 
Kronberg. 2013a. Seasonal temperature and precipitation effects on cow–calf production in 
northern mixed-grass prairie. Livest. Sci. 155:355–363. doi:10.1016/j.livsci.2013.04.015

Reeves, J., J. Derner, M. Sanderson, M. Petersen, L. Vermeire, J. Hendrickson, and S. Kronberg. 
2013b. Temperature and precipitation affect steer weight gains differentially by stocking 
rate in northern mixed-grass prairie. Rangeland Ecol. Manage. 66(4):438–444. doi:10.2111/
REM-D-12-00157.1

Sala, O.E., W.J. Parton, L.A. Joyce, and W.K. Lauenroth. 1988. Primary production of the central 
grassland region of the United States. Ecology 69:40–45. doi:10.2307/1943158

Smart, A.J., J.D. Derner, J.R. Hendrickson, R.L. Gillen, B.H. Dunn, E.M. Mousel, and K.C. Olson. 2010. 
Effects of grazing pressure on efficiency of grazing on North American Great Plains range-
lands. Rangeland Ecol. Manage. 63(4):397–406. doi:10.2111/REM-D-09-00046.1

http://dx.doi.org/10.1016/j.livsci.2007.11.011
http://dx.doi.org/10.1080/15324980701784274
http://dx.doi.org/10.2111/REM-D-12-00087.1
http://dx.doi.org/10.2307/4003266
10.1016/j.agsy
http://dx.doi.org/10.1016/0304-3800(88)90084-1
http://dx.doi.org/10.2307/3899379
http://dx.doi.org/10.2307/1941874
http://dx.doi.org/10.2307/4003460
http://dx.doi.org/10.2307/4002821
http://dx.doi.org/10.2111/07-008R2.1
http://dx.doi.org/10.1071/AR9960489
http://dx.doi.org/10.2307/4002420
http://dx.doi.org/10.1016/j.agee.2013.10.030
http://dx.doi.org/10.1016/j.livsci.2013.04.015
http://dx.doi.org/10.2111/REM-D-12-00157.1
http://dx.doi.org/10.2111/REM-D-12-00157.1
http://dx.doi.org/10.2307/1943158
http://dx.doi.org/10.2111/REM-D-09-00046.1


Using a Model and Forecasted Weather to Predict Forage and Livestock Production 181

Smart, A.J., B.H. Dunn, P.S. Johnson, L. Xu, and R.N. Gates. 2007. Using weather data to explain 
herbage yield on three Great Plains plant communities. Rangeland Ecol. Manage. 60:146–153. 
doi:10.2111/05-099R4.1

Stevenson, A., R.E. Baumgartner, and G.E. Schuman. 1984. High Plains Grasslands Research Sta-
tion detailed soil survey. USDA Publ. 1–84/1C/3.62. Wyoming Agricultural Experiment Station, 
Laramie, WY.

Torell, L.A., K.C. McDaniel, and V. Koren. 2011. Estimating grass yield on blue grama range from 
seasonal rainfall and soil moisture measurements. Rangeland Ecol. Manage. 64:56–66. 
doi:10.2111/REM-D-09-00107.1

USDA–NASS. 2014. Economics and prices. USDA–NASS. http://www.nass.usda.gov/Statistics_by_
Subject/Economics_and_Prices/index.asp (accessed 27 June 2014). 

Wiles, L.J., G. Dunn, J. Printz, B. Patton, and A. Nyren. 2011. Spring precipitation as a predictor 
for peak standing crop of mixed-grass prairie. Rangeland Ecol. Manage. 64(2):215–222. 
doi:10.2111/REM-D-09-00024.1

http://dx.doi.org/10.2111/05-099R4.1
http://dx.doi.org/10.2111/REM-D-09-00107.1
http://www.nass.usda.gov/Statistics_by_Subject/Economics_and_Prices/index.asp
http://www.nass.usda.gov/Statistics_by_Subject/Economics_and_Prices/index.asp
http://dx.doi.org/10.2111/REM-D-09-00024.1



