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Validation of Lag Time and Growth Rate
Models for Salmonella Typhimurium:
Acceptable Prediction Zone Method

THOMAS P. OSCAR

ABSTRACT: The prediction bias (B)) and accuracy (A)) factors are the most widely used measures of performance of
predictive models for food pathogens. However, B, and A  have limitations that can produce inaccurate assessments
of model performance. Consequently, an objective of the current study was to develop a method for quantifying
model performance that overcomes limitations of B, and A.. Performance of published lag time and growth rate
models for Salmonella Typhimurium were evaluated for data used in model development and for data not used in
model development but that were inside (interpolation) or outside (extrapolation) the response surface of the
models. In addition, performance of published models for growth of Escherichia coli 0157:H7 was evaluated for
data used in model development. Observed and predicted values were compared using B, A, and pRE, a new
performance factor that quantified the proportion of relative errors (RE) in an acceptable prediction zone from an
RE of -0.3 (fail-safe) to 0.15 (fail-dangerous). A decision diagram based on criteria for test data and model perfor-
mance was used to validate the models. When B, and A, were used to quantify model performance, all models were
validated. In contrast, when pRE was used to evaluate model performance, 2 models for S. Typhimurium and both
models for E. coli 0157:H7 failed validation. Overall, pRE was a more sensitive and reliable indicator of model
performance than B, and A because unacceptable pRE, which indicated a performance problem, were obtained for
8 of 20 evaluations, all of which had acceptable B,and A.. A limitation of pRE was the inability to distinguish between
global and regional prediction problems. However, when used in combination with an RE plot, pRE provided a

complete evaluation of model performance that overcame limitations of B.and A..
Keywords: performance evaluation, growth model, verification, validation, Salmonella Typhimurium

Introduction

Mathematical models that predict the growth of foodborne

pathogens or spoilage organisms are used in the food indus-
try to help assess the microbiological safety and shelf-life of food,
respectively. Most models for pathogen growth were derived from
kinetic data collected in broth media of different pH and water ac-
tivities and incubated at temperatures commonly encountered in
food processing and storage (McClure and others 1994). The un-
derlying principle of such models is that by accounting for the major
factors that control microbial growth, models developed in broth
can provide acceptable predictions when extrapolated to food
(Buchanan 1991).

An important step in development of broth models is evalua-
tion of predictions against data collected with food (Ross 1996).
The most common method of evaluation is to compare broth model
predictions to published data for pathogen growth in food (Gibson
and others 1988; Buchanan and Phillips 1990). However, these
types of comparisons are not valid when food data are obtained
with different strains, previous growth conditions, or modeling
methods. The latter statement is controversial because it is widely
accepted in predictive microbiology that use of a broth model to
predict pathogen growth in food is not extrapolation but applica-
tion of the model. Interestingly, predictive microbiologists often
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state that it is important not to use a model outside the range of the
independent variables used to develop the model because the
model may not provide reliable predictions (Buchanan and others
1993). In other words, it is widely accepted that if a broth model for
pathogen growth were developed for a sodium chloride range of 0.5
to 2.5%, that use of the model to predict pathogen growth at a sodi-
um chloride level of 3% would be extrapolation. Thus, it is unclear
why it is not considered extrapolation when a broth model for patho-
gen growth is developed with a fat level of 0% and then used to
predict the growth of the pathogen in food with a fat level of 20%.
Moreover, if a model were developed to predict the growth of strain
A in broth and the performance of the model were evaluated for
predicting the growth of strain B in food, how could this be a valid
evaluation of the ability of the model to extrapolate to another
strain or to food when the comparisons of observed and predicted
values are confounded by differences in strain and growth medi-
um? The approach adopted in the current study, but 1st published
by others (Gibson and others 1988; Ross 1996), was to evaluate
broth model predictions with food data obtained in controlled chal-
lenge studies with the same strain, previous growth conditions, and
modeling methods.

Calculation of prediction bias and accuracy factors (Delignette-
Muller and others 1995; Ross 1996) and use of graphical methods
(Bratchell and others 1990; McClure and others 1993) to assess
systematic prediction bias are important components of the eval-
uation process. However, criteria for acceptable values of perfor-
mance factors that allow a determination of whether a model pro-
vides valid predictions of pathogen growth have not been
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established (te Giffel and Zwietering 1999). Establishment of
standard methods and criteria for validating predictive models
will provide users of predictive models with greater confidence in
using the models to assess food safety. Currently, pathogen-de-
tection methods are used to a greater extent in the food industry
to assess food safety than predictive models. In part, this is due to
the official validation process provided by the Association of Of-
ficial Analytical Chemists (AOAC). If predictive models were sub-
jected to an AOAC-like validation process, they may find much
wider use in the food industry.

The most widely used method in predictive microbiology for
quantifying model performance is the ratio method of Ross (1996),
which involves calculating prediction bias (By) and accuracy (Ap
factors. However, limitations of this method that can result in an
inaccurate assessment of model performance and improper vali-
dation are as follows: (1) B;and A;are mean values that do not de-
tect some forms of prediction bias (Ross 1996), (2) B; and A; are
mean values that are subject to bias by outliers (Delignette-Muller
and others 1995), and (3) prediction cases involving no growth are
excluded from calculation of B; and Ay, resulting in an overestima-
tion of model performance (Augustin and Carlier 2000). A method
of performance evaluation is needed that overcomes these limita-
tions.

In the current study, published response surface models for lag
time and growth rate of Salmonella Typhimurium (Oscar 1999a,
1999b, 1999c¢) were evaluated for the ability to predict the data used
to develop them and for the ability to predict data not used in mod-
el development but that were inside (interpolation) or outside (ex-
trapolation) the response surface. In addition, published response
surface models for growth of Escherichia coli 0157:H7 were evalu-
ated for the ability to predict the data used to develop them.

Test data for performance evaluation of the S. Typhimurium
growth models were collected in controlled challenge studies with
the same strain, previous growth conditions, and modeling meth-
ods so as not to confound the comparisons of observed and predict-
ed values. Although prediction bias and accuracy factors were re-
ported and model predictions were assessed graphically for
systematic prediction bias in the previous studies (Oscar 1999a,
1999b, 1999c¢), criteria for determining whether the models provid-
ed predictions with acceptable bias and accuracy were not estab-
lished. In addition, the models were not tested for the ability to
extrapolate to other variables (for example, growth media).

Model performance in the present study was quantified using a
new acceptable prediction zone method that overcomes the afore-
mentioned limitations of B; and A;. In addition, a decision diagram
based on criteria for test data and acceptable performance factors
was developed and used to determine whether models provided
valid predictions of pathogen growth.

Materials and Methods

Salmonella Typhimurium growth models

Response surface models for lag time (A\) and maximum specific
growth rate (p,,,) of the same strain of Salmonella Typhimurium
(ATCC 14028, American Type Culture Collection, Manassas, Va.,
U.S.A.) were developed in a series of 3 studies (Oscar 1999a,
1999b, 1999c¢) using the same primary and secondary modeling
methods. Growth kinetic data (that is, log colony-forming units
[CFU]/mL or cm?) were fit to a 2-phase linear primary model (Bucha-
nan and others 1997) to determine A and p.,,,,. Natural logarithm
(In) transformations of A and p,,,,, were used in regression analysis
to obtain secondary response surface models (Oscar 1999a, 1999b,
1999¢).
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Details of the experimental methods used to collect and model
the kinetic data have been published (Oscar 1999a, 1999b, 1999c¢).
In brief, growth kinetics of stationary phase cells of S. Typhimurium
were measured in the absence of microbial competition in brain
heart infusion (BHI) broth and on sterilized cooked chicken breast
meat (sBM). Changes in S. Typhimurium density as a function of
time were assessed using viable cell counts on BHI agar and then
modeled as described previously (Oscar 1999a, 1999b, 1999c¢).

The experimental design in Study I (Oscar 1999c) for model de-
velopment was a full 4 x 6 x 3 factorial arrangement of previous
growth pH (5.7, 6.7, 7.8, 8.6), temperature (15 °C, 20 °C, 25 °C, 30 °C,
35°C, 40 °C), and pH (5.2, 6.3, 7.4) in BHI broth. Response surface
models were of the following form:

In N orln ppy, . =bg + bjA + b,T + bsP + byAT + bsAP +
+ bgTP + b;A2 + bgT? + bgP?

where b, to by were regression coefficients that were published
previously (Oscar 1999c), A was previous growth pH, T was temper-
ature, and P was pH. The model for In A was designated Model 1,
whereas the model for In p,,, was designated Model 2 in the
present study.

The experimental design for model development in Study II (Os-
car 1999b) was a full 4 x 4 factorial arrangement of previous growth
temperature (16, 22, 28, 34 °C) in BHI broth and temperature (16, 22,
28, 34°C) on sBM. Response surface models were of the form:

In\orln py, =by+b;B+b,T +bgBT + byB2 + bsT?

where b, to b; were regression coefficients that were published
previously (Oscar 1999c¢), B was previous growth temperature and
T was temperature. The model for In N was designated Model 3,
whereas the model for In ., was designated Model 4 in this study.

The experimental design for model development in Study III
(Oscar 1999a) was a full 3 x 9 factorial arrangement of previous
growth sodium chloride (0.5%, 2.5%, 4.5%) in BHI broth and tem-
perature (10 °C, 12 °C, 14 °C, 16 °C, 20 °C, 24 °C, 28 °C, 34 °C, 40 °C)
on sBM. Response surface models were of the form:

InXorIn pya=bg +b;C +b,T +bsCT + b, C2 + bsT?

where b, to b; were regression coefficients that were published
previously (Oscar 1999a), C was previous growth sodium chloride,
and T was temperature. The model for In A was designated Mod-
el 5, whereas the model for In ., was designated Model 6 in the
current study.

Escherichia coli 0157:H7 growth models

Response surface models for aerobic growth of a 3 strain cocktail
of E. coli 0157:H7 in BHI broth were developed using a fractional
factorial design of temperature (5 °C to 42 °C), pH (4.5 to 8.5), and
sodium chloride level (5 to 50 g/L) as described previously (Bucha-
nan and others 1993). Growth kinetic data were fit to the Gompertz
model and In transformations of the Gompertz parameters Band M
were used in regression analysis to obtain the secondary response
surface models:

InBorlnM=b,+b;S+b,T +bsP+b,ST +bsSP +
+bgTP + b;S2 + bgT?2 + by P2

where b, to by were regression coefficients that were published
previously (Buchanan and others 1993), S was sodium chloride, T

was temperature, and P was pH.
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Table 1—Observed and predicted lag times (\) and maximum specific growth rates (. _) of Salmonella Typhimurium
ATCC 14028 on sterilized cooked chicken breast and thigh meat: data for performance evaluation of extrapolation of

Models 1 and 2 in Study |

Response surface model parameters A (h) Pmay (D)

Meat Previous

type growth pH Temperature pH Observed Predicted Observed Predicted
Breast 6.3 15 6.04 12.97 11.79 0.092 0.114
Breast 8.3 15 6.04 17.34 12.29 0.099 0.112
Breast 6.7 20 6.07 8.05 6.47 0.140 0.219
Breast 7.8 20 6.07 8.59 6.67 0.171 0.220
Breast 6.7 25 6.04 410 3.90 0.386 0.370
Breast 6.3 25 6.26 4.06 3.71 0.483 0.386
Breast 5.7 30 6.07 2.92 2.36 0.521 0.564
Breast 6.3 30 6.09 1.82 2.53 0.493 0.550
Breast 6.3 35 6.26 1.43 1.87 0.596 0.710
Breast 8.6 35 6.26 1.53 1.99 0.689 0.716
Breast 6.3 40 6.09 1.26 1.61 0.628 0.747
Breast 7.4 40 6.09 1.86 1.74 0.643 0.732
Thigh 6.3 15 6.84 13.49 11.70 0.082 0.124
Thigh 8.3 15 6.84 14.99 11.88 0.090 0.123
Thigh 5.7 20 6.93 6.73 5.94 0.200 0.252
Thigh 6.7 20 6.93 8.13 6.42 0.208 0.243
Thigh 6.3 25 6.84 2.69 3.71 0.387 0.415
Thigh 5.7 25 6.99 3.14 3.55 0.348 0.433
Thigh 7.4 30 6.93 2.32 2.63 0.568 0.600
Thigh 8.3 30 7.00 2.25 2.61 0.556 0.613
Thigh 6.3 35 6.99 1.22 1.89 0.688 0.778
Thigh 5.7 35 6.99 1.24 1.77 0.753 0.803
Thigh 6.3 40 7.00 0.85 1.59 0.736 0.846
Thigh 7.4 40 7.00 1.63 1.69 0.895 0.825

Test data for Salmonella Typhimurium growth models

Independent data for performance evaluation of interpolation
were collected with the same strain, growth media, and modeling
methods but different combinations of the independent variables
that were within the response surface of the model. Independent
data for performance evaluation of extrapolation were collected in
the same manner except that the growth media used to measure
growth kinetics was different and thus, the response surface mod-
els were evaluated for the ability to extrapolate to a different growth
medium.

The experimental design for interpolation in Study I (Oscar
1999c) was a full 3 x 5 x 2 factorial arrangement of previous growth
pH (6.3, 7.4, 8.3), temperature (17.5 °C, 22.5 °C, 27.5 °C, 32.5 °C,
37.5°C) and pH (5.7, 6.7) in BHI broth. Growth conditions present-
ed in Table 1 were used for evaluating extrapolation of broth Models
1 and 2 to sBM and to sterilized cooked chicken thigh meat (sTM).
The pH of sBM and sTM homogenates (6 g meat:94 mL distilled
water) was determined with a combination pH electrode attached
to a model 34 pH meter (Beckman Instruments, Fullerton, Calif.,
U.S.A).

The experimental design for interpolation in Study II (Oscar
1999b) was a full 3 x 3 factorial arrangement of previous growth
temperature (19 °C, 25 °C, 31 °C) in BHI broth and temperature
(19 °C, 25 °C, 31 °C) on sBM. Data from an experiment with a full
4 x 4 factorial arrangement of previous growth temperature (16 °C,
22 °C, 28 °C, 34 °C) in BHI broth and temperature (16 °C, 22 °C,
28 °C, 34 °C) on sTM and data from an experiment with a full 3 x 3
factorial arrangement of previous growth temperature (19 °C, 25 °C,
31 °C) in BHI broth and temperature (19 °C, 25 °C, 31 °C) on sTM
(Oscar, unpublished) were combined for evaluating extrapolation
of Models 3 and 4.

The experimental design for interpolation in Study III (Oscar
1999a) was a full 2 x 8 factorial arrangement of previous growth
sodium chloride (1.5%, 3.5%) in BHI broth and temperature (11 °C,
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13°C, 15°C, 18 °C, 22 °C, 26 °C, 31 °C, 37 °C) on sBM. Ability of Mod-
els 5 and 6 for extrapolation to another growth medium was not
tested.

Test data for Escherichia coli 0157:H7 growth models

Observed and predicted values (In transformation) of lag time
and generation time (1) (Buchanan and others 1993) for aerobic
growth of E. coli 0157:H7 were used to evaluate the ability of the E.
coli 0157:H7 models to predict the data used in model develop-
ment. Predicted values of lag time and generation time were de-
rived using predictions from the response surface models for the B
and M parameters of the Gompertz model and a fixed value of 6.34
for the C parameter of the Gompertz model (Buchanan and others
1993). This dataset contained 25 no growth prediction cases where
the models predicted growth but no growth occurred.

Performance evaluation

Prediction bias (By) and accuracy (Ay) factors were calculated as
described by Ross (1996) except that different ratios of observed
and predicted values were used for A and ., so that Byless than 1
represented fail-safe predictions and B above 1 represented fail-
dangerous predictions. Likewise, relative errors (RE) of individual
prediction cases were calculated (Delignette-Muller and others
1995):

RE for \ = (predicted — observed)/predicted
RE for p,,, = (observed - predicted)/predicted
such that RE less than zero represented fail-safe predictions and
RE above zero represented fail-dangerous predictions. For predic-
tion cases in which observed or predicted lag time was infinity or
predicted lag time, generation time or growth rate was zero, the RE

signed a value of -1 for graphical presentation. This is an important
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Table 2—Performance of growth models for Saimonella Typhimurium ATCC 14028 in brain heart infusion broth or on
sterilized cooked chicken breast and thigh meat: prediction bias and accuracy factors?

Growth Growth Model
Study Model parameter medium parameters Dataset n B; A pRE
| 1 N Broth ATP Development 75 1.000 1.105 0.893
| 2 Mimax Broth ATP Development 75 1.000 1.059 0.933
1l 3 Breast B, T Development 32 1.000 1.157 0.688
1l 4 Mmax Breast B, T Development 32 1.000 1.074 0.875
1 5 Breast C,T Development 55 1.000 1.206 0.673
] 6 Mmax Breast CT Development 55 1.000 1.149 0.875
| 1 N Broth ATP Interpolation 30 0.979 1.082 0.933
| 2 Mmax Broth ATP Interpolation 30 1.031 1.069 0.900
1l 3 Breast B, T Interpolation 18 0.951 1.151 0.889
1l 4 Mmax Breast B, T Interpolation 18 0.913 1.109 1.000
1 5 Breast CT Interpolation 16 1.089 1.262 0.438
n 6 Mmax Breast CT Interpolation 16 0.937 1.156 0.813
| 1 N Breast ATP Extrapolation 12 0.981 1.225 0.583
| 1 N Thigh ATP Extrapolation 12 1.128 1.275 0.667
I 2 Mmax Breast ATP Extrapolation 12 0.884 1.182 0.833
| 2 Mmax Thigh ATP Extrapolation 12 0.861 1.178 0.917
Il 3 Thigh , T Extrapolation 50 1.011 1.190 0.680
Il 4 Mmax Thigh B, T Extrapolation 50 1.050 1.102 0.820

aA = previous growth pH; A; = accuracy factor; B = previous growth temperature; B = bias factor; n = number of prediction cases; C = previous growth sodium
chloride; P = pH; pRE = proportion of relative errors (RE) in the acceptable prediction zone; X = lag time; pmax = maximum specific growth rate; T = tempera-

ture.

Table 3—Validation of growth models for Saimonella Typhimurium ATCC 14028: results of the decision diagram (Fig-

ure 1) for the acceptable prediction zone method

Development

Interpolation

Extrapolation

Model Q1 Q2 Outcome Q3 Q4 Q5 Outcome Q6 Q7 Q8 Outcome
1 Yes Yes Verified Yes Yes Yes Validated Yes Yes No Not Validated
2 Yes Yes Verified Yes Yes Yes Validated Yes Yes Yes Validated
3 Yes No Not Verified No — — Not Validated No — — Not Validated
4 Yes Yes Verified Yes Yes Yes Validated Yes Yes Yes Validated
5 Yes No Not Verified No — — Not Validated
6 Yes Yes Verified Yes Yes Yes Validated

feature of the acceptable prediction zone method because it allows
the inclusion of no growth prediction cases in the calculation of its
performance factor pRE. In contrast, no growth prediction cases are
excluded from the calculation of the performance factors B;and Ay,
which results in an overestimation of model performance.

In the original publications of the growth models for S. Typhimu-
rium (Oscar 1999a, 1999b, 1999¢), RE was calculated using the ob-
served value in the denominator, whereas in the current study, RE
was calculated using the predicted value in the denominator. Sta-
tistically similar but not identical results are obtained with both of
the methods for calculating RE. For example, the mean absolute RE
(MARE) = standard error of the mean (SEM) for Model 1 for inter-
polation, which had 30 prediction cases (Table 2), was 7.8% * 1.1%
when the observed value was used in the denominator to calculate
RE (Oscar 1999c¢). In comparison, MARE was 8.1% * 1.2% when the
predicted value was used in the denominator to calculate RE. When
compared using a “t-test, the MARE was not different (P = 0.87)
between the 2 methods for calculating RE.

The proportion of RE (pRE) that fell in an acceptable prediction
zone (that is, the number of RE in the acceptable prediction zone/
total number of prediction cases) from an RE of 0.3 (fail-safe) to
0.15 (fail-dangerous) was calculated and used as a new measure of
model performance. The boundaries of the acceptable prediction
zone were equivalent to those proposed by Ross and others (2000)
for acceptable values of By, which are 0.7 (fail-safe) to 1.15 (fail-
dangerous). Models with pRE = 0.700 were considered to provide
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predictions with acceptable bias and accuracy. The acceptable val-
ue for pRE was based on the gold standard in the U.S. education
system for an acceptable test grade, which is 70% correct answers.
In the acceptable prediction zone method, 70% correct answers
correspond to 70% of the prediction errors falling inside the accept-
able prediction zone.

The acceptable prediction zone was wider in the fail-safe direc-
tion because greater prediction error can be tolerated in the fail-
safe direction when using models to predict food safety (Ross and
others 2000). In fact, use of models that provide overly fail-safe
predictions results in destruction of safe food that otherwise
would benefit public health by maintaining consumer health and
resistance to infectious disease. On the other hand, use of models
that provide overly fail-dangerous predictions results in consump-
tion of unsafe food and an increase in foodborne illness.

PRE is a relative measure of model performance because the
width of the acceptable prediction zone affects its value. Pathogen
incidence is an example of a relative performance factor that is
widely accepted and used in the food industry. The size of sample
used to assess pathogen incidence affects its value in much the
same way that the width of the acceptable prediction zone affects
the value of pRE. As the size of sample used to determine patho-
gen incidence increases, pathogen incidence increases in a nonlin-
ear manner toward 100% (Oscar 2004). As an example, Surkiewicz
and others (1969) found that the incidence of Salmonella contam-
ination of whole chickens was 4.9% when a 10-mL sample of car-
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cass rinse was used but was 20.5% when a 270-mL sample of carcass
rinse was used. In an analogous manner, pRE increases toward 1.000
as the width of the acceptable prediction zone is increased. Both
PRE and pathogen incidence are reliable and reproducible perfor-
mance factors as long as standard methods are used to determine
them.

Model validation

The decision diagram in Figure 1 was used to determine whether
models provided valid predictions of pathogen growth. For a model
to be validated for interpolation it had to be verified, it had to meet
criteria for test data for interpolation, which are described subse-
quently, and it had to meet performance criteria for pRE (that is,
PRE = 0.700). For a model to be validated for extrapolation, it had
to be validated for interpolation, meet criteria for test data for ex-
trapolation (described subsequently), and meet performance cri-
teria for pRE.

Results and Discussion

valuation of the ability of a model to predict the data used to

develop it (verification) is important because a model that does
not properly fit the data used to develop it would not provide val-
id predictions within or beyond its response surface. In the current
study, models that failed performance evaluation for verification
automatically failed performance evaluations for interpolation and
extrapolation (Figure 1).

As expected, B;for all model verifications were 1.000, a value that
indicates no average bias. The expected value for Bywas 1 because
models were developed by least squares regression in which the
average deviation of observed values from predicted values is zero
and because By is the ratio of observed and predicted values its
average value for data used in model development is one. In con-
trast to By, which did not vary among models, A for model verifica-
tion ranged from 1.059 to 1.206, where an A; of 1.000 indicates per-
fect agreement between observed and predicted values (Table 2).
Model 5 from Study III was the least accurate with an A; of 1.206.
The proportion of RE for verification that resided in the acceptable
prediction zone (Figure 2) ranged from 0.673 to 0.933 (Table 2).
Overall, pRE was higher, indicating better performance, for broth
models of Study I than sBM models of Studies II and III (Table 2).
In addition, pRE was higher for u,,,, than A models (Table 2). This
was also observed by Wei and others (2001) who reported higher A;
for A models than p.,,,, models for Yersinia enterocolitica and chicken
meat. The poorer performance of A models might be related to the
higher biological variation of this parameter that is often observed
in challenge studies (Lebert and others 1998; Oscar 2000).

Evaluation of the ability of a model to interpolate within its re-
sponse surface is important because a model that does not provide
predictions with acceptable accuracy and bias within its response
surface is a model that does not properly define its response sur-
face. Proper evaluation for interpolation requires an independent
set of data collected with the same strain, previous growth condi-
tions, and modeling methods. In addition, test data should uni-
formly cover the response surface to provide a complete and unbi-
ased test of model performance. Failure to collect test data in the
proper manner can invalidate the entire performance evaluation or
result in only a partial validation of the model for interpolation (that
is, only for that portion of the response surface for which test data
were collected). In the current study, models were evaluated for
interpolation using independent data collected with the same
strain, previous growth conditions, and modeling methods and
experimental designs that provided uniform and complete cover-
age of the response surface. Thus, all performance evaluations for
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interpolation in this study met the aforementioned criteria for test
data for interpolation.

Model 4 had the lowest B; of 0.913 for interpolation, whereas
Model 5 had the highest B; of 1.089 for interpolation (Table 2). Most
RE for interpolation of Model 2 were greater than 1 (Figure 3b),
which indicated fail-dangerous predictions, whereas most RE for
Models 1, 3, and 4 were less than 1 (Figure 3a, 3c, 3d, respectively),
which indicated fail-safe predictions. However, all or most RE for
these models were inside the acceptable prediction zone (Figure 3a
to 3d) for pRE of 0.889 to 1.000 (Table 2). Thus, prediction bias of
Model 2 for interpolation was not overly fail-dangerous and predic-
tion bias of Models 1, 3, and 4 for interpolation was not overly fail-
safe.

Model 5 had the highest B; of 1.089, highest A; of 1.262, and low-
est pRE of 0.438 for interpolation (Table 2). Predictions of Model 5
were overly fail-dangerous (that is, RE > 0.15) for 7 of 16 prediction
cases (Figure 3e). Model 6 had a B;0f 0.937, an A;0f 1.156, and a pRE
of 0.813 for interpolation (Table 2). Two of 3 prediction cases for
Model 6 that were outside the acceptable prediction zone were
very close to the boundaries (Figure 3f).

Successful extrapolation of model predictions to variables (for
example, other strains or growth media) not included in the mod-
el can save time and money by eliminating the need to develop
additional models. Proper evaluation of model performance for
extrapolation requires an independent set of data that differs from
the data used in model development by only 1 variable. Use of
datasets that differ by more than 1 variable from the dataset used
in model development will confound the comparison of observed
and predicted values and thus invalidate the performance evalu-
ation for extrapolation. In the present study, model performance
for extrapolation was evaluated using independent sets of data
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Figure 1 —Decision diagram for validation of predictive
models
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obtained with the same strain, previous growth conditions, and
modeling methods but different growth media. Thus, all perfor-
mance evaluations for extrapolation in the current study met the
aforementioned criteria for test data for extrapolation.

B¢ for extrapolation of Model 1, which was developed in broth,
to sBM was 0.981 and to sTM was 1.128 (Table 2). Although B; for
extrapolation to sBM and sTM were acceptable, the RE plot (Fig-
ure 4a) indicated that broth Model 1 provided biased predictions
of A when extrapolated to sBM and sTM. Specifically, Model 1 pro-
vided overly fail-dangerous predictions at short \ (<4 h) and fail-
safe but not overly fail-safe predictions at longer \ (Figure 4a).
Model 1 had an A¢ of 1.225 for sBM and an A; of 1.275 for sTM. pRE
for extrapolation of broth Model 1 were 0.583 for sBM and 0.667 for
sTM (Table 2).

Broth Model 2 when extrapolated to sBM and sTM made fail-safe
predictions at most p,,,, but only 3 RE were outside the acceptable
prediction zone (Figure 4b) and thus, the biased predictions of
Model 2 were not overly fail-safe. B for extrapolation of broth Mod-
el 2 to sBM and sTM were 0.884 and 0.861, respectively (Table 2).
Broth Model 2 had A;0f 1.182 for sBM and 1.178 for sTM and pRE of
0.833 and 0.917 for sBM and sTM, respectively (Table 2).

Models 3 and 4 were developed on sBM and tested for extrapo-
lation to sSTM. Model 3 for \ had a slightly lower B; (1.011 versus
1.050), a higher A (1.190 versus 1.102), and a lower pRE (0.680 ver-
sus 0.820) than Model 4 for ., (Table 2). Most RE that were out-
side the acceptable prediction zone for extrapolation of Model 3 to
sTM were at short A and were fail-dangerous (Figure 4c). Most RE
for ppax that were outside the acceptable prediction zone for extrap-
olation of Model 4 to sTM were fail-dangerous but close to the upper
bound of the acceptable prediction zone (Figure 4d).

There is currently no consensus as to what values of By and A;

constitute a model that provides acceptable predictions of patho-
gen growth in broth or on food. However, for growth rate, B; from
0.700 to 1.150 are considered acceptable (Ross and others 2000). In
the current study, all B for S. Typhimurium growth models were in
this range (Table 2). In general, Agincreases by 0.1 to 0.15 per inde-
pendent variable in the model (Ross and others 2000). Thus, mod-
els with 2 independent variables, such as Models 3 to 6 in the
present study, would be expected to have A; < 1.300 and models
with 3 independent variables, such as Models 1 and 2 in this study,
would be expected to have A; < 1.450. All S. Typhimurium models
had A;below 1.300 (Table 2). In contrast to B; and Ay, pRE was un-
acceptable (that is, <0.700) for 6 of 18 performance evaluations
(Table 2).

A limitation of By and A; for evaluation of model performance is
that criteria for acceptable B; and A; are not consistent with each
other. More specifically, acceptable values for B;are fixed (that is,
0.700 to 1.150) and independent of the number of model variables
and criteria for acceptable B; consider whether predictions err more
in the fail-safe direction. In contrast, acceptable A; are variable
because they are dependent on the number of model variables and
A; does not consider that predictions can err more in the fail-safe
direction. This discrepancy is important because By and A¢ are sup-
posed to work together to provide a complete evaluation of model
performance. A proposed correction is to use the same criteria for
acceptable B;and A;. In other words, if a model has a fail-danger-
ous B;of >1.000, then A;should be <1.150, whereas if a model has a
fail-safe By of = 1.000, then Agshould be <1.300. When this correc-
tion was applied, 3 of 18 evaluations were unacceptable for B;and
A compared with 6 of 18 unacceptable evaluations for pRE (Ta-
ble 2). Thus, even after correction for this limitation of B;and Ay, pRE
was a more sensitive and reliable indicator of model performance

T T T T T T T T T -1.04 T T T T T T T
0 4 8 12 16 20 24 28 32 0.0 02 04 0.? 0.8
Predicted A (h) Predicted Limayx (h7')

———TT— - —— 7
12 16 20 24 0.0 02 04 08 0.8

T —T
0 4 8

Predicted A (h) Predicted [iyax (h™)

Figure 2—Relative error (RE) plots with an acceptable pre-
diction zone from an RE of -0.3 (fail-safe) to 0.15 (fail-dan-
gerous) for comparison of observed and predicted values
of lag time (\) and maximum specific growth rate (p__) of
Salmonella Typhimurium ATCC 14028 for data used in veri-
fication of (a) Model 1, (b) Model 2, (c) Model 3, (d) Model
4, (e) Model 5, and (f) Model 6.
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Figure 3—Relative error (RE) plots with an acceptable pre-
diction zone from an RE of -0.3 (fail-safe) to 0.15 (fail-dan-
gerous) for comparison of observed and predicted values
of lag time (\) and maximum specific growth rate (p ) of
Salmonella Typhimurium ATCC 14028 for data used in
evaluation of interpolation for (a) Model 1, (b) Model 2, (c)
Model 3, (d) Model 4, (e) Model 5, and (f) Model 6.
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than B;and A;. This occurred because of the other limitations of By
and A; that are discussed next.

Another limitation of B;and A as performance factors is the in-
ability to detect some forms of prediction bias such as under pre-
diction in 1 region of the response surface and over prediction in
another region of the response surface (Ross and others 2000). For
example, broth Model 1 had an acceptable B; of 0.981 and an ac-
ceptable A; of 1.225 but an unacceptable pRE of 0.583 (Table 2).
When the RE plot was examined, it was found that broth Model 1
provided overly fail-dangerous predictions at short A (<4 h) and
slightly fail-safe but not overly fail-safe predictions at longer \ (Fig-
ure 4a). Thus, pRE was able to detect a performance problem for
extrapolation of broth Model 1 that was the result of systematic
prediction bias and was not detected by B; and A;. It should be
noted that in contrast to other methods for evaluating systematic
prediction bias (for example, normal distribution of residuals
around zero and the runs test), a defined amount of systematic
prediction bias is acceptable in the methods used here. In other
words, as long as the systematic prediction bias resides mostly with-
in the acceptable prediction zone or within the acceptable range for
B;itis acceptable, as was the case for extrapolation of broth Model
2 to sBM and sTM (Figure 4b).

Another limitation of B; and A;, which are ratios of observed and
predicted values, is that they cannot be calculated for prediction
cases where no growth is predicted by the model and growth is
observed or no growth is observed and the model predicts growth
(Dalgaard and Jorgensen 1998). To illustrate this point, the accept-
able prediction zone method was applied to data used to develop
models for aerobic growth of Escherichia coli 0157:H7 in broth
(Buchanan and others 1993). This dataset contained 25 prediction
cases where no growth was observed but the models predicted
growth. An acceptable B; of 1.087 and an acceptable A; of 1.428 were
obtained for the A model, which had 3 variables and an expected A;
of <1.450 (Figure 5a). Likewise, an acceptable B¢ of 1.000 and an
acceptable A; of 1.298 were obtained for the r model (Figure 5b),
which also had 3 independent variables and an expected A; of
<1.450. However, in this situation, B; and A; overestimate the per-
formance of these models because the 25 no growth prediction

02 04 06 08
Predicted Limay (W)

Predicted A (h)

Figure 4—Relative error (RE) plots with an acceptable pre-
diction zone from an RE of -0.3 (fail-safe) to 0.15 (fail-dan-
gerous) for comparison of observed and predicted values
of lag time (\) and maximum specific growth rate (p__) of
Salmonella Typhimurium ATCC 14028 for data used in
evaluation of extrapolation for (a) Model 1, (b) Model 2, (c)
Model 3, and (d) Model 4.
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cases were excluded from the calculation of B; and A;. In contrast,
PRE provides an accurate assessment of model performance be-
cause pRE considers no growth prediction cases in its calculation of
model performance. In fact, an unacceptable pRE of 0.265 was
obtained for the A model (Figure 5a), and an unacceptable pRE of
0.422 was obtained for the T model (Figure 5b). Thus, in contrast to
B;and Ay, pRE indicated that the models for aerobic growth of E. coli
0157:H7 in broth do not provide acceptable predictions of the data
used to develop them. In other words, the models failed the eval-
uation for verification, which is a prerequisite for validation of the
models (Figure 1). Failure of the E. coli 0157:H7 growth models re-
sulted mainly from the models not predicting well near the growth/
no growth interface as there were 25 no growth prediction cases
where the models predicted growth but growth did not occur. Thus,
it may be possible to repair these models by adding data in the re-
gions of the growth/no growth interface.

A limitation of pRE is that it is unable to distinguish between
models with global (for example, Model 5 for interpolation in Figure
3e) and regional (for example, Model 1 for extrapolation in Figure
4a) performance problems. However, use of pRE and an RE plot
with an acceptable prediction zone was found to provide a reliable
and complete evaluation of model performance. In particular, this
combination was effective at identifying specific regions in the re-
sponse surface where predictions were overly fail-safe or overly
fail-dangerous. Together, pRE and the RE plot form the acceptable
prediction zone method, a new method for evaluating the perfor-
mance of predictive models that overcomes the limitations of B¢
and Ay.
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Figure 5—Relative error (RE) plots with an acceptable pre-
diction zone from an RE of -0.3 (fail-safe) to 0.15 (fail-dan-
gerous) for comparison of observed and predicted values
of (a) lag time (\) and (b) generation time (t) of published
data for Escherichia coli 0157:H7 (Buchanan and others
1993). A, = accuracy factor; B, = bias factor; pRE = pro-
portion of RE in the acceptable prediction zone. By default,
no growth prediction cases fell outside the acceptable
prediction zone and were assigned a value of -1 for graphi-
cal presentation. Here, the no growth prediction cases
(n = 25) resulted from the models predicting growth when
no growth occurred.
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Variation of growth kinetics among strains of a pathogen is an
important factor to consider when evaluating the ability of a model
to extrapolate to an independent set of data obtained with a differ-
ent strain than the 1 used to develop the model (Lebert and others
1998). The growth kinetics of S. Typhimurium ATCC 14028, which
was used to develop the models evaluated in this study, were pre-
viously compared with growth kinetics of other strains of Salmonel-
la (Oscar 1998). At 40 °C in BHI broth, X\ of S. Typhimurium ATCC
14028 was shorter than \ of 5 other strains and not different from A
of 10 other strains, whereas ., Was less than p,,,, of 6 other strains
and not different from p,,, of 9 other strains tested (Oscar 1998). In
general, variation of growth kinetics among strains of a pathogen is
greater under nonoptimal growth conditions (Begot and others
1997). For example, the coefficient of variation for + among
45 strains of Salmonella Enteritidis increases from 4% at the opti-
mal growth temperature of 37 °C to 22% at the suboptimal growth
temperature of 9 °C (Fehlhaber and Kruger 1998).

In the present study, all sets of data used in evaluation of model
performance were obtained using the same strain as that used in
model development so as not to confound the comparison of ob-
served and predicted values. This was important because had a
faster growing strain such as Salmonella Simsbury, with a ., of
0.88/h at 40 °C versus 0.78/h for S. Typhimurium ATCC 14028 (Os-
car 1998), been used to collect test data set for extrapolation broth
Model 2 to sBM, B; for this comparison would have been very close
to 1.000 rather than 0.884. Thus, it would have been falsely con-
cluded that the broth model provided unbiased predictions of Sal-
monella growth on sBM when in fact broth Model 2 on average
overpredicted . by 12%. Of note, Baranyi and others (1999) also
observed that broth models tend to overestimate the growth rate of
pathogens on food.

Previous growth conditions also affect microbial growth kinetics
and if not controlled when collecting test data, could result in a
confounded evaluation of model performance. The most well-doc-
umented effect of previous growth conditions on microbial growth
kinetics is the effect of shifts in temperature on \. Mellefont and
Ross (2003) reported that relative \ increased in a nonlinear manner
when E. coli SB1 grown at a previous temperature of 44.4 °C were
downshifted to growth temperatures from 44.4 °C to 10 °C. Bucha-
nan and Klawitter (1991) found that \ of Listeria monocytogenes at
5 °C increases from 37 to 50 h when previous growth temperature
increases from low (5 °C to 28 °C) to high (37 °C to 42 °C) tempera-
tures. Likewise, increasing previous growth temperature from 5 °C
to 35 °Cincreases A at 5 °C from 12 to 354 h or from 4.5 to 18 h, de-
pending on the strain of Aeromonas hydrophila tested (Hudson
1993). In contrast, upshifts and downshifts from previous growth
temperatures of 16 °C to 34 °C to subsequent growth temperatures
of 16 °C to 34 °C in challenge studies with sBM and S. Typhimurium
ATCC 14028 did not alter \ (Oscar 1999b). In all the aforementioned
studies, p,,, was not affected by previous growth conditions. Con-
sequently, in the current study, data used in evaluating the perfor-
mance of models were collected using the same previous growth
conditions so as not to confound the comparison of predicted and
observed values for A.

The primary model used to fit the growth kinetic data also affects
the values for A and p.,,,, and thus, the comparison of observed and
predicted values. Buchanan and others (1997) reported that the 3-
phase linear model provided shorter A and higher p,,,, than the
Gompertz and Baranyi models when fit to the same growth data for
E. coli 0157:H7 in broth. The differences in \ and ., among the 3-
phase linear, Gompertz and Baranyi models occur because the
models make different assumptions and thus, provide different
estimates of the growth parameters (Buchanan and others 1997).
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For example, ., in the 3-phase linear model is the slope of the line
through the assumed linear exponential growth phase, whereas
Lmax 1S the slope of the line that is tangent to the inflection point in
the Gompertz model, which does not assume constant growth rate
throughout the exponential phase. Thus, although all 3 models fit
the same growth data well, they provide slightly different values for
\ and p,., (Buchanan and others 1997). Consequently, it is impor-
tant to compare only A and p.,,,, obtained with the same primary
growth model when evaluating the performance of a model or the
performance evaluation will be confounded. In the present study,
the 2-phase linear primary model was used to fit all growth curves
used in model development and performance evaluation so as not
to confound the comparison of observed and predicted values of A
and pp -

The decision diagram in Figure 1 and the acceptable prediction
zone method were used to determine whether the models evaluat-
ed provided valid predictions of S. Typhimurium growth. All model
evaluations met the criteria for test data as indicated by a “yes”
response to questions 4 and 7 in Figure 1 (Table 3). Thus, no models
failed validation for this reason. However, some models had unac-
ceptable performance (that is, pRE <0.700) as indicated by a “no”
response to questions 2 or 8 in Figure 1 (Table 3). Specifically, Mod-
els 3 and 5 failed verification and by default failed validation,
whereas Model 1 failed validation for extrapolation to sBM and
sTM. Models 1, 2, 4, and 6 were validated for interpolation, and
Models 2 and 4 were validated for extrapolation. Interestingly,
Model 3 failed verification but had an acceptable pRE for interpo-
lation. Thus, it may be possible to “repair” this model by adding the
test data for interpolation to the data used for model development
and refitting the secondary model. Overall, the evaluation in Table
3 indicated that models can be developed and validated using the
criteria established in the current study. Thus, the criteria are not
overly restrictive.

The use of the terms verification and validation in Figure 1 is
controversial because in predictive microbiology, these terms are
used as synonyms, whereas in Figure 1 and other fields of science
they are not. More specifically, verification in Figure 1 is the success-
ful outcome of the performance evaluation process where the mod-
el predictions were compared with the data used in model devel-
opment (that is, dependent data). In contrast, validation in Figure
1 is the successful outcome of the performance evaluation process
where model predictions were compared with data that was not
used in model development (that is, independent data). Although
use of the terms verification and validation in the current study
may be at odds with their current usage in predictive microbiology,
separate usage of these terms has the advantage of providing an
easy and needed distinction between the 2 types of evaluation
processes, that is, 1 with dependent data and 1 with independent
data. Furthermore, the use of the terms here is consistent with their
usage in other scientific disciplines.

Conclusions

Een when proper methods are used for collecting test data to

valuate model performance and acceptable values of B;and A¢
are obtained, this is not sufficient for validation of predictive models
because B; and Ay have important limitations that can result in
inaccurate assessments of model performance and improper val-
idation of models. In contrast, the acceptable prediction zone
method and decision diagram for validation developed here pro-
vide a complete evaluation of model performance that overcomes
limitations of B; and A; and provides an accurate assessment of
model performance and validation of models even in situations of
systematic prediction bias and no growth prediction cases.
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