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a b s t r a c t 

State-and-transition models (STMs) are tools used in rangeland management to describe linear and non- 

linear vegetation dynamics as conceptual models. STMs can be improved by including additional ecosys- 

tem services, such as wildlife habitat, so that managers can predict how local populations might respond 

to state changes and to illustrate the tradeoffs in managing for different ecosystem services. Our objective 

was to incorporate songbird density into an STM developed for sagebrush rangelands in northwest Col- 

orado to guide local management of sagebrush birds. The STM included two shrub-dominated community 

phases, a native grassland state, and a shrubland and grassland phase within an exotic-dominated state. 

We surveyed plots for songbirds, collected a suite of vegetation indicators at each plot, and quantified 

songbird habitat relationships with count-based regression models. We then used the estimated models 

to predict songbird density based on average vegetation conditions per state or community phase. Moder- 

ate or increasing shrub cover were important predictors for shrubland-associated species, and responses 

to understory components varied by species. In the STM, we predicted higher densities of shrubland- 

associated bird species in the shrub-dominated phases and higher densities of grassland-associated bird 

species in the state and phase lacking shrub cover. No single state or phase captured the highest density 

for all songbirds, illustrating the value of alternative states. Our results also demonstrate the utility of 

displaying traditional wildlife count models against the range of vegetation conditions associated with 

each state or phase to understand how wildlife density can vary within states and phases. Our approach 

can assist land managers to gauge the potential impacts of land-use decisions and natural vegetation 

variability on wildlife, especially for species of conservation concern. 

© 2021 The Society for Range Management. Published by Elsevier Inc. All rights reserved. 
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The sagebrush biome of western North America once encom-

assed > 60 million ha but now occupies approximately half of

ts former distribution ( Knick et al. 2003 ; Miller et al. 2011 ). The
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nvasion of exotic grasses, such as cheatgrass (Bromus tectorum),

nd changing fire regimes have contributed to the loss of diverse

agebrush rangelands, in addition to increasing energy develop-

ent, conifer expansion, and climate change ( Miller et al. 2011 ).

iven the fragmentation and deterioration of sagebrush range-

ands, populations of many avian species in this ecosystem have

eclined ( Knick and Rotenberry 2002 ). Some species rely entirely

n sagebrush ecosystems for activities such as nesting and foraging

e.g., sagebrush sparrow [Artemisiospiza nevadensis], Brewer’s spar- 

ow [Spizella breweri], and sage thrasher [Oreoscoptes montanus] ),

hereas others rely on shrub cover in general (e.g., green-tailed

owhee [Pipilo chlorurus]; Braun et al. 1976 ). Several songbird

pecies that rely on sagebrush during the breeding season have

eclined in all or part of their range ( Knick and Rotenberry 2002 ). 
s reserved. 
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State-and-transition models (STMs) are among the tools cur- 

ently used for rangeland management as a way to organize and

ommunicate information about rangeland dynamics ( Bestelmeyer 

t al. 2017 ). STMs are conceptual models that describe ecosys-

em change, allowing both alternative stable states and linear 

uccessional dynamics ( Westoby et al. 1989 ). STMs are typically

omposed of a reference state (based on historical or “healthy”

cosystem conditions) and often several alternative states ( US 

epartment of Agriculture Natural Resources Conservation Service 

USDA NRCS] 1997 ; Bestelmeyer et al. 2017 ). A state is a persistent

egetation community that is determined by both soil properties 

nd vegetation structure ( Stringham et al. 2003 ). Transitions are

he trajectories or drivers of change between states ( Bestelmeyer

t al. 2017 ). Within a state, plant composition can shift among

hases and along reversible pathways in response to weather or 

isturbance events, reflecting the natural dynamics of different 

lant communities; these community phases are transient plant 

ommunities ( Stringham et al. 2003 ). 

States were historically described in terms of productivity for 

ivestock forage, but describing a state in terms of multiple prop-

rties like plant species richness, composition, structure, and eco- 

ogical function could allow a broader inclusion of the services 

 state provides, such as wildlife habitat ( Twidwell et al. 2013 ;

estelmeyer et al. 2017 ). Land managers could then use STMs

o predict how wildlife habitat, and thus local populations, may 

hange in response to changing vegetation conditions ( Holmes 

nd Miller 2010 ). Incorporating habitat relationships for multiple 

pecies of concern within an STM would also illustrate the dif-

erent habitats provided by alternative states and phases, which 

re likely necessary to support wildlife diversity ( Fuhlendorf et al.

012 , 2017 ). Recent studies have examined avian occurrence within

cological sites and STMs ( Doherty et al. 2011 ) or evaluated the

otential for ecological sites and STMs to incorporate measures 

hat assess wildlife habitat ( Williams et al. 2011 ). For instance,

rasshopper sparrow (Ammodramus savannarum) abundance was 

reatest in a native perennial grassland community phase, and a 

hift to a sagebrush or annual grassland community phase reduced 

parrow abundance ( Holmes and Miller 2010 ). 

We sought to improve upon previous effort s by integrating 

abitat relationships for multiple songbird species of conserva- 

ion concern within an STM as an additional ecosystem service. 

he STM we used was generalized across multiple ecological sites 

 Tipton 2015 ) to make it more likely to be used by landowners and

anagers ( Bestelmeyer et al. 2016 ). An STM usually corresponds

o one ecological site, which has distinctive soil, climatic, and to-

ographical properties that determine a site’s characteristic plant 

ommunity ( Bestelmeyer et al. 2003 ). However, landowners may 

refer to manage by vegetation types or ecosystems rather than 

t finer scales of ecological sites and soil map units ( Knapp and

ernandez-Gimenez 2009 ). We also used an STM developed in col-

aboration with multiple stakeholders (e.g., ranchers, state wildlife 

iologists, range ecologists; Bruegger et al. 2016 ) so that the results

ould be more relevant to local land managers ( Knapp et al. 2011 ;

achergis et al. 2013 ). 

Our first objective was to incorporate habitat relationships for 

everal songbird species into an STM to predict how songbird 

ensity might respond to state or community phase changes 

nd illustrate the tradeoff in managing for alternative states. Our 

econd objective was to display the habitat relationships against 

he range of vegetation conditions associated with each state 

r phase to illustrate how this range affects songbird densities.

e collected vegetation and songbird count data in three study 

reas dominated by sagebrush in northwest Colorado and used 

he vegetation data from STM development to model songbird 

ounts. We then used the models to predict songbird density for

tates and community phases in an STM developed for one of
he study areas and displayed the models for a shrubland and

rassland-associated songbird against the variability in vegetation 

onditions for each state and phase. 

ethods 

tudy Area 

We collected vegetation and songbird data at three sagebrush- 

ominated study areas in northwest Colorado from 2013 to 2015 

 Fig. 1 ). The western Moffat County study area ( ≈13 420 ha in

ize) was characterized by low sagebrush (Artemisia arbuscula) and 

yoming big sagebrush (A. tridentata wyomingensis) communities 

n sandier soils and salt shrub ( Atriplex spp.) communities on

layey soils; however, soils were highly intermingled relative to 

he other study areas ( USDA NRCS 2013 ). Wyoming big sagebrush

ommunities and loamy or sandy soils dominated the eastern Mof- 

at County study area ( ≈38 200 ha in size; USDA NRCS 2013 ).

he study area in Routt County ( ≈1 700 ha in size) was domi-

ated by mountain big sagebrush (A. t. vaseyana) on loamy soils

nd low sagebrush on clayey soils ( USDA NRCS 2013 ). A bunch-

rass (e.g., Sandberg bluegrass [ Poa secunda ]) or western wheat-

rass (Pascopyrum smithii) dominated the understory in each study 

rea. Annual precipitation during the study varied from ≈10 to 20

m for western Moffat, 20 to 30 cm for eastern Moffat, and 30 to

0 cm for Routt (PRISM Climate Group, Oregon State University, 

ttp://prism.oregonstate.edu 2015). Three wildfires occurred before 

he study in eastern Moffat County: a 2010 wildfire (3 185 ha),

 2008 wildfire (10 243 ha), and a smaller 2008 fire (1 505 ha;

ipton 2015 ). Past mechanical treatments to reduce shrub density 

n eastern Moffat included mow, brush beat, and drag treatments, 

ach < 200 ha in size and 13 −19 years old as of 2015 ( Tipton

015 ). 

In each study area, STM development was collaborative in that 

ocal stakeholders critiqued drafts of STMs and provided input af- 

er data collection and analyses ( Tipton 2015 ; Bruegger et al. 2016 ).

e used a stratified random sampling design across all three study

reas and focused the sampling effort in each study area based on

ocal stakeholder questions and interest and availability of existing 

cological site descriptions. Although we used songbird and vege- 

ation data collected at all three study areas to model habitat re-

ationships, we only include STM development details for eastern 

offat because we only predicted songbird densities within the 

TM developed for the eastern Moffat study area. 

In the eastern Moffat study area, stakeholders were most in- 

erested in sandy and loamy ecological sites as they were the

redominant sites in the study area. Stakeholders also wanted to 

now about the effects of mechanical shrub treatments and wild- 

re on birds and plants. Therefore, we randomly allocated sam- 

ling plots within past treatments (i.e., burned and mechanically 

reated areas) and areas with no known treatments on Sandy- 

and (R034AY330CO) and Rolling Loam (R034AY298CO) ecologi- 

al sites ( USDA NRCS 2013 ). Although an STM typically corre-

ponds to one ecological site ( Bestelmeyer et al. 2003 ), Tipton

2015) developed one STM across the two ecological sites. Be- 

ause she found little difference in plant response to disturbance 

ased on ecological site, and landowners also observed little dif- 

erence in plant response to management actions across ecolog- 

cal sites, one generalized STM was sufficient. The STM ( Fig. 2 A)

ncluded a shrub-dominated state with two community phases 

diverse shrubland and needle-and-thread [Hesperostipa comata] 

hrubland), a native grassland (predominantly western wheatgrass 

nd Sandberg bluegrass) state with < 5% shrub cover, and a grass-

ominated and shrub-dominated phase within a crested wheat- 

rass (Agropyron cristatum) −dominated state. In this STM, plant 

ommunities were most strongly associated with fire and seeding 

http://prism.oregonstate.edu
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Figure 1. Locations of songbird, vegetation, and soil surveys, 2013 −2015, in northwest Colorado with three study areas labeled (western Moffat, eastern Moffat, and Routt). 

We collected vegetation, soil, and songbird data in all three areas to quantify songbird habitat relationships but predicted songbird densities in just the state-and-transition 

model developed for eastern Moffat ( Tipton 2015 ). 

Figure 2. A, State-and-transition model developed for eastern Moffat County on Sandyland and Rolling Loam ecological sites in northwest Colorado, 2013 −2015 (based on 

Tipton 2015 ) with states and transitions represented by solid borders and arrows and community phases and pathways represented by dashed borders and arrows. Photo 

credits: Jennifer Timmer, CSU. B, Average and minimum-maximum values for vegetation attributes in each state and community phase. Production estimates include grasses 

and forbs. See Tipton (2015) for full description of possible transition drivers and determination of states and phases. 
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Figure 2. Continued 
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istory. Tipton (2015) classified plant communities associated with 

rested wheatgrass (average 41% cover) as one state, but due 

o functional and structural differences, we divided this state 

nto two community phases: shrubland and grassland dominated 

 Bestelmeyer et al. 2003 ). Both phases resulted from past crested

heatgrass seeding ( Tipton 2015 ), and the grassland-dominated 

hase had experienced a wildfire in 2010. 

ield Surveys 

We surveyed 144 plots for songbirds across the study areas (73

n eastern Moffat, 52 in western Moffat, and 19 in Routt; see Fig. 1 )

id-May to late June 2013 −2015. To estimate songbird abundance, 

e conducted standard point count surveys at the center of each

lot following a distance sampling protocol ( Buckland et al. 2001 ).

he protocol included focusing on detections at and surrounding 

he point and measuring radial distance with rangefinders to the 

oint where each bird was first detected ( Buckland et al. 2001 ).

e identified birds both aurally and visually within a 6-min 

nterval at each point and recorded detected individuals only once. 

e conducted surveys during the breeding season from sunrise 

o approximately 4 h after sunrise, depending on weather. We 

id not conduct surveys during inclement weather, such as rain

r windy conditions when activity of the birds or detectability of

he birds was hindered. We also conducted surveys beginning at 

ower-elevation plots earlier in the breeding season and moved up 

n elevation as the season progressed to capture the phenology of

he birds’ breeding activity ( Hanni et al. 2013 ). We surveyed each

lot for songbirds once a field season. 

We measured a suite of ecological site metrics (e.g., vegetation

nd soils attributes; Herrick et al. 2005 ) at all survey plots late

une through mid-August 2013 −2015. We collected the vegetation 

easurements during this period rather than concurrently with 

ird count surveys because STMs typically describe the vegetation 

t peak biomass, and our intent was to link states and phases to

vian habitat relationships. Thus, the vegetation metrics described 
hat the birds’ habitat would look like in mid to late summer

hen they are nesting or raising young as opposed to attracting

ates ( Billerman et al. 2020 ). For predictors in the songbird count

odels, we primarily used foliar cover by species, litter, rock, dung,

nd bare ground as measured with the line-point intercept (LPI) 

ethod ( Bonham 1989 ; Herrick et al. 2005 ) on five parallel 50-m

ransects at 1-m intervals. We summed foliar cover by species to

etermine cover by functional group (e.g., shrub cover). For further 

etails on the ecological site metrics, see Tipton (2015) . We col-

ected several additional metrics to further characterize songbird 

abitat. We assessed visual obstruction (VO) with a modified Ro- 

el pole ( Robel et al. 1970 ). We recorded VO at five evenly spaced

oints along two transects per plot, with VO viewed from each or-

inal direction per point. We also measured grass height of the

earest plant to each VO reading and averaged the 10 heights per

lot. We measured height of the tallest shrub (excluding inflores- 

ences) intercepting the transect when taking LPI measurements. 

ata Analyses 

ongbird Detection Probabilities 

We restricted analyses to the more commonly detected song- 

irds in the study areas, both shrubland-associated (Brewer’s spar- 

ow, green-tailed towhee, sage thrasher, and sagebrush sparrow) 

nd grassland-associated (horned lark [Eremophila alpestris], vesper 

parrow [Pooecetes gramineus], and western meadowlark [Sturnella 

eglecta] ) species ( Wiens and Rotenberry 1981 ). To estimate song-

ird density and examine potential variables affecting detectabil- 

ty, we used program Distance 6.0 ( Thomas et al. 2010 ). We ex-

luded outlier detections on the basis of visual inspection of detec-

ion histograms and binned distances accordingly ( Buckland et al. 

001 ). Detectability variables included start time; Julian date; ob- 

erver; how the bird was detected (i.e., calling, singing, or visual);

emperature; cloud cover; and wind speed ( Hanni et al. 2013 ). We

elected the best detection model for each species using Akaike’s 
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nformation criterion (AIC; Burnham and Anderson 2002 ) and used

he best model to predict density estimates for each plot. We also

ompared density estimates for the most common songbirds across

lots surveyed in multiple years to determine if we could pool

ata from multiple field seasons (eq. 3.102 in Buckland et al. 2001 ).

ost of the plots (105 out of 144) were surveyed only once dur-

ng the three field seasons. We did not compare vegetation metrics

cross years because all plots with vegetation data were surveyed

nly once over the three field seasons. 

ongbird Count Model Development and Evaluation 

We evaluated count-based regression models (i.e., generalized

inear models) for songbird counts (i.e., response variables) with

he vegetation metrics (i.e., predictor variables) collected at each

lot. We first identified the appropriate distribution, Poisson or

egative binomial, for each species using an intercept-only model

nd Vuong’s test ( Hilbe 2011 ). For each songbird model, we ex-

luded songbird counts beyond the truncation distance, as de-

ermined by detection histograms, and included an offset term,

hich accounted for plot-specific variability in detection and sur-

ey effort (eq. 2.2 in Buckland et al. 2009 ). This allowed us to

odel observed songbird counts while incorporating differences in

etectability across plots as determined from distance sampling.

e then used the data in an exploratory approach to determine

he appropriate model structure for each species and predictor

ariable. We examined scatterplots of raw counts and predictor

ariables to check for nonlinear relationships, outliers, and pre-

ictor variables with limited distributions in the study areas. If

lots showed evidence of nonlinearity, we evaluated a linear and

 quadratic regression model with Bayesian information criterion

BIC) to determine which model structure to retain (i.e., retained

he model form with the lowest BIC score). We used BIC for evalu-

tion of the models because BIC penalizes model complexity more

eavily than AIC ( Burnham and Anderson 2002 ), and given many

redictor variables, we wanted to prevent models from becoming

verly complex ( Johnson and Omland 2004 ). We used Pearson’s

orrelation coefficient to test individually if any of the predictor

ariables were correlated (i.e., r ≥ │0.7 │; Zar 2010 ). 

For each species, we determined the best shrub structure

ariable (i.e., sagebrush cover, shrub cover, or VO) to include in

ll candidate models by evaluating univariable models with BIC.

e then evaluated all model combinations of predictor variables

o determine the best models explaining songbird counts and

etained only the highest-ranking model for each species. For all

pecies, we included the best shrub structure variable in each

odel and also evaluated a shrub structure-only model. Most

pecies included in the analysis are shrub-obligate species, and

odels without a shrub structure variable would not be as useful

or management of sagebrush rangelands. We tested all possi-

le combinations of uncorrelated variables, provided the model

ncluded the best shrub structure variable. We only excluded

ariables from a species’ candidate model set if they were cor-

elated with the best shrub structure variable for that species.

e examined variance inflation factors (VIF) for each species’

op model that contained multiple variables ( Menard 1995 ) and

xcluded models with mean VIF scores > 2 ( Chatterjee et al. 20 0 0 )

o further reduce multicollinearity. We also excluded models when

oefficients of predictor variables were unstable (i.e., reversed their

elationship to the response variable across models; Arnold 2010 ). 

To assess the amount of variation explained by our fitted mod-

ls over an intercept-only model, we calculated a McFadden’s

seudo- R 2 value ( Zar 2010 ). We also used a chi-square likelihood

atio test with the lrtest function in package “lmtest” ( Hothorn

t al. 2019 ) to determine goodness-of-fit for the top model over

n intercept-only (null) model. We evaluated predictive ability for
ach model by measuring the root mean squared error using five-

old cross validation ( Hastie et al. 2009 ) with the cvFit function in

ackage “cvTools” ( Alfons 2015 ). We performed all analyses in Pro-

ram R 3.3.2 ( R Core Team 2015 ). 

ongbird Density by State or Community Phase 

To incorporate songbird density into the STM, we used our best

ount model for each species to predict the number of individ-

al songbirds per hectare for each state or community phase. For

ach state or phase, we calculated average vegetation conditions

or predictor variables (e.g., shrub cover and bare ground) and av-

rage offset terms for songbird detectability. We then used the av-

rage vegetation conditions and offset terms per state and phase

o predict songbird density per state and phase using each species’

est count model. We calculated variability around each predicted

ensity estimate using 95% confidence intervals for the vegetation

ariables associated with each state or phase because we wanted

ensity estimates to reflect the variability in vegetation conditions.

e used a T distribution rather than a normal distribution to cal-

ulate the confidence intervals because the population standard

eviations were unknown and vegetation sample sizes used to

uild the STM were small ( n < 33 plots for each state and phase).

inally, we displayed the variation in predicted songbird density as

 function of vegetation variables in the top model for a shrubland

nd grassland-associated species. We used violin plots to show the

istribution of a given vegetation variable within each of the states

nd community phases from the STM where each violin is plot-

ed at mean predicted density for the songbirds for each state or

hase. 

esults 

ongbird Detection Probabilities 

We detected a total of 367 Brewer’s sparrows on 109 plots, 97

reen-tailed towhees on 45 plots, 129 sagebrush sparrows on 49

lots, 103 sage thrashers on 56 plots, 353 horned larks on 93 plots,

66 vesper sparrows on 64 plots, and 230 western meadowlarks on

7 plots. On the basis of 39 plots surveyed in consecutive field sea-

ons, we did not find a difference among years in density estimates

or the most common songbirds and, therefore, pooled data across

ears. We grouped songbird counts into six or seven bins of dis-

ance from the point count and truncated distances > 200 −250 m.

ongbird Count Model Development and Evaluation 

Detectability offset values, represented as constants in each

pecies’ model, were 0.25 for Brewer’s sparrows, 1.29 for green-

ailed towhees, 1.27 for sagebrush sparrows, 1.42 for sage thrash-

rs, 0.66 for horned larks, 0.71 for vesper sparrows, and 1.79 for

estern meadowlarks. We detected one horned lark and no sage-

rush sparrows or sage thrashers in the Routt study area; there-

ore, we restricted model development for these species to data

ollected only in the eastern and western Moffat study areas. 

Of the 11 predictor variables considered ( Table 1 ), sagebrush

over, total shrub cover, and VO were correlated, so we retained

nly the best variable for each species. Shrub height and VO, as

ell as grass and herbaceous cover, were positively correlated, and

are ground was negatively correlated with litter, grass cover, and

erbaceous cover. For species’ models that were restricted to the

astern and western Moffat study areas, shrub height was also cor-

elated with sagebrush and shrub cover, and litter and grass were

orrelated. Therefore, we did not include these variables in the

ame model. For species’ models that were restricted to the east-

rn and western Moffat study areas (i.e., horned lark, sage thrasher,
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Table 1 

Definitions of vegetation predictors used in count-based regression models for 

sagebrush-associated songbirds in northwest Colorado, 2013 −2015. 

Predictor 1 Predictor description 

sb Absolute sagebrush foliar cover as measured via line-point 

intercept (LPI) 2 

shrub Absolute shrub foliar cover as measured via line-point 

intercept 

VO Visual obstruction as measured via a modified Robel pole 3 

shrubHT Height (cm) recorded for the tallest part of a shrub (excluding 

inflorescence) intercepting the transect line via line-point 

intercept 

grassHT height (cm) of nearest grajss measured while recording VO 

grass Absolute grass foliar cover as measured via line-point intercept 

bg Absolute bare ground cover as measured via line-point 

intercept 

litter Absolute litter and woody litter cover as measured via 

line-point intercept 

herb Total herbaceous foliar cover as measured via line-point 

intercept 

exotic Absolute exotic plant foliar cover as measured via line-point 

intercept 

forb Absolute forb foliar cover as measured via line-point intercept 

1 All predictors were collected in 50 × 50 m or 20 × 50 m plots. 
2 Bonham 1989 . Absolute cover was obtained based on the proportion of any LPI 

hits out of the total hits, and total cover was obtained on the basis of the proportion 

of top hits out of the total hits ( Tipton 2015 ). 
3 Robel et al. 1970 . See text for further description. 
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nd sagebrush sparrow), we included forb and exotic cover as they

ad an even distribution across these two areas; the variables had

imited distribution across all three study areas, so they were ex-

luded from the other species’ models. 

We determined the negative binomial distribution was the 

est model structure for all songbird species. Abundances of all 

hrubland-associated songbirds were better explained by variation 

n total shrub cover rather than just sagebrush cover ( Table 2 ).

or both Brewer’s sparrow and sage thrasher, the best model was

ased on shrub attributes with no additional improvement in the 

odel from herbaceous or ground layer attributes ( Table 3 ). For
Table 2 

Count-based regression models for sagebrush-associated songbirds in northwest Colorad

information criterion (BIC), difference in BIC compared with lowest BIC of the model se

5-fold cross validation, and P value from likelihood ratio test for models with �BIC < 2 

Model 1 LL K 

Brewer’s Shrub + shrubHT 277.19 4 

sparrow: Shrub + shrubHT + herb + herb 2 272.42 5 

Shrub + grassHT + shrubHT + herb + herb 2 270.63 7 

Intercept only 295.93 2 

Sage Shrub + shrub 2 137.11 4 

thrasher: Intercept only 142.26 2 

Shrub + shrub 2 + L 135.28 5 

Sagebrush Shrub + shrub 2 + grass + exotic 139.52 6 

sparrow: Shrub + shrub 2 + grass 142.17 5 

Shrub + shrub 2 + bg + exotic 140.18 6 

Shrub + shrub 2 + L + exotic 140.32 6 

Intercept only 176.701 2 

Green-tailed Shrub + shrubHT + bg 131.83 5 

towhee: Intercept only 162.159 2 

Horned lark: Shrub + L 239.95 4 

Shrub 242.89 3 

Intercept only 271.24 2 

Vesper Shrub + bg 179.76 4 

sparrow: Shrub + grassHT + bg 177.56 5 

Model LL K 

Intercept only 212.45 2 

Western Shrub + bg 223.22 4 

meadowlark: Intercept only 261.09 2 

1 Predictor variables described in Table 1 . 
2 Did not run the likelihood ratio test to compare a null (intercept only) model agains
reen-tailed towhees, abundance was inversely associated with the 

mount of bare ground (see Table 3 ). For sagebrush sparrows,

bundance was inversely associated with total cover of grasses and 

xotic plant cover (see Table 3 ). 

For the grassland-associated birds, the best models were based 

n shrub cover and bare ground, with density consistently declin- 

ng with increasing shrub cover across all three species (horned 

ark, vesper sparrow, western meadowlark; see Tables 2 and 3 ).

orned larks increased with decreasing litter cover (see Table 3 ),

hich was inversely correlated with bare ground exposure; thus, 

orned lark abundance increased with more bare ground (see 

able 3 ). In contrast, vesper sparrows and western meadowlarks 

eclined with increasing bare ground exposure (see Table 3 ). 

All species’ top models explained more variation than a null 

odel with the exception of sage thrasher. Green-tailed towhee, 

agebrush and vesper sparrow, horned lark, and western mead- 

wlark models explained the most variation and had good to excel- 

ent fit (see Table 2 ; McFadden 1979 ). All top models had low root

ean squared errors from fivefold cross validation (see Table 2 ). 

ongbird Density by State or Community Phase 

In general, we predicted higher densities for shrubland- 

ssociated songbirds in the shrub-dominated community phases 

nd higher densities for grassland-associated songbirds in the 

ative grassland state and crested wheatgrass −grassland phase 

 Table 4 ). For example, we predicted approximately 3.3 Brewer’s

parrows/ha in the diverse shrubland phase compared with 0.8 

rewer’s sparrows/ha in the crested wheatgrass −grassland phase; 

or western meadowlarks, we predicted approximately 4.4 birds/ha 

n the native grassland state compared with 1.1 birds/ha in the

rested wheatgrass −shrubland phase (see Table 4 ). Predicted song- 

ird densities reflected relationships between songbird species 

nd ground and shrub cover variables associated with the states 

nd phases. Shrubland-associated species that preferred more 

hrub cover and taller shrubs (i.e., Brewer’s sparrow and green- 

ailed towhee) had higher predicted densities in the diverse 
o, 2013 −2015. We report log-likelihood (LL), number of parameters (K), Bayesian 

t ( �BIC), BIC weight ( w ), pseudo- R 2 value, root mean squared error (error) from 

and intercept-only models. 

BIC Delta w R 2 Error P value 

574.26 0.00 0.45 0.06 2.78 < 0.001 

574.65 0.39 0.37 0.08 2.78 < 0.001 

576.06 1.80 0.18 0.09 2.77 < 0.001 

601.80 27.54 0.00 0.00 2.85 NA 2 

293.53 0.00 0.38 0.04 1.66 0.01 

294.18 0.65 0.28 0.00 1.47 NA 2 

294.71 1.18 0.21 0.05 1.64 0.003 

308.01 0.00 0.36 0.21 2.89 < 0.001 

308.48 0.47 0.29 0.20 2.93 < 0.001 

309.34 1.33 0.19 0.21 2.95 < 0.001 

309.62 1.61 0.16 0.21 3.05 < 0.001 

363.06 55.05 0.00 0.00 1.88 NA 2 

288.51 0.00 0.57 0.19 2.29 < 0.001 

331.05 42.54 0.00 0.00 1.66 NA 2 

499.22 0.00 0.55 0.12 3.22 < 0.001 

500.26 1.04 0.33 0.10 3.21 < 0.001 

552.14 52.92 0.00 0.00 3.36 NA 2 

379.39 0.00 0.57 0.15 2.07 < 0.001 

379.98 0.58 0.43 0.16 2.11 < 0.001 

BIC Delta w R 2 Error P value 

434.84 55.45 0.00 0.00 1.98 NA 2 

466.33 0.00 0.88 0.15 2.38 < 0.001 

532.12 65.79 0.00 0.00 2.39 NA 2 

t a null model. 
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Table 3 

Beta coefficient estimates ( β), standard errors (SE), and 95% confidence intervals 

for model parameters in the highest-ranked count-based regression model for 

sagebrush-associated songbirds in northwest Colorado, 2013 −2015. 

Variable 1 β SE 95% Lower 95% Upper 

Brewer’s Intercept −0.39 0.18 −0.77 −0.02 

sparrow: Shrub 0.01 0.01 0.002 0.03 

ShrubHT 0.02 0.01 0.01 0.03 

Dispersion 3.45 1.06 1.37 5.53 

Green-tailed Intercept −2.57 0.51 −3.67 −1.58 

towhee: Shrub 0.01 0.01 −0.01 0.04 

ShrubHT 0.03 0.01 0.01 0.05 

bg −0.07 0.02 −0.10 −0.04 

Dispersion 1.08 0.39 0.32 1.83 

Sage thrasher: Intercept −3.16 0.49 −4.23 −2.26 

Shrub 0.11 0.04 0.04 0.20 

Shrub 2 −0.002 < 0.001 −0.004 −0.001 

Dispersion 1.98 1.12 −0.21 4.16 

Sagebrush Intercept −2.03 0.87 −3.85 −0.37 

sparrow: Shrub 0.26 0.08 0.11 0.43 

Shrub 2 −0.01 0.002 −0.01 −0.003 

Grass −0.03 0.01 −0.05 −0.01 

Exotic −0.03 0.01 −0.06 −0.005 

Dispersion 1.40 0.48 0.46 2.33 

Horned lark: Intercept 1.78 0.25 1.28 2.28 

Shrub −0.06 0.01 −0.07 −0.04 

Litter −0.01 0.004 −0.02 −0.002 

Dispersion 4.69 1.91 0.94 8.44 

Vesper Intercept 1.02 0.20 0.62 1.43 

sparrow: Shrub −0.04 0.01 −0.05 −0.03 

bg −0.07 0.01 −0.09 −0.05 

Dispersion 1.87 0.76 0.38 3.37 

Western Intercept 0.65 0.23 0.19 1.14 

meadowlark: Shrub −0.04 0.01 −0.06 −0.03 

Bg −0.08 0.01 −0.10 −0.06 

Dispersion 1.08 0.26 0.57 1.59 

1 Predictor variables described in Table 1 . 
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hrubland community phase (see Table 4 ) because it was associ-

ted with greater shrub cover and taller shrubs on average (see

ig. 2 B). Horned lark predicted density was higher for the crested

heatgrass −grassland phase than the native grassland state (see

able 4 ), likely reflecting the bird’s positive relationship with

are ground; average bare ground was greatest for the crested

heatgrass −grassland phase (see Fig. 2 B). Western meadowlark

bundance increased with less shrub cover and bare ground (see

able 3 ), so predicted densities were highest for the native grass-

and state (see Table 4 ), which had less bare ground on average

han the crested wheatgrass −grassland phase (see Fig. 2 B). 

iscussion 

We modeled songbird counts as a function of local vegetation

ttributes and incorporated these models in an STM developed for

he sagebrush steppe in eastern Moffat County, Colorado. Our ap-

roach demonstrates how traditional wildlife habitat relationships
Table 4 

Predicted densities of sagebrush-associated songbirds for states and community phase

( Tipton 2015 ). 95% confidence intervals for each density estimate are in parenthesis and 

Diverse Needle-and-thread 

shrubland shrubland 

phase phase 

Brewer’s sparrows/ha 3.31 (2.85-3.80) 2.88 (2.26-3.65) 

Green-tailed towhees/ha 1.10 (1.08-1.11) 0.53 (0.46-0.61) 

Sage thrashers/ha 0.93 (0.86-0.92) 0.66 (0.51-0.76) 

Sagebrush sparrows/ha 0.20 (0.06-0.56) 0.52 (0.26-0.72) 

Horned larks/ha 0.93 (0.69-1.30) 1.63 (1.16-2.30) 

Vesper sparrows/ha 0.96 (0.65-1.45) 1.16 (0.76-1.77) 

Western meadowlarks/ha 1.49 (0.96-2.39) 1.52 (0.93-2.46) 
an be included in an STM as an additional ecosystem service to

escribe the value of alternative states and how the range of veg-

tation conditions associated with a state or community phase in-

uences songbird density. 

ncorporating Songbird Count Models into STMs to Understand 

hange 

Managers can use our quantitative approach to understand how

egetation or state change may affect songbird populations. A tran-

ition from the diverse shrubland community phase in a shrub-

ominated state to a native grassland state, likely the result of a

arge fire (see Fig. 2 A), is predicted to reduce Brewer’s sparrow

ensity from 3.3 birds/ha to 1.2 birds/ha (see Table 4 ). In con-

rast, density of a grassland-associated species, the vesper spar-

ow, is predicted to increase in response to this transition from

.96 birds/ha to 3.2 birds/ha (see Table 4 ). In the STM, changes

etween a shrub-dominated state or community phase and a

rassland-dominated state or phase resulted in significant differ-

nces for most predicted songbird densities (see Table 4 ). This

s likely due to structural differences between a shrub-dominated

nd a grass-dominated landscape for shrubland- and grassland-

ssociated species ( Knick and Rotenberry 1995 ). Changes in song-

ird densities between similar-structured community phases, how- 

ver, were less noticeable, likely because there was consider-

ble overlap in ranges for vegetation indicators associated with

he phases, such as shrub cover and shrub height (see Fig. 2 B).

or example, confidence intervals for predicted Brewer’s sparrow

ensities overlapped for the diverse shrubland, needle-and-thread

hrubland, and crested wheatgrass −shrubland phase (see Table 4 ).

rewer’s sparrows are typically the most common songbird found

n sagebrush rangelands ( Rotenberry et al. 2020 ), so managing for

ny of the shrub-dominated community phases would likely ben-

fit this species. In other regions, however, structural and/or func-

ional differences between community phases in sagebrush range-

ands may result in larger differences in associated wildlife densi-

ies ( Holmes and Miller 2010 ). 

anaging for Alternative States and Different Ecosystem Services 

Not surprisingly, we predicted greater densities of shrubland-

ssociated songbirds and lower densities of grassland-associated 

ongbirds in the shrub-dominated community phases (see Table 4 ).

ithin shrubland-associated songbirds, we also observed dif- 

erences in peak predicted densities among the three shrub-

ominated phases. These differences reflect nuanced shrub and

round cover preferences for each species and different life his-

ory traits. For example, green-tailed towhee densities peaked

ith greater shrub cover, taller shrubs, and less bare ground (see

able 3 ). Green-tailed towhees are often found in higher-elevation,

ontane shrub communities where greater shrub and ground

over provide ample foraging opportunities for seeds and insects
s in a state-and-transition model developed in northwest Colorado, 2013 −2015 

are based on variability in the vegetation attributes for each state or phase. 

Crested wheatgrass Crested wheatgrass Native 

shrub-dominated grass-dominated grassland 

phase phase state 

2.78 (2.06-3.75) 0.84 (0.83-0.85) 1.15 (1.03-1.29) 

0.56 (0.42-0.75) 0.10 (0.05-0.19) 0.21 (0.21-0.22) 

0.85 (0.59-0.95) 0.13 (0.11-0.14) 0.16 (0.15-0.18) 

0.49 (0.10-0.94) 0.01 ( < 0.01-0.02) 0.05 (0.04-0.05) 

1.91 (1.12-3.25) 6.24 (4.26-9.13) 5.48 (4.94-6.07) 

0.81 (0.28-2.32) 2.40 (1.19-4.85) 3.20 (2.53-4.04) 

1.11 (0.32-3.75) 3.27 (1.42-7.59) 4.43 (3.63-5.84) 
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nd a diversity of taller shrubs for nesting ( Aldridge et al. 2011 ;

obbs et al. 2020 ). Thus, green-tailed towhee predicted densities

ere highest for the diverse shrubland community phase, which 

ontained the greatest shrub cover, the tallest shrubs, and less bare

round on average than the other shrubland phases (see Fig. 2 B). 

Within grassland-associated songbirds, differences in peak pre- 

icted densities among the grassland phase and state also reflected 

ifferent lif e history traits. Horned larks typically forage on the

round and place their nests in the open on bare ground ( Beason

995 ). Thus, horned lark predicted density was greatest for the

rested wheatgrass −grassland phase, which was associated with 

ore bare ground on average (see Fig. 2 B). In contrast, vesper

parrows usually conceal their nests with grasses and forbs or 

ther vegetation ( Jones and Cornely 2020 ). Vesper sparrow abun-

ance increased with less bare ground, so predicted vesper spar- 

ow density was highest in the native grassland state, which had

ess bare ground on average than the crested wheatgrass-grassland 

hase. 

These results reflect the value of alternative states within sage- 

rush ecosystems to support a diverse avian community. Although 

t is a shrub-dominated system, disturbances, management actions, 

nd abiotic factors promote structural diversity within the sage- 

rush landscape. This structural diversity is represented by shrub- 

nd grass-dominated states and community phases and supports 

oth shrubland- and grassland-associated species ( Rotenberry and 

iens 1980 ; Wiens and Rotenberry 1981 ). We likely would not

ave observed as many grassland species, such as horned larks, 

f fires had not created grassland patches in the study area. Even

hrubland-associated songbirds have different habitat needs within 

agebrush rangelands, from green-tailed towhees that prefer more 

agebrush and herbaceous cover (i.e., the diverse shrubland phase) 

o sagebrush sparrows that prefer less shrub and ground cover (i.e.,

he needle-and-thread shrubland phase; Timmer et al. 2019 ). In-

eed, no single state or phase in the STM captured the highest

ensity for all species. By incorporating habitat relationships for 

hrubland and grassland-associated species in an STM, we can see 

he value of different states and phases for supporting bird diver-

ity ( Fuhlendorf et al. 2012 ). Our approach also allows managers

o evaluate the tradeoff in ecosystem services from a state or com-

unity phase change. Shrubland-associated songbird densities may 

ecline in response to a fire that transitions a native shrubland

tate to a native grassland state, but grassland bird densities and

orage production for livestock would likely increase (see Fig. 2 B). 
F

igure 3. Variation in predicted density of green-tailed towhees ( A ) and vesper sparrows

hown in gray. In each panel, variation in the height of the colored violin plots indicates 

nd community phases from a state-and-transition model developed for the sagebrush s

ensity (y-axis) for each species for each state or phase. 
Although our approach illustrates the value of alternative states 

nd community phases in the sagebrush steppe, our models for 

ongbird abundance did not incorporate landscape-level effects of 

he size or juxtaposition of different vegetation patches on song- 

ird abundance. Such spatially explicit information may be es- 

ecially important in predicting habitat quality or abundance for 

pecies, such as greater sage-grouse (Centrocercus urophasianus), 

hat use multiple patch types across different seasons ( Connelly 

t al. 2011 ). However, the bird species that we modeled all have

elatively small breeding season home ranges that typically encom- 

ass a single vegetation patch type (at least at the scale at which

e measured different states and phases) and then migrate out of

he region during the nonbreeding season ( Billerman et al. 2020 ).

ur approach of predicting how abundance varies across states and 

ommunity phases within an STM is especially suited for these 

ypes of wildlife species. We also acknowledge that our study area

onsisted of large expanses of the diverse shrubland and needle- 

nd-thread shrubland phases, interspersed with smaller patches of 

he native grassland and crested wheatgrass states ( Tipton 2015 ).

s a result, we cannot assess the degree to which our model pre-

ictions would apply to landscapes with extensive grasslands in- 

erspersed with smaller shrubland patches. 

anaging for Variability in Vegetation Conditions Within States and 

ommunity Phases 

One limitation of predicting songbird densities into states and 

ommunity phases based on average vegetation conditions is that 

t obscures the influence of variability in vegetation conditions 

ithin a state or phase. Simply identifying the diverse shrubland 

ommunity phase as the optimal phase for green-tailed towhees 

asks the influence of bare ground on their abundance because 

are ground exposure varies from 0% to 37% within the diverse

hrubland phase. Our count model predicts that towhee density 

an vary from ≈0.2 birds/ha at 37% bare ground to ≈1.1 birds/ha at

% bare ground (see Fig. 3 A). Similarly, vesper sparrow density was

reatest in the native grassland state (see Table 4 ), and managing

or average bare ground exposure in this state (6%) is predicted to

esult in ≈1.6 vesper sparrows/ha. However, vesper sparrow den- 

ity varies from ≈3.2 vesper sparrows/ha at 0% bare ground expo-

ure to < 1 vesper sparrow/ha at 18% bare ground exposure (see

ig. 3 B). 
 ( B ) displayed as a function of vegetation indicators with 95% confidence intervals 

the distribution of the given vegetation attribute (x-axis) within each of the states 

teppe in northwest Colorado, 2013 −2015. Each violin is plotted at mean predicted 
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Figure 3. Continued 
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For both of these species, it is easy to visualize the benefit

f managing for less bare ground, which is often a land man-

gement objective ( Morgan 2005 ). However, this approach could

e especially useful for visualizing how species with different

abitat needs, such as a shrubland- and grassland-associated

ongbird, respond to variation in vegetation conditions from man-

gement actions, like shrub removal. There could be a threshold

f treatment that minimizes negative impacts to both species or

aximizes benefit to the species of greatest conservation concern.

nderstanding the effect of vegetation variability on wildlife

opulations within a state or phase could therefore increase man-

gement options and promote progress toward wildlife population

oals ( Hiers et al. 2016 ). 

onclusion 

By incorporating songbird count models into an STM developed

or the sagebrush steppe in northwestern Colorado, we can predict

ongbird response to vegetation change among states and commu-

ity phases in a way that can be clearly communicated to land and

ildlife managers. Managers can also see how alternative states

nd community phases within an STM benefit songbird species

f concern within and across habitat associations. Further, under-

tanding how songbird density varies with the natural range of

egetation conditions rather than just average conditions provides

reater flexibility when managing multiple species of concern with

ifferent habitat needs ( Hiers et al. 2016 ). Because rangeland sys-

ems are complex and dynamic, we argue that STMs should com-

unicate ecosystem change both among and within states and

hases, as well as how these changes impact ecosystem services

n order to be useful tools for rangeland managers. 

anagement Implications 

If managers or landowners within the sagebrush steppe of

orthwestern Colorado manipulate understory or ground vegeta-

ion, then our approach provides them with a tool to gauge how

ongbird densities may change in response. For example, if a man-

ger promotes vegetation characteristics associated with the di-

erse shrubland state, such as greater shrub and herbaceous cover
nd taller shrubs, then green-tailed towhees would likely ben-

fit. Our approach also allows managers to evaluate the trade-

ffs in managing for one songbird species or one state or phase

ver another. We predicted the highest green-tailed towhee den-

ity for the diverse shrubland community phase and the highest

agebrush sparrow density for the needle-and-thread shrubland 

hase. If managers treated one of these shrubland phases as the

anagement standard or reference condition and promoted it on

he landscape above other states and phases (USDA NRCS 1997),

his could have negative consequences for other songbirds ( Derner

t al. 2009 ; Fuhlendorf et al. 2012 ). 

A manager may also want to understand the range of song-

ird densities within a state or phase based on the natural vari-

bility of understory and ground conditions. For example, shrub

eight within the diverse shrubland phase varied from 25 cm to

7 cm (see Fig. 2 B). Therefore, a manager could expect green-tailed

owhee density to vary across this phase on the basis of minimum

 ≈0.2 birds/ha) and maximum ( ≈0.7 birds/ha) shrub height and

lso predict the effect of managing for average shrub height con-

itions ( ≈0.4 birds/ha; see Fig. 3 A). Finally, managers can estimate

ow other ecosystem services might respond to a landscape dis-

urbance, such as fire. In our study area, a fire transitioning the

eedle-and-thread shrubland community phase to a native grass-

and state is predicted to reduce Brewer’s sparrow density by ≈2

irds/ha (see Table 4 ) but increase forage for domestic or wild un-

ulates by roughly 350 kg/ha (see Fig. 2 B). These tradeoffs can be

mpirically evaluated by using traditional wildlife count models to

redict wildlife densities across ecological states and phases in an

TM ( Ritten et al. 2018 ). 
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