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MS/MS identification strategies for the arginine and lysine 
deficient proline-rich glutamine-rich wheat storage proteins
William Vensel, Frances DuPont, Stacia Sloane and Susan Altenbach, Western Regional Research 
Center Albany, CA

INTRODUCTION
1. Wheat gluten proteins represent ~80% of the protein in wheat flour and confer the 

unique viscoelastic properties that enable the production of bread, noodles and many 
other food products [1].

2. The gluten proteins are made up of a large number of proteins with very similar 
sequences that fall into five major groups, the α-, γ- and ω-gliadins and the high- and 
low-molecular weight glutenin subunits (HMW-GS and LMW-GS). 

3. Protein within the α-, γ- and ω-gliadin groups are monomeric proteins that are 
associated with extensibility properties while proteins from HMW-GS and LMW-GS 
groups are linked by cysteine residues into large polymers that confer elasticity 
properties to wheat flour doughs.

4. All gluten proteins have high percentages of proline and glutamine and low percentages 
of arginine and lysine making it difficult to produce suitable and sufficient tryptic 
fragments for mass spectrometry (Table 1).

5. There is considerable heterogeneity of gluten protein sequences among different wheat 
cultivars.

6. Individual proteins within the major gluten protein groups respond differentially to 
elevated temperature and fertilizer during grain development, altering the protein 
composition and functionality of wheat flour [2,3]. To better understand how crop 
management and environment impact wheat flour quality, we developed MS\MS 
methods to improve identification of these highly similar proteins in the US wheat cultivar 
Butte 86.
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Table 1.

METHODS

1. Total protein from each flour sample was extracted with SDS under reducing conditions,              
precipitated with acetone and analyzed by RP-HPLC (Fig 1 A) and then by 1DE (Fig 1B). 

2. Gel bands  were excised from multiple gels and separately digested with Thermolysin,   
Chymotrypsin and Trypsin.

3.Peptides were analyzed by MS/MS, using a QSTAR Pulsar i quadrupole time of flight mass  
spectrometer with a nano-electrospray source [4]. 

DATA ANALYSIS
1.  Initial searches of spectra were carried out against the “SuperWheat”

(S_W) database using MASCOT and X!Tandem. 
2.  The  “Superwheat” database contained 2,049,765 entries and included proteins 

encoded by all NCBI nonredundant green plant sequences, proteins encoded by 
contigs from three public EST assemblies, and proteins encoded by contigs
assembled from ESTs from the wheat cultivar Butte 86 that was used for these 
experiments [5]. 

3.  Search engine results from Mascot, X!Tandem or both Mascot and X!Tandem 
were analyzed separately for each enzyme or combination of enzymes using 
Scaffold [6] (Table 2 & Fig 2). 

Figure 1.

Trypsin was the least effective enzyme.

Combining the results from all 3 enzymes and both search engines
resulted in the most identifications.

X!Tandem identified more peptides than Mascot especially when 
digestions were performed with chymotrypsin and thermolysin.

Enzyme effectiveness varied with the protein type. Trypsin was most effective 
with the HMW-GS and least effective with the gliadins and LMW-GS.

EFFECTS OF DATABASE SIZE AND COMPOSITION ON PROTEIN DISCOVERY

After analysis of S_W in Scaffold, a “subset” database was exported from Scaffold that 
included the sequences of all proteins that matched spectra in the dataset (Scaffold 
settings: 20% Protein Probability, 1 peptide and 0% peptide probability). The subset 
database contained 1,500 entries.

1.Eight additional databases were then constructed. Decoy sequences were Target 
sequences that were either reversed, randomized, or sequences from the unrelated 
organisms Escherichia coli or Methanosarcina mazei. 
a. Four databases contained ~30,000 sequences. One included ~15,000 Triticum 
aestivum sequences from NCBI nr plus an equal number of reversed sequences as a 
decoy and the Butte 86 sequences. The other three databases included the Triticum 
aestivum sequences from NCBI nr, the subset database sequences,  any Butte 86 
sequences that were not present in the subset database and an equal number of 
decoy sequences. Decoy databases are shown in Table 3.
b. Four other databases contained ~3,200 sequences. These included the subset 
database, any Butte 86 sequences not present in the subset database and an equal 
number of decoy sequences. Decoy databases are as indicated in Table 3.
c. The false discovery rate (FDR) was calculated as: FDR= (2 * (# decoy proteins) / (# 
of all proteins) [7].

3. Searches of spectra were carried out against the eight databases using MASCOT 
and X!Tandem. 

Table 3. Number of proteins identified within each gluten 
protein group when searches of spectra were carried out 
against different databases. 

RESULTS

1. The database size influenced the number of hits. 
48 gluten proteins passed the filter setting for the initial S_W database     
search. 12 of these were sequences from Butte 86. 

2. A greater number of gluten proteins were identified when the database size 
was reduced to less than 30,000 sequences. 59 gluten proteins were 
identified using the Ta_B86* database (that did not contain the Subset 
database) and 16 of these were assigned to Butte 86 sequences.

3. Adding the “subset” database to the search (Ta_B86 Reverse Decoy) 
increased the total protein number passing the filter to 62, but decreased 
the number of Butte 86 proteins identified. 

4. The number of proteins passing the filter ranged from 64 to 70 when subset 
database searches were performed and more of those proteins were
assigned to sequences from Butte 86. The greatest number of Butte 86 
sequences was obtained when M. mazei was used as the decoy.

CONCLUSIONS
To maximize the number of cultivar-specific wheat gluten proteins identified 

by MS/MS:

Digest proteins separately with chymotrypsin, thermolysin and trypsin. 

Use both MASCOT and X!Tandem search engines for analysis of spectra. 

Perform first pass searches on a large SuperWheat database followed by 
second pass searches on a subset database that contains M. mazei or 
random decoy sequences. 

Figure 2.   % CLEAVAGE BY ENZYME AND PROTEIN TYPE
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Table 2. Effect of search engine and enzyme on the total number of 
peptides detected for each gluten protein group.

Filter settings for Scaffold were: 95% Protein probability, 2 peptides and 90% Peptide probability.

Sequence  # 2,049,765 25,926 28,908 28,906 29,294 3,191 3,152 3,192 3,192
Database S_W Ta_B86* Ta_B86 Ta_B86 Ta_B86 Subset Subset Subset Subset
Decoy none Reverse Reverse Random E. coli M. mazei E. coli Random Reverse

α-gliadin 12 18 17 21 16 25 21 22 22
A γ-gliadin 10 15 15 15 18 13 14 14 15
L ω-gliadin 6 4 5 6 6 9 9 10 6
L HMW-GS 7 6 10 8 7 7 7 8 7

LMW-GS 13 16 15 17 18 16 14 14 14
 Total 48 59 62 67 65 70 65 68 64
 

 FDR ND 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 
B α-gliadin 2 7 3 3 3 8 7 6 6
8 γ-gliadin 3 5 4 5 5 7 6 5 7
6 ω-gliadin 2 2 1 1 1 4 3 3 2
 LMW-GS 5 2 2 2 2 3 3 4 2
 Total 12 16 10 11 11 22 19 18 17

Enzyme Chymo+ Thermo All
Protein Type Mascot X!Tandem Both Mascot X!Tandem Both Mascot X!Tandem Both Both Both

α-gliadin 53 141 191 24 216 249 3 2 7 440 447
γ-gliadin 32 91 126 18 123 119 18 29 17 245 262

HMW-GS 18 289 253 185 343 362 132 115 193 615 808
LMW-GS 40 105 141 64 207 264 29 5 28 405 433
ω-gliadin 2 38 19 8 65 71 0 0 0 90 90

Total 145 664 730 299 954 1065 182 151 245 1795 2040

Thermolysin TrypsinChymotrypsin

Protein Types MW Range

%C %P %Q %K %R
α-gliadin 38000-42000 Butte #4 [5] 2.0 15.7 32.5 1.7 0.3

 
γ-gliadin 36000-44000 Butte #2  [5] 2.4 16.2 33.9 1.2 0.9

 
ω-gliadin 44000-78000 BAE2038 (omega-5) 0.0 18.9 50.8 0.9 0.9

AAG1770 0.0 26.7 37.1 1.0 0.3

LMW-GS 29000-55000 ABC84363 (Butte #1) 2.6 12.7 31.6 0.6 2.6
 

HMW-GS 67000-88000 P10388 (Dx5) 0.6 13.1 34.9 0.9 1.0
P10387 (Dy10) 1.0 10.6 31.7 1.2 2.1

Selected Amino AcidsRepresentative 
protein


