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Abstract

Predictions of forage production derived from site-specific environmental information (e.g., soil type, weather, plant community
composition, and so on) could help land managers decide on appropriate stocking rates of livestock. This study assessed the
applicability of the Great Plains Framework for Agricultural Resource Management (GPFARM) forage growth model for both
strategic (long-term) and tactical (within-season) prediction of forage production in northern mixed-grass prairie. An improved
version of the model was calibrated for conditions at the USDA–ARS High Plains Grasslands Research Station in Cheyenne,
Wyoming. Long-term (1983–2001) simulations of peak standing crop (PSC) were compared to observations. Also, within-season
(1983) forecasts of total aboveground biomass made for 1 March onward, 1 April onward, 1 May onward, and 1 June onward
were compared to observations. The normal, driest, and wettest weather years on record (1915–1981) were used to simulate
expected values, lower bounds, and upper bounds of biomass production, respectively. The forage model explained 66% of the
variability in PSC from 1983 to 2001. The cumulative distribution function (CDF) derived from long-term simulated PSC
overestimates cumulative probabilities for PSC . 1 500 kg � ha�1. The generated CDF could be used strategically to estimate
long-term forage production at various levels of probability, with errors in cumulative probability ranging from 0.0 to 0.16.
Within-season forecasts explained 77%–94% of biomass variability in 1983. It was shown that monthly updating of the forage
forecast, with input of actual weather to date, improves accuracy. Further development and testing of the forage simulation model
will focus on the interactions between forage growth, environmental perturbations (especially drought), and grazing.

Resumen

Las predicciones de producción de forraje derivadas de información ambiental especı́fica del sitio (por ejemplo, tipo de suelo,
clima, composición de la comunidad vegetal, etc.) puede ayudar a los manejadores de pastizales a decidir sobe las cargas animal
adecuadas. Este estudio evaluó la aplicabilidad del modelo de crecimiento de forraje GPFARM para predicciones estratégicas
(largo pazo) y tácticas (corto plazo) de producción de forraje en las praderas mezcladas del Norte. Una versión mejorada del
modelo fue calibrada para las condiciones de la Estación Experimental High Plains Grassland del USDA–ARS en Cheyenne,
Wyoming. Simulaciones de largo plazo (1983–2001) de la máxima producción biomasa se compararon con observaciones.
También, se hicieron predicciones dentro de la estación (1983) para la biomasa total aérea del 1 de Marzo, 1 de Abril, 1 de
Mayo y 1 de Junio y fueron comparadas con las obsevaciones. Los registros de un año normal, el más seco y el más humedo
(1915 a 1981) se usaron para simular los valores esperados, los lı́mites más bajo y más alto de producción de biomasa. El
modelo de forraje explicó el 66% de la variabilidad en el PSC de 1983 a 2001. La función de distribución acumulativa (CDF)
derivada del PSC simulado a largo plazo sobreestima las probabilidades acumulativas de PSC por más de 1500 kg � ha�1. La
CDF generada pudierá ser usada estratégicamente para estima la producción de forraje a largo plazo a varios niveles de
probabilidad, con errores en la probabilidad acumulativa variando de 0 a 0.16. Los pronósticos dentro de la estación explicaron
de 77% a 94% de la variabilidad de la biomasa de 1983. Se demostró que la actualización mensual del pronóstico del 1 de
Marzo, con la inclusión de los datos actuales de clima mejora la certeza de la predicción. El desarrollo y evaluación futura del
modelo de simulación de forraje se enfocará en las interacciones entre el crecimiento de forraje, perturbaciones ambientales
(especialmente sequı́a) y el apacentamiento.
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INTRODUCTION

Productivity of semiarid rangeland ecosystems in the North
American Great Plains is affected proportionally more by in-
terannual variability in precipitation compared to other eco-
systems (Knapp and Smith 2001). As a result, it is often
problematic for land managers to properly adjust stocking rates

Correspondence: Allan A. Andales, USDA–Agricultural Research Service, Agricultural

Systems Research Unit, 2150 Centre Ave, Bldg. D, Suite 200, Fort Collins, CO 80526.

Email: Allan.Andales@ars.usda.gov

Manuscript received 4 January 2006; manuscript accepted 26 June 2006.

576 RANGELAND ECOLOGY & MANAGEMENT 59(6) November 2006



between and within years to achieve sustainable use of these
lands for livestock production. Because determinations of
stocking rate depend on accurate estimates of forage pro-
duction and determinations of forage production are often time
consuming and subject to criticism as a point in time measure-
ment, decision support tools are needed by land managers to
assist in strategic (defined as between years) and tactical
(defined as within-year) planning efforts. Computer simulation
models of forage production have utility in both strategic
(e.g., Parsch et al. 1997) and tactical (e.g., Wight et al. 1984)
planning applications. For example, predictions of forage
production from site-specific environmental information (e.g.,
soil type, weather, plant community composition, and so on)
would provide land managers with information to decide on an
initial stocking rate at the beginning of each grazing season
and, potentially, information for adjustments of stocking rate
during the grazing season. The USDA–Agricultural Research
Service (ARS) Great Plains Framework for Agricultural Re-
source Management (GPFARM) forage growth model (Andales
et al. 2005) is envisioned to address both strategic and tactical
applications.

Initial testing of the GPFARM forage growth model for
strategic planning regarding forage production in a shortgrass
prairie determined that the model had functional utility in
simulating forage production, but improvement was needed
regarding plant responses to environmental stresses (Andales
et al. 2005). However, this study evaluated only 3 years of
forage production data at this site. Therefore, there was a need
to further test the functional ability of the GPFARM forage
growth module with more extensive forage production data
sets to increase the strategic planning utility. In addition, there
was a need to conduct initial tests of the tactical planning
ability of the GPFARM forage growth module.

Fortunately, regression relationships have been developed
for predicting forage production from precipitation in many
rangeland ecosystems (e.g., Launchbaugh 1967; Khumalo and
Holechek 2005) including extensive efforts in northern mixed-
grass prairie (e.g., Biondini and Manske 1996; Biondini et al.
1998; Heitschmidt et al. 1999). Spring precipitation amounts
are a good predictor of forage production in northern mixed-
grass prairie because most of the forage production is com-
pleted early in the summer because of dominance of C3
perennial grasses (e.g., Biondini and Manske 1996), but they
lack robustness as decision support tools for land managers.
A better tactical planning tool will likely need to utilize vari-
ables such as soil water that can be measured or simulated for
real-time decisions. It remains to be determined whether the
GPFARM forage growth module can function as a tactical
decision support tool, but the model does have components for
soil water, root growth and soil water use (Andales et al. 2003).

Our goal in this study was to assess the applicability of the
GPFARM forage growth model for both strategic and tacti-
cal prediction of forage production in northern mixed-grass
prairie. This study takes advantage of a long-term experiment
in southeastern Wyoming in which forage production data have
been obtained since 1982 (Hart et al. 1988; Manley et al.
1997). The specific objectives were 1) to assess the accuracy of
GPFARM predictions of forage production compared to annual
observations of peak standing crop (strategic prediction utility)
and 2) to assess GPFARM predictions of within-growing season

forage production based on initial soil water content in spring
(tactical prediction utility).

MATERIALS AND METHODS

Improved GPFARM Forage Module
Andales et al. (2005) previously described the major plant
processes simulated. In their evaluation of the forage module,
they concluded that there was a need to improve the plant
model’s response to environmental stresses. The following 3
limitations to simulating plant responses to the environment
were identified:

1. Initial biomass at emergence, storage:growth ratio, respi-
ration rate, root mortality rate, and root:shoot ratio were
considered site parameters and were not specific to each
functional group. These limited the model’s ability to
simulate differences in seasonal growth patterns among
the functional groups.

2. Emergence/green-up and start of senescence were the only
phenological stages. These parameters were given as days
of the year and not as heat units or photoperiod, which
are more physiologically sound. The model was not
appropriate for continuous multiyear simulations (i.e.,
required for strategic applications) because it could not
simulate year-to-year variability in emergence/green-up
and senescence as a function of climate.

3. The plant module did not simulate root growth and water
uptake (transpiration) separately for each functional
group. This made it impossible to simulate competition
for soil water among functional groups.

The following improvements were made to the forage
module to address the above limitations:

1. Initial biomass at emergence, storage : growth ratio,
respiration rate, root mortality rate, and root:shoot ratio
can now be specified separately for each functional group,
resulting in better control of the simulated growth curves.

2. A simple phenology module based on heat units (growing
degree days) was developed for rangeland plant func-
tional groups. The critical growth stages considered are
spring green-up/emergence (EmergGDD, 8C �d), end of
vegetative growth, start of senescence, and maturity
(MatureGDD, 8C �d). In addition, a simple algorithm
was adapted from the SPUR plant component (Hanson
et al. 1988) to estimate the amount of biomass trans-
located from live roots to the shoots at spring green-up.

3. The root growth, potential transpiration, and root water
uptake algorithms were modified to simulate root growth
and transpiration separately for each functional group.
Leaf area index of each functional group is simulated to
account for differences in light interception and sub-
sequent transpiration.

In addition to the above improvements in the simulation of
plant processes, the GPFARM forage module was reprogram-
med in object-oriented Java for easier code improvement,
maintenance, and debugging.

The improved forage module of GPFARM is a simplification
of the SPUR plant model (Hanson et al. 1988). Live and dead
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forage are simulated for 5 functional groups (warm-season
grasses, cool-season grasses, forage legumes, shrubs, and un-
palatable forbs) rather than for individual species. The model is
deterministic and simulates average biomass production based
on average plant, soil, and weather parameters that are
assumed to represent a field or paddock. The proportion of
the plant community in each functional group (PropPop, 0 – 1)
is specified by the user and should add up to 1.0. Biomass
production for each functional group is calculated on the basis
of a potential growth rate that is adjusted by nondimensional
scalar multipliers for temperature and water stress factors:

�W ¼ GrRateðAboveBioÞðEVPÞ [1]

where �W is daily change in biomass (kg �ha�1 �d�1), GrRate
is potential growth rate (kg �kg�1 �d�1), AboveBio is above-
ground live biomass (kg �ha�1), and EVP is the environmental
fitness factor (0 – 1) affecting forage production. Environmen-
tal fitness is quantified by

EVP ¼ ETP � EWP [2]

where ETP is effect of temperature on production (0 – 1) and
EWP is effect of water availability on production (0 – 1).
Hanson et al. (1988) discuss the empirical basis for the
functions, and the reader is referred to them for a detailed
description. The ETP function is an empirical bell-shaped curve
with minimum (Tmin), optimum (Topt), and maximum (Tmax)
temperatures for growth determining its shape. The EWP is
a threshold response curve that is a function of the ratio of
actual evapotranspiration (ET) and potential ET. The current
version of GPFARM does not explicitly consider nitrogen
stress. This was not considered a major limitation in the current
study because the simulated systems were natural rangelands
with no commercial N fertilization and presumed to have
stable, albeit low, plant-available N levels. Also, the effect of N
stress is implicitly considered in the calibration of potential
growth rate (GrRate) of each functional group. Plant respira-
tion (kg � ha�1 �d�1) is estimated by

Respiration ¼ RespRate � Ws [3]

where RespRate is relative respiration rate (0.04 kg �kg�1 shoot
biomass �d�1) and Ws is current biomass stored in the shoot
(kg � ha�1). Daily net assimilation by each functional group is
the difference between �W and Respiration.

Senescence is also simulated by the use of a parameterized
senescence rate (SenRate, kg �kg�1 �d�1) that takes effect after
a specified number of growing degree days (SenGDD, 8C �d).
After senescence, aboveground biomass falls to the soil surface
as litter at a parameterized rate (FallRate, kg � kg�1 � d�1). Root
biomass is calculated by multiplying total aboveground biomass
by the root:shoot ratio and assuming an exponential distribu-
tion in the soil profile (Weaver et al. 1935; Gill et al. 1999).

Calibration of Forage Model
The forage model was calibrated for conditions at the USDA–
ARS High Plains Grasslands Research Station in Cheyenne,
Wyoming (lat 418119N, long 1048539W). The climate at the site
is semiarid with an average annual precipitation of 384 mm.
Precipitation is lowest in December, increasing to a maximum
in late May and early June, and remains moderate until fall,
when it decreases again to a December minimum (Stevenson
et al. 1984). Daily climate data were taken from the GPFARM
historical climate database (extracted from National Climate
Data Center databases) for Cheyenne, Wyoming. These in-
cluded precipitation (mm), maximum and minimum air tem-
perature (8C), solar radiation (langleys �d�1), mean wind speed
(m � s�1), and mean relative humidity (%). Daily precipitation
is used in the model to calculate infiltration and soil water
redistribution by the method described by Andales et al. (2003).
Daily solar radiation, relative humidity, and wind speed are
used to estimate potential ET by the extended Shuttleworth-
Wallace method (Farahani and Ahuja 1996). Soil profile
characteristics of Albinas loam, which is the dominant soil at
the site, were obtained from the GPFARM soils database
(derived from merged Natural Resource Conservation Service
Soils-5 and Soils-6 databases).

The forage model was calibrated against monthly total
forage biomass collected in 1982 (Test 1984). Observed total
biomass was an average from 4 temporary 1.9-m2 exclosure
cages with each cage having 2 0.18-m2 clipped subplots. The
exclosures were in season-long continuous grazed pastures with
moderate stocking rates (0.8 ha �AUM�1) and were moved
a random distance and direction between each sampling date.
The plant parameters in the GPFARM forage module were
adjusted to get the best fit of the total biomass curve (Table 1).
The magnitude and timing of peak growth were most sensitive
to GrRate and Topt. Monson et al. (1983, 1986) provided
ranges of Topt for warm-season and cool-season grasses that

Table 1. Critical forage parameters used in the forage growth simulations.

Parameter Definition

Functional group

Warm-season grasses Cool-season grasses Forbs

GrRate (kg � kg�1 � d�1) Maximum relative growth rate of shoot 0.22 0.18 0.17

Tmax (8C) Maximum temperature for growth 45 36 35

Topt (8C) Optimum temperature for growth 30 20 20

Tmin (8C) Minimum temperature for growth 5 0 3

EmergGDD (8C d) Calendar year growing degree days to emergence or green-up 70 200 105

MatureGDD (8C d) Calendar year growing degree days to maturity 1 500 2 200 1 188

SenGDD (8C d) Calendar year growing degree days to start of senescence 1 400 1 200 1 685

SenRate (kg � kg�1 � d�1) Rate of tissue dying in the growing season 0.001 0.001 0.002

FallRate (kg � kg�1 � d�1) Transfer of standing dead biomass to the ground 0.008 0.008 0.010
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typically dominate the study site. The SenGDD and SenRate
parameters had the greatest influence on biomass decline and
were adjusted to obtain the best fit for the declining phase of
the curves. The initial plant community composition in 1982
was estimated from onsite production data as follows: pro-
portion of forage made up by warm-season grasses,
PropPopWSG ¼ 0.49; proportion of forage made up by cool-
season grasses, PropPopCSG ¼ 0.37; proportion of forage
made up by forbs, PropPopFb ¼ 0.14. Forage legumes and
shrubs were rare.

Strategic (Long-Term) Prediction of Forage Production
After calibration with 1982 biomass data, the improved forage
model was tested against 19 years (1983–2001) of observed
annual peak standing crop (PSC) of herbage. Four 1.5-m2

exclosures were randomly located on Albinas or similar soils in
season-long continuous grazed pastures with moderate stocking
rates and were moved prior to each grazing season in a random
direction a random distance, conditional that the slope re-
mained similar across years. In late July of each year, PSC was
determined inside each exclosure by hand clipping a 0.18-m2

quadrat to ground level or by capacitance meter reading, which
was converted to a PSC value from a regression equation
(Manley et al. 1997). Daily climate data (1983–2001) were
taken from the GPFARM historical climate database (extracted
from National Climate Data Center databases) for Cheyenne,
Wyoming.

The model simulation covered the period of 1 January 1982
through 31 December 2001. The simulation of the rangeland
dynamics in 1982 was done to allow the simulated soil water
content and plant biomass to stabilize by the start of 1983, thus
serving as the initial condition for the 1983–2001 simulated
period. Soil water measurements that could be used to initialize
the model for 1983 were not available. All the forage param-
eters were kept the same as the values from the calibration
obtained using 1982 data (Table 1). The time series of observed
PSC was compared to simulated PSC in each year. The
performance of the model in simulating the trends in PSC as
affected by climate over the 19-year period was assessed (see
Model Evaluation) to determine the adequacy of the model for
strategic (long-term) forage prediction. Empirical cumulative
distribution functions (CDF) of both the observed and simulated
time series of PSC were plotted using the ecdf and plot func-
tions in R (R Development Core Team 2005). The 2-sample
Kolmogorov–Smirnov (KS) test (Conover 1971) was performed
to determine if the predicted and observed CDFs differed signifi-
cantly. The ks.test function in R was used to perform the test.

Tactical (Within-Season) Prediction of Forage Production
The difficulty in predicting within-season forage production lies
in forecasting the weather for the current growing season. We
attempted to predict forage production in 1983 using a normal
weather year identified from an analysis of historical weather.
The year 1983 was chosen because monthly forage production
data were available for comparison with model predictions
(Test 1984). At the semiarid study site in Cheyenne, Wyoming,
forage production is most sensitive to the amount of pre-
cipitation occurring in the growing season. We analyzed 67
years of precipitation record (1915–1981) from Cheyenne,

Wyoming, to determine the long-term mean of season pre-
cipitation (March–September of each year). The historical
weather year with March to September precipitation closest
to the long-term mean (herein referred to as the normal weather
year) was used in the simulation to forecast forage production
in 1983. In addition, the driest and wettest weather years from
the 67-year record were used to predict the lower and upper
bounds of probable forage production, respectively.

The initial forage forecast was made for 1 March 1983
onward using normal weather from 1 March onward. Sub-
sequent forage forecasts were made for 1 April onward, 1 May
onward, and 1 June onward, with actual weather until the start
date of forecast being used in lieu of normal weather data. On-
site soil water content was not available for 1983. Thus, the
simulated period began on 1 January 1982 until each forecast
start date (i.e., 1 March, 1 April, 1 May, and 1 June 1983) using
actual weather data. The model-calculated soil water content at
each forecast start date was used as the initial soil water content
for the forecasted period. The accuracy of the forage forecast
was expected to improve with each forecast update as actual
weather data became available. For each simulation, the
forecasted total forage biomass was compared with monthly
observations taken in 1983.

Model Evaluation
Time-series plots of predicted (p) and observed (o) values as
well as difference statistics were used in the evaluation of forage
simulations. The mean and standard deviation of the model-
predicted (�p, sp) and the observed (�o, so) forage production
were calculated as well. The following difference statistics were
calculated: mean bias error (MBE), root mean square error
(RMSE), and index of agreement (d). Mean bias error shows
the magnitude of the average over- or underprediction of the
model and is expressed as

MBE ¼

Pn
i¼1

ðpi � oiÞ

n
[4]

where pi is the ith predicted value, oi is the ith observed value,
and n is the number of data pairs. The RMSE, which shows the
average deviation between predicted and observed values
regardless of sign, was calculated by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

ðpi � oiÞ2

n

vuuut
: [5]

The index of agreement, d, which gives the proportion of the
observed variance that is explained by the model, was
calculated as proposed by Willmott (1981) and Willmott and
Wicks (1980):

d ¼ 1�

Pn
i¼1

ðpi � oiÞ2

Pn
i¼1

ðjp9ij þ jo9ijÞ2

2
664

3
775; 0 � d � 1 [6]

where pi, oi, and n are as previously defined, pi9 ¼ pi � �o, and
oi9 ¼ oi � �o, where �o is the observed mean and the enclosing
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bars (j j) indicate absolute values. Zero (0) and one (1) bound
the d statistic, where 1 indicates complete agreement between
p and o. In the evaluation of model accuracy, the 1:1 line
corresponds to perfect agreement between o and p when p is
plotted against o. While the coefficient of determination (r2),
which is commonly used to report model accuracy, is a measure
of the tightness of the linear relationship between o and p
relative to the regression line, d is a measure of the tightness of
the linear relationship relative to the 1:1 line. The r2 can be
a misleading measure of accuracy (Willmott 1982), as the
regression line can deviate considerably from the 1:1 line;
therefore, d was used in lieu of r2 in this study.

RESULTS AND DISCUSSION

Strategic Prediction of Forage Production
The simulation model explained 66% (i.e., d ¼ 0.66) of the
variability in PSC from 1983 to 2001 (Fig. 1). The predicted
mean PSC for the period was 8.7% lower than the observed
mean. Over the period of simulation, the model had a bias to
underpredict PSC (negative MBE ¼ –123.7). Overall, the
model tracked the observed year-to-year variability in PSC.
However, the time series of predicted PSC did not show the
same degree of variability as observed (sp , so). The largest
error in simulated PSC occurred in 2001, which was a year
immediately following a severe drought. In fact, no observa-
tions of PSC were taken in 2000 because of very low forage
production. The model could not simulate the apparently quick
recovery of the vegetation from the severe drought. Andales
et al. (2005) observed a similar model deficiency in shortgrass
prairie, where the model could not simulate late-season re-
covery of vegetation. With the exception of 2001, the model did
explain 83% of the variability in PSC (1983–1999).

One strategic application of the forage simulation model is
the estimation of a time series of PSC at a location. The CDF of
the time series can then be used to estimate probabilities of
forage production. The CDF of PSC provides an estimate of the
probability of PSC being less than or equal to certain amounts
(i.e., cumulative probability). The converse of cumulative
probability (i.e., 1.0 – cumulative probability) may be more
useful in deciding on a stocking rate because it is an estimate of
the probability of PSC being equal to or greater than a certain
amount.

The empirical CDFs for the observed and predicted values of
PSC (1982–2001) are both shown in Figure 2. The predicted

Figure 1. Results of continuous long-term simulation of forage pro-
duction using the improved GPFARM forage model. Observed and
simulated values of peak standing crop (PSC) (a) are shown from 1983
to 2001 for a northern mixed-grass prairie site in Cheyenne, Wyoming.
Corresponding April–August precipitation totals (critical period of
growing season) are also shown (b). The PSC was not measured in
2000 because of a severe drought. The year 2000 was excluded from the
statistics. Statistics shown are observed and predicted mean (�o and �p,
respectively), observed and predicted standard deviation (so and sp,
respectively), mean bias error (MBE), root mean square error (RMSE),
and index of agreement (d ).

Figure 2. Empirical cumulative distribution functions of observed and
simulated peak standing crop (1982–2001) at the northern mixed-grass
prairie site in Cheyenne, Wyoming.
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CDF has a steeper slope and smaller range than the observed
CDF. These indicate that predicted PSC has less variability than
observed PSC. The predicted CDF gives higher cumulative
probabilities for PSCs greater than 1 500 kg � ha�1. This is
another way of saying that the model tends to underpredict PSC
values greater than 1 500 kg ha�1. Thus, if the predicted CDF
were to be used in deciding stocking rates, it would err on the
conservative side for PSCs greater than 1 500 kg � ha�1. For
example, it estimates that 80% of the time, PSC will be less
than or equal to 1 600 kg � ha�1. The observed CDF estimates
that 80% of the time, PSC will be less than or equal to ;1 800
kg � ha�1. Therefore, the predicted CDF is potentially useful
within the 500–1 500 kg � ha�1 PSC range. Better agreement
between simulated and observed CDFs is expected with further
model improvements.

The KS test failed to reject the null hypothesis that the
observed and predicted empirical CDFs come from the same
distribution. The maximum separation (error) in the cumula-
tive distributions (D parameter) was 0.1579, while the P value
was 0.978. This provided some evidence that the forage model
can potentially be used to generate a long-term time series of
PSC values having a realistic distribution that is characteristic
of the prairie site at Cheyenne, Wyoming.

A cursory comparison of trends in observed PSC and season
precipitation (Figs. 1a and 1b) reveals that PSC is not always
directly related to the amount of precipitation. For example,
April–August precipitation in 1985, 1991, and 1997 were all
relatively high but did not result in similar levels of PSC.
Indeed, the timing of precipitation, initial soil water, growing
degree-days, and other environmental factors have to be con-
sidered in making strategic predictions of forage production.
While most of these factors have been incorporated in the
forage model, the simulated interactions and effects on forage
production will need closer examination. Other factors still
need to be incorporated in the model. For example, the direct
effect of solar radiation on forage growth is not explicitly
modeled, and simulated plant growth is driven by air temper-
ature. Data collection for these model improvements will
require intensive field observations involving frequent above-
and belowground biomass observations, phenological observa-
tions, and continuous monitoring of weather and soil water.

Tactical Prediction of Forage Production
The analysis of long-term precipitation records at Cheyenne,
Wyoming, indicated that 1953 had seasonal precipitation
closest to normal. The year 1923 was the wettest year, while
1964 was the driest. The March–September precipitation totals
were 302, 456, and 136 mm in 1953, 1923, and 1964,
respectively. Weather data from these years were used in the
model to give the normal, wettest, and driest forecasts in 1983.
Actual March–September precipitation in 1983 was 441 mm,
which was above normal. It was shown in the previous section
that the model simulated less variability in PSC than observed,
especially underestimating high values. Therefore, the probable
range of biomass production may be greater than that indicated
by the wettest and driest forecasts given here.

The progression of updated forecasts, initially for 1 March
1983 onward, is shown in Figure 3. For each forecasted period,
the normal forecast was taken as the best estimate of total
biomass, while the driest and wettest forecasts gave the lower
and upper bounds of probable forage production. The accuracy
of the normal forecast improved as the forecast was updated
for 1 April 1983 onward and 1 May 1983 onward. Index of
agreement (d) increased and RMSE decreased from the 1 March
1983 forecast start date to the 1 May 1983 forecast start date
(Fig. 3a–3c). The model underpredicted forage biomass in July
for the forecasts made for 1 March 1983 onward and 1 April
1983 onward. The most accurate forecast was obtained for
1 May 1983 onward, with the normal forecast explaining 94%
(d ¼ 0.94) of within-season biomass variability. The normal
forecast for 1 June 1983 onward was not the most accurate, and
it overestimated biomass production (Fig. 3d).

This discrepancy may be explained by realizing that accu-
racy of the forecasted biomass curves was related to how close
the forecasted precipitation tracked actual patterns. Actual
weather data were used until the start date of forecast, after
which normal weather (i.e., from 1953) was used. The fore-
casted cumulative precipitation was closest to the actual values
in the forecast with a 1 May 1983 start date (Fig. 4). Therefore,
this forecast was the most accurate. Cumulative precipitation
amounts were underestimated in the forecasts with 1 March
1983 and 1 April 1983 start dates compared to actual 1983

Figure 3. Forecasts of total aboveground biomass (dry matter) for 4
forecasted periods in 1983 at the northern mixed-grass prairie site in
Cheyenne, Wyoming.
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precipitation. This resulted in underpredictions of total biomass
in July. Cumulative precipitation was overestimated in the
forecast with 1 June 1983 start date and resulted in over-
predictions of biomass. Total aboveground biomass peaked in
July. The region encircled in Figure 4 highlights how much
cumulative precipitation for the case of 1 June 1983 start of
forecast has deviated from the actual values by July, when peak
biomass usually occurs. Thus, the accuracy of the normal
forecast depends on the similarity between normal and actual
weather.

Because of the uncertainty in using normal weather to
forecast forage production, the driest and wettest weather are
used to derive lower and upper bounds of probable forage
production. The decision maker can then speculate whether
forage biomass will be above or below the normal forecast
while staying within the lower and upper bounds. These
‘‘adjustments’’ to the normal forecast can be made if seasonal
precipitation is forecasted to be above or below normal and the
forecasts are reliable. The Climate Prediction Center (CPC) of
the National Weather Service provides short-term and long-
term outlooks for both temperature and precipitation for the
continental United States that can help guide adjustments in
the forage forecast (http://www.cpc.ncep.noaa.gov/products/
OUTLOOKS_index.shtml). Although previous CPC seasonal
precipitation forecasts were shown to have limited agricultural
utility in the northern Great Plains (Schneider and Garbrecht
2003), improvements in climate forecasting skill should in-
crease the utility of these forecasts in the future. For the
northern mixed-grass prairie site considered in this study, we

found that simulations of PSC were directly related to total
precipitation from April to May (Fig. 5). This was found to be
true at different levels of initial soil water content (SWCi) on
1 May 1983. Each SWCi value was input into the model as the

Figure 4. Cumulative precipitation for different forecast start dates in 1983. The region encircled highlights how much cumulative precipitation for
the case of 1 June 1983 start of forecast has deviated from the actual values by July, when peak biomass usually occurs.

Figure 5. Peak standing crop forecasted for the period 1 May 1983
onward, related to April–May precipitation and initial volumetric soil
water content (SWCi) on 1 May 1983 in the top 2 soil horizons (0–81
cm) at the northern mixed-grass prairie site in Cheyenne, Wyoming.
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initial condition for the driest, normal, and wettest forecasts for
1 May 1983 onward. Thus, a family of simulated curves may be
used to forecast PSC based on knowledge of initial soil water
content and anticipated level of April–May precipitation at the
site (e.g., Fig. 5).

MANAGEMENT IMPLICATIONS

We illustrate the use of the above simulation results through
2 examples, 1 each for strategic and tactical planning. For
strategic planning, Rancher A at the northern mixed-grass
prairie site in Cheyenne, Wyoming, would like to determine the
PSC that is equaled or exceeded 80% of the time. The rancher
would like to base the long-term stocking rate on this level of
forage production. Assume that a long-term record of PSC is
not available. Rancher A uses the CDF of predicted PSC (Fig. 2)
to estimate the PSC that has a 0.8 probability of being equaled
or exceeded (i.e., cumulative probability ¼ 1.0 – 0.8 ¼ 0.2).
From the predicted CDF in Figure 2, Rancher A determines that
PSC ¼ 975 kg � ha�1 has a cumulative probability of 0.2. The
rancher then estimates the number of livestock that can be
supported by 975 kg � ha�1 of forage production.

For tactical planning, Rancher A wanted to adjust the
stocking rate on 1 May 1983 based on forecasted forage
production. At this date, the rancher knew that the average
volumetric soil water content was 0.2. A nearby airport had
a weather station with long-term records of daily weather.
Rancher A had a consultant who previously calibrated the forage
simulation model for the ranch. The consultant ran the model
using the normal, driest, and wettest weather years on record to
generate Figure 5. Rancher A knew that the ranch received 113
mm of precipitation in April 1983. The National Weather Service
projected that precipitation in May 1983 had an equal chance of
being above or below normal. Rancher A then speculated that
the ranch would receive the normal amount of precipitation in
the April–May period. Therefore, Rancher A looked at the line
for SWCi ¼ 0.2 in Figure 5, took the point at normal April–May
precipitation (150 mm); and determined that a peak standing
crop of 1 240 kg �ha�1 could be expected. Rancher A then
adjusted the stocking rate to a level that could be supported by
1 240 kg �ha�1 of forage production.

The 2 examples assumed that adequate information was
available to calibrate the forage simulation model and that the
forecasts were reliable. Similar applications of the model at
other locations will require at least 1 season in which biomass
growth, preferably by functional group, has been observed or
sampled. Soil layer textures (% sand, silt, clay) and bulk
densities of a representative soil profile must also be available
for input to the model. Daily weather records may be from an
on-site or nearby weather station. Also, long-term weather
records are needed to generate a simulated cumulative distri-
bution function of PSC. These are also needed to identify the
normal, wettest, and driest weather years.

This study demonstrated that the improved GPFARM forage
model could be used to generate a CDF of simulated PSC, with
tolerable errors (66% explained variance). The generated CDF
could be used strategically to estimate long-term forage pro-
duction at various levels of probability. The use of the model
for tactical forage prediction was also demonstrated. The

model forecasts explained 77%–94% of within-season biomass
variability in 1983. It was shown that monthly updating of the
early-spring forecast, with input of actual weather to date,
improves accuracy. Further development and testing of the
forage simulation model will focus on the interactions be-
tween forage growth, environmental perturbations (especially
drought), and grazing. The simulation of recovery of vegetation
after a drought period must be improved. Other aspects of the
model, such as root dynamics and the soil water balance, will
be studied as appropriate field data become available.
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