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Abstract

A single strain (ATCC 700408) of Salmonella typhimurium DT104 was used to investigate and model growth from a low

(1.12 log10mpn g�1) and high (3.7 log10 cfu g
�1) initial density on ground chicken with a natural microflora. Kinetic data for growth of

the pathogen on ground chicken were fit to a primary model to determine lag time (l), maximum specific growth rate (m) and maximum

population density (Nmax). Secondary models for l, m and Nmax, as a function of temperature (10–40 1C), were developed and compared

among initial densities. Variation of pathogen growth among replicates (n ¼ 4 or 5) was higher at 10–18 1C than at 22–40 1C and was

higher for Nmax than l and m. Prediction problems were observed when secondary models developed with one initial density were used to

predict l, m and Nmax from the other initial density, especially at 10–18 1C and for Nmax. These results indicated that variation of growth

among replicate challenge studies and initial density are important factors to consider when developing predictive models for growth of

S. typhimurium DT104 on ground chicken with a natural microflora.
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1. Introduction

Mathematical models that predict growth of pathogens
on food are usually developed with sterile broth because
enumeration of pathogens in food with natural microflora
is difficult (McClure et al., 1994). However, models
developed with sterile broth do not always provide reliable
predictions of pathogen growth on non-sterile and non-
homogeneous food (Ross, 1996). Thus, there is a need to
develop models for growth of pathogens on food with
natural microflora.

One approach to modeling pathogen growth on food
with natural microflora is to use a strain with a
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physiological characteristic, such as antibiotic resistance,
fluorescence or bioluminescence, that can distinguish it
from other microorganisms (Jansson, 2003). However,
marker strains that are generated by mutation, selection or
genetic engineering must be validated before development
of models because sometimes they display growth that is
different from the parent strain (Oscar, 2003; Rang et al.,
2003; Oscar et al., 2006).
Widespread use of antibiotics in animal food production

has raised concern about emergence of antibiotic-resistant
bacteria and their impact on public health (Snary et al.,
2004). Some pathogen strains are resistant to multiple
antibiotics and have caused outbreaks (Akkina et al.,
1999). For example, two multiple antibiotic-resistant
strains of Salmonella typhimurium definitive phage type
104 (DT104) were responsible for four outbreaks in three
states that involved three veterinary clinics, one animal
shelter and 45 cases of salmonellosis among employees,
clients and companion animals (Wright et al., 2005).
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Although multiple antibiotic-resistant strains of patho-
gens that occur in nature are alarming, predictive micro-
biologists could take advantage of these strains to develop
better models. In fact, multiple antibiotic-resistant strains
generated by selection in the laboratory have been used to
investigate and model growth of Salmonella in minced beef
(Mackey and Kerridge, 1988). However, use of multiple
antibiotic-resistant strains that occur in nature, such as S.

typhimurium DT104, to develop models for growth of
pathogens on food with natural microflora has not been
reported.

Poultry is a primary vector of Salmonella transmission to
humans (Bryan and Doyle, 1995). The US Department of
Agriculture reported that 45% of retail samples of ground
chicken contain Salmonella and that the average level of
contamination is 0.1 log10mpn g�1 (Anonymous, 1996).
Predictive models are normally developed with a high
initial density (3–6 log10 cfuml�1) of the test pathogen.
However, Oscar (2005a) reported that a predictive model
developed with a high initial density (4.8 log10 cfu g

�1) of
Salmonella typhimurium did not provide acceptable predic-
tions of growth from a lower initial density
(0.8 log10mpn g�1) on sterile chicken. Consequently, the
objective of the current study was to investigate and model
growth of S. typhimurium DT104 from low
(1.12 log10mpn g�1) and high (3.7 log10 cfu g

�1) initial
density on ground chicken with a natural microflora.

2. Materials and methods

2.1. Bacterial strain and preparation

Stock cultures of Salmonella typhimurium DT104
(ATCC 700408, American Type Culture Collection,
Manassas, VA, USA) were maintained at �70 1C in brain
heart infusion broth (Becton Dickinson, Sparks, MD,
USA) that contained 15% glycerol (Sigma Chemical
Company, St. Louis, MO, USA). On a weekly basis,
pathogen cells for inoculation of ground chicken were
prepared by adding stock culture (5 ml) to sterile brain heart
infusion broth (5ml) in an Erlenmeyer flask (25-ml) sealed
with a foam plug followed by incubation at 30 1C and 150
orbits per minute (opm) for 23 h. Immediately before
inoculation, cultures were serially diluted in sterile buffered
peptone water (Becton Dickinson).

2.2. Challenge studies with ground chicken

Boneless chicken breast meat was purchased weekly
from local retail outlets. The chicken was ground through
an w inch plate using an electric meat grinder (The Sausage
Maker, Buffalo, NY, USA) and divided into 1-g portions
for challenge studies.

Diluted culture (5 ml) of S. typhimurium DT104 was
inoculated onto ground chicken portions for an average
initial pathogen density of 1.12 log10 most probable
number (mpn) g�1 or 3.7 log10 colony forming units
(cfu) g�1. Inoculated samples were incubated at 10, 12,
14, 18, 22, 26, 30, 34 or 40 1C. At selected times of
incubation, a 1-g portion was homogenized (model 80
stomacher blender, Seward, London, UK) in sterile
buffered peptone water (9ml) for pathogen enumeration.
Four growth curves were conducted per temperature for
the low initial density and five growth curves per
temperature were conducted for the high initial density.
Two growth curves at different temperatures were con-
ducted per week so that different batches of ground
chicken and inoculation culture were used for each
combination of initial density and temperature.

2.3. Pathogen enumeration

Homogenized samples of ground chicken that were
inoculated with S. typhimurium DT104 were serially diluted
in sterile buffered peptone water and spiral plated (Whitley
Automatic Spiral Plater, Microbiology International, Fre-
derick, MD, USA) onto xylose lysine (XL) agar medium
(Becton Dickson) that contained 25mM N-[2-hydroxyethyl]-
piperazine-N0-[2-ethanesulfonic acid] or HEPES (H) and
25mgml�1 of the following antibiotics from Sigma: chlor-
amphenicol (C), ampicillin (A), tetracycline (T) and strepto-
mycin (S); hereafter, referred to as XLH-CATS. The
buffering agent HEPES was included to prevent formation
of yellow acid zones around the black colonies of S.

typhimurium DT104 that formed on XLH-CATS. The
yellow acid zones interfered with automated counting of
colonies (ProtoCol Automated Colony Counter, Microbiol-
ogy International), which was performed after incubation of
spiral plates for 24h at 38 1C.

Salmonella typhimurium DT104 was also enumerated
using a 3� 4 most probable number method with a
detection range from 0 to 3.28 log10mpn g�1. The mpn
tubes were prepared by serial dilution of homogenized
samples in sterile buffered peptone water. After incubation
of mpn tubes for 24 h at 38 1C, a 2 ml sample from the mpn
tubes was spot inoculated onto XLH-CATS. After 24 h of
incubation at 38 1C, the mpn assay on XLH-CATS was
read and recorded. The method of Thomas (1942) was used
to calculate the mpn results.

2.4. Primary modeling

Viable count (log10 cfu g
�1) and mpn data

(log10mpn g�1) were graphed as a function of time and
were fit (Prism version 4.0, GraphPad Software, San
Diego, CA, USA) to the modified Gompertz model
(Zwietering et al., 1990):

NðtÞ ¼ N0 þ ðNmax �N0Þ

� ½expð� expðð2:718 m=ðNmax �N0ÞÞðl� tÞ þ 1ÞÞ�,

where N(t) is pathogen density (log10mpn or cfu g�1) at
time t (h), N0 is initial pathogen density (log10mpn or
cfu g�1), Nmax is maximum population density (log10mpn
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or cfu g�1), m is maximum specific growth rate (h�1) and l
is lag time (h).
2.5. Secondary modeling

Natural logarithm transformations (ln) of l and m from
primary modeling were graphed as a function of tempera-
ture (T, 1C) and were fit (Prism software) to a quadratic
polynomial model:

ln l or ln m ¼ aþ bT þ cT2,

where a, b and c are regression coefficients.
Natural logarithm transformations of Nmax were

graphed as a function of temperature and were fit to an
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Fig. 1. Representative primary model fits for growth of Salmonella typhimur

incubated at (A) 10 1C, (B) 14 1C, (C) 18 1C, (D) 22 1C, (E) 30 1C or (F) 40 1C
asymptote model (Wijtzes et al., 1995):

ln Nmax ¼ ½aðT � TminÞ�=½ðT � T sub minÞ�,

where a is a regression coefficient, Tmin the minimum
growth temperature (1C) and Tsubmin the temperature (1C)
just below Tmin.
2.6. Evaluation of model performance

Goodness-of-fit of primary and secondary models was
evaluated using the coefficient of determination (R2).
Prediction bias and accuracy of secondary models for data
used in model development (dependent data) and for data
not used in model development (independent data) were
evaluated using the acceptable prediction zone method
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(Oscar, 2005a, b). Prediction errors (PE) for individual
prediction cases were calculated:

PE for l ð%Þ ¼ ½ðpredicted� observedÞ=predicted� � 100,

PE for m ð%Þ ¼ ½ðobserved� predictedÞ=predicted� � 100,

PE for Nmax ðlog10 mpn or cfu g�1Þ ¼ ðobserved� predictedÞ,

such that PE less than zero represented fail-safe predictions
and PE greater than zero represented fail-dangerous
Table 2

Statistical summary of primary modeling for growth of Salmonella typhimurium

lag time (h)

Initial density Temperature (1C) n Mean Standard

1.12 log10mpng�1 10 3 21.90 12.61

12 4 22.26 9.34

14 4 11.41 8.94

18 4 4.98 2.12

22 4 5.65 1.52

26 4 3.50 2.15

30 4 2.85 1.08

34 4 2.25 0.34

40 4 1.91 0.35

3.70 log10 cfu g
�1 10 5 36.18 5.17

12 5 27.61 15.99

14 5 27.22 17.21

18 5 12.73 6.68

22 5 4.80 1.23

26 5 2.46 0.87

30 5 1.99 0.57

34 5 1.39 0.63

40 5 1.66 0.57

Table 1

Statistical summary of primary modeling for growth of Salmonella typhimurium

coefficient of determination (R2)

Initial density Temperature (1C) n Mean Standard

1.12 log10mpng�1 10 3 0.7780 0.1411

12 4 0.9373 0.0315

14 4 0.9694 0.0226

18 4 0.9652 0.0117

22 4 0.9922 0.0038

26 4 0.9929 0.0043

30 4 0.9949 0.0035

34 4 0.9897 0.0039

40 4 0.9964 0.0017

3.70 log10 cfu g
�1 10 5 0.9493 0.0418

12 5 0.9207 0.0751

14 5 0.9875 0.0066

18 5 0.9894 0.0160

22 5 0.9905 0.0125

26 5 0.9902 0.0084

30 5 0.9951 0.0035

34 5 0.9922 0.0098

40 5 0.9955 0.0006
predictions. Model performance was quantified using the
percentage of prediction errors (%PE) in an acceptable
prediction zone that was twice as wide in the fail-safe direction
as in the fail-dangerous direction. Widths of acceptable
prediction zones are based on an assessment of experimental
error associated with determining individual growth para-
meters. Width of the acceptable prediction zone for evaluation
of model performance were �60% to 30% for l, �30% to
15% for m and �1 to 0.5 log10mpn or cfug�1 for Nmax.
Presence of regional prediction problems was evaluated

by visual examination of PE plots and by calculating %PE
DT104 on ground chicken as a function of initial density and temperature:

deviation Coefficient of variation Minimum Maximum

57.6 8.15 32.91

41.9 11.40 32.09

78.3 2.58 21.35

42.7 3.00 7.55

26.9 4.23 7.39

61.6 1.14 6.34

37.8 1.30 3.60

14.9 1.93 2.71

18.5 1.52 2.37

14.3 29.41 42.12

57.9 19.45 56.14

63.2 11.40 46.74

52.5 6.70 22.51

25.6 3.91 6.95

35.3 1.46 3.85

28.6 1.47 2.85

45.6 0.49 2.10

34.5 1.12 2.53

DT104 on ground chicken as a function of initial density and temperature:

deviation Coefficient of variation Minimum Maximum

18.1 0.6182 0.8855

3.4 0.9019 0.9781

2.3 0.9391 0.9876

1.2 0.9558 0.9814

0.4 0.9885 0.9975

0.4 0.9868 0.9967

0.4 0.9896 0.9967

0.4 0.9861 0.9951

0.2 0.9947 0.9982

4.4 0.8881 0.9936

8.2 0.8243 0.9961

0.7 0.9785 0.9970

1.6 0.9611 0.9990

1.3 0.9685 0.9990

0.8 0.9761 0.9974

0.4 0.9906 0.9980

1.0 0.9747 0.9982

0.1 0.9948 0.9963
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for low (10–18 1C) and high (22–40 1C) temperatures. For
clarity of presentation, PE greater than 100% or less than
�100% were graphed as 100% and �100%, respectively.

3. Results

3.1. Primary modeling

Growth of S. typhimurium DT104 from low and high
initial density on ground chicken followed a sigmoid
Table 3

Statistical summary of primary modeling for growth of Salmonella typhimurium

maximum specific growth rate (h�1)

Initial density Temperature (1C) n Mean Standard

1.12 log10mpng�1 10 4 0.026 0.019

12 4 0.061 0.016

14 4 0.071 0.021

18 4 0.111 0.012

22 4 0.305 0.020

26 4 0.465 0.097

30 4 0.682 0.083

34 4 0.831 0.026

40 4 1.025 0.091

3.70 log10 cfu g
�1 10 5 0.031 0.014

12 5 0.046 0.019

14 5 0.077 0.034

18 5 0.120 0.054

22 5 0.270 0.059

26 5 0.425 0.062

30 5 0.604 0.087

34 5 0.723 0.077

40 5 0.779 0.180

Table 4

Statistical summary of primary modeling for growth of Salmonella typhimurium

maximum population density (log10mpn or cfu g�1)

Initial density Temperature (1C) n Mean Standard

1.12 log10mpng�1 10 4 1.83 0.19

12 4 3.62 1.04

14 4 6.01 1.63

18 4 5.51 0.84

22 4 7.31 0.82

26 4 7.84 0.67

30 4 8.86 0.99

34 4 9.27 0.55

40 4 9.55 0.20

3.70 log10 cfu g
�1 10 5 5.02 0.45

12 5 5.89 1.28

14 5 7.28 1.19

18 5 8.43 1.60

22 5 9.04 0.86

26 5 9.65 0.46

30 5 9.52 0.73

34 5 9.75 0.72

40 5 9.69 0.41

aThe coefficient of variation was calculated using Nmax values expressed as

assessment of the variation of Nmax among replicate challenge studies.
pattern (Fig. 1). Goodness-of-fit of the primary model to
the mpn and cfu data was affected by initial density and
temperature (Table 1). Lower R2 values were observed at
lower temperatures (10–18 1C) than at higher temperatures
(22–40 1C). In addition, lower R2 values were observed for
growth from the lower initial density than the higher initial
density at lower but not higher temperatures. Goodness-of-
fit of the primary model was lowest and most variable
among replicates for the data collected at 10 and 12 1C.
Regardless of initial density, R2 values were high (40.96)
DT104 on ground chicken as a function of initial density and temperature:

deviation Coefficient of variation Minimum Maximum

74.6 0.000 0.043

25.7 0.039 0.075

29.1 0.056 0.102

10.9 0.101 0.127

6.6 0.287 0.334

21.0 0.391 0.606

12.1 0.565 0.758

3.1 0.801 0.862

8.9 0.949 1.156

45.9 0.018 0.051

41.6 0.019 0.067

43.6 0.035 0.119

44.7 0.061 0.186

21.9 0.187 0.333

14.6 0.374 0.513

14.4 0.555 0.759

10.7 0.647 0.832

23.1 0.517 0.947

DT104 on ground chicken as a function of initial density and temperature:

deviation Coefficient of variationa Minimum Maximum

50.4 1.67 2.10

171.6 2.70 4.93

194.0 4.12 8.04

178.4 4.93 6.71

136.9 6.43 8.25

89.3 6.95 8.38

167.2 7.73 10.07

90.9 8.52 9.82

46.7 9.38 9.79

109.9 4.61 5.67

221.4 4.94 8.12

154.0 5.85 8.68

148.9 6.12 10.04

126.9 8.21 9.97

60.1 8.87 9.99

84.5 8.58 10.09

64.2 8.49 10.20

71.2 9.19 10.09

mpn or cfu g�1 and not as log10mpn or cfu g�1 so as to provide a better
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and variation low (o1.5%) for primary model fits to data
obtained at higher temperatures.

Variation of l (Table 2) and m (Table 3) among replicate
challenge studies was, in most cases, higher at 10–18 1C
than at 22–40 1C, whereas variation of Nmax (Table 4)
among replicate challenge studies was, in most cases,
higher at 12–22 1C than at 10 1C and 26–40 1C. Among
growth parameters, Nmax showed the highest variation
among replicate challenge studies followed by l and then m.
These results demonstrated that variation of l, m and Nmax

among replicate challenge studies was not constant as a
function of temperature.
3.2. Secondary modeling

Because variation of growth parameters was not
constant as a function of temperature, secondary models
were developed with natural logarithm transformations of
l, m and Nmax to stabilize model variance. The R2 values for
the secondary model fits (Table 5) indicated that the
models had high goodness-of-fit for mean values of l, m
and Nmax but lower goodness-of-fit for replicate values of
the growth parameters. The difference in R2 values between
replicate and mean values was highest for l, lowest for m,
and intermediate for Nmax.

Graphs of secondary model fits to the growth parameter
data indicated that initial density altered growth of S.

typhimurium DT104 on ground chicken with Nmax being
affected more than l and m (Fig. 2). The effect of initial
Table 5

Statistical summary of secondary modeling for lag time (l), maximum specifi

typhimurium DT104 on ground chicken: comparison of fits to replicate and m

Secondary model Initial density Model

parameter

Replicate

Best-fit

value

Quadratic Polynomial 1.12 log10mpn g�1 a 4.856

ln l b �0.2165

c 0.00282

3.70 log10 cfu g
�1 a 6.521

b �0.3140

c 0.003961

Quadratic Polynomial 1.12 log10mpng�1 a �5.853

ln m b 0.2776

c �0.003248

3.70 log10 cfu g
�1 a �6.325

b 0.3131

c �0.004026

Asymptote 1.12 log10mpng�1 a 2.396

lnNmax Tmin 9.175

Tsub min 6.740

3.70 log10 cfu g
�1 a 2.433

Tmin 6.606

Tsub min 4.799
density on Nmax was greatest at 10 1C and then decreased in
magnitude as temperature increased until there was no
effect of initial density on Nmax at 40 1C (Fig. 2c). Smaller
effects of initial density on l and m were observed. Growth
from a lower initial density resulted in shorter l at
10–18 1C, similar l at 22 and 26 1C and longer l at
30–40 1C (Fig. 2a). Maximum specific growth rate was
slightly higher at all temperatures when growth occurred
from the lower initial density with the largest difference in
m observed at 40 1C (Fig. 2b).
3.3. Evaluation of secondary model performance

Table 6 shows results of the acceptable prediction zone
analyses for the low initial density and high initial density
models for replicate and mean values of l, m and Nmax.
Results for dependent data indicate how well the model
predicted the growth parameter data used in model
development (goodness-of-fit). Results for independent data
indicate how well the model predicted the growth parameter
data collected with the other initial density (extrapolation).
Plots of PE for replicate (Fig. 3) and mean (Fig. 4) data as
well as %PE for lower (10–18 1C) and higher (22–40 1C)
temperatures (Table 6) evaluated the models for regional
prediction problems, which were observed.
3.3.1. Dependent data

Model performance (goodness-of-fit) was better for
higher (22–40 1C) temperatures than lower (10–18 1C)
c growth rate (m) and maximum population density (Nmax) of Salmonella

ean values

Mean

795%

Confidence

Interval

R2 Best-fit

value

795%

Confidence

Interval

R2

1.257 0.7003 5.046 1.158 0.9587

0.1138 �0.2188 0.1065

0.002283 0.00276 0.002155

0.8435 0.8971 6.606 1.328 0.9735

0.07760 �0.3142 0.1221

0.001570 0.003947 0.002471

0.4985 0.9703 �6.159 0.936 0.9867

0.0452 0.3019 0.0860

�0.000906 �0.003682 0.001742

0.6655 0.9294 �6.131 0.4620 0.9963

0.06125 0.3025 0.04250

0.00124 �0.003874 0.0008600

0.1585 0.9066 2.378 0.2395 0.9682

0.4910 9.223 0.7265

1.445 6.979 2.113

0.1350 0.7988 2.424 0.1065 0.9830

2.214 6.813 1.733

3.425 5.150 2.652
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Fig. 2. Secondary model fits to natural logarithm transformations (ln) of
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temperatures and for mean than replicate data (Table 6).
The average %PE value for higher temperatures was 80%
for replicate data and 95% for mean data as compared to
46% for replicate data and 83% for mean data at lower
temperatures. The PE plots in Fig. 3 for dependent data
demonstrate that at lower temperatures, more PE were
outside the acceptable prediction zones for l, m and Nmax

than at higher temperatures.
When dependent data for all temperatures (10–40 1C)

were evaluated together, the average %PE for replicate
data was 65% as compared to 90% for mean data. In Fig.
4, PE plots for mean data show that very few PE for
dependent data were outside the acceptable prediction
zones for the growth parameters. Similar to the R2 values,
the acceptable prediction zone analyses indicated high
goodness-of-fit of the models to mean data and lower
goodness-of-fit to replicate data.
3.3.2. Independent data

The secondary models for low and high initial density
were evaluated for the ability to predict the growth
parameter values obtained with the other initial density
(independent data). Similar to dependent data, model
performance (extrapolation) was better for higher
(22–40 1C) temperatures than lower (10–18 1C) tempera-
tures and for mean than replicate data (Table 6). The
average %PE for higher temperatures were 51% for
replicate data and 63% for mean data as compared to
29% for replicate data and 38% for mean data at lower
temperatures. The PE plots for independent data in Fig. 3
demonstrate that the number of PE outside the acceptable
prediction zone decreased as temperature increased and
that more PE for Nmax were outside the acceptable
prediction zone than for l and m, especially at lower
temperatures. In fact, the average %PE for higher
temperatures were 64% for l, 51% for m and 38% for
Nmax as compared to 44% for l, 38% for m and 6% for
Nmax at lower temperatures.
When independent data for all temperatures (10–40 1C)

were evaluated together, the average %PE for replicate
data was 41% as compared to 52% for mean data.
The average %PE for lower temperatures were 25%
for l, 88% for m and 0% for Nmax as compared to
90% for l, 70% for m and 30% for Nmax at higher
temperatures. These results and the PE plots for mean
data in Fig. 4 for independent data demonstrate that
initial density had the largest effect on Nmax followed by l
at lower temperatures and then m, which was not
greatly affected by initial density at any temperature
investigated.

4. Discussion

4.1. Variation of growth among replicate challenge studies

Variation of l among replicate challenge studies was
significant and could have resulted from variation of the
previous history of the pathogen (Buchanan and Klawitter,
1991; Hudson, 1993). However, in the present study,
growth conditions of the inoculation culture were tightly
controlled. In fact, the same batch of stock culture and the
same batch of sterile brain heart infusion broth were used
to prepare all inoculation cultures and standard growth
conditions for the inoculation culture were used through-
out the study. Moreover, previous studies (Oscar, 1999a–c)
indicate that subsequent growth of Salmonella in sterile
broth or on sterile chicken is not affected by changes in
previous pH (5.7–8.6), previous temperature (16–34 1C) or
previous sodium chloride level (0.5–4.5%) of the inocula-
tion culture. Thus, variation of previous history of the
pathogen was not a likely explanation for the observed
variation of l of S. typhimurium DT104 among replicate
challenge studies.
Similar to results of this study, growth of Salmonella

in enrichment cultures of food samples with natural
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Table 6

Evaluation of performance of secondary models for predicting lag time (l), maximum specific growth rate (m) and maximum population density (Nmax) of

Salmonella typhimurium DT104 on ground chicken as a function of initial density and temperature: percentage of prediction errors (%PE) in the

acceptable prediction zone for replicate and mean values of the growth parameters

Secondary model Initial density Dataseta Replicate Mean

10–18 1C 22–40 1C 10–40 1C 10–18 1C 22–40 1C 10–40 1C

l 1.12 log10mpn g�1 Dependent 38 80 61 75 100 89

Independent 38 65 53 25 100 67

3.70 log10 cfu g
�1 Dependent 65 88 78 100 100 100

Independent 50 64 58 25 80 56

m 1.12 log10mpn g�1 Dependent 44 85 67 75 100 89

Independent 56 30 42 75 40 56

3.70 log10 cfu g
�1 Dependent 25 64 47 100 100 100

Independent 20 72 49 100 100 100

Nmax 1.12 log10mpn g�1 Dependent 56 60 58 50 100 78

Independent 6 55 33 0 60 30

3.70 log10 cfu g
�1 Dependent 50 100 78 100 100 100

Independent 5 20 13 0 0 0

aDependent data were growth parameter data used in model development, whereas independent data were data for growth parameters from the other

initial density. Thus, %PE values for dependent data evaluate goodness-of-fit of the model, whereas %PE values for independent data evaluate how well

the model predicts growth from the other initial density.
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microflora is variable among batches (Rhodes et al., 1985)
with Nmax of Salmonella in buffered peptone water ranging
from 3 to 7 log10 cfuml�1 (Beckers et al., 1987). This
variation in growth of Salmonella among food sample
enrichments is attributed to variations in numbers and
types of native microorganisms (Beckers et al., 1987). In a
comparison of enrichments with and without natural
microflora, Stecchini et al. (1988) found that the natural
microflora reduced growth rate and total growth of
Salmonella. Thus, variation of natural microflora among
batches of ground chicken is a potential explanation for the
observed variation of l, m and Nmax among replicate
challenge studies in this research.

The natural microflora on freshly processed chickens
has been characterized and includes gram-positive
rods, Enterobacteriaceae, Micrococci, Streptococci,
Flavobacteria, Lactobacilli, Aeromonas, Moraxella, Acine-

tobacter, Brochothrix thermosphacta and Pseudomonas

(Schmitt et al., 1988). Post-processing storage conditions
determine which species and strains predominate and
which genes are expressed by the native microflora. For
example, at 30 1C, poultry strain F-21 of Pseudomonas

fluorescens produces a pigment that inhibits growth of
Salmonella, whereas, at 37 1C, this strain does not produce
the pigment or inhibit growth of Salmonella (Oblinger and
Kraft, 1970). In the current study, variation of S.

typhimurium DT104 growth among replicate challenge
studies was higher at 10–18 1C than at 22–40 1C. It is
interesting to speculate that the higher variation of S.

typhimurium DT104 growth at lower temperatures could be
caused by batch-to-batch variation in the levels or activity
of specific inhibitory strains in the natural microflora of
ground chicken.
4.2. Effect of initial density on pathogen growth

In sterile broth, growth of food pathogens is usually
independent of initial density and Nmax is usually not
greatly affected by growth conditions (Buchanan and
Phillips, 1990; Buchanan et al., 1993). Consequently,
models developed with one initial density can be extra-
polated to other initial densities and provide reliable
predictions of l, m and Nmax. A different situation was
encountered in the present study for growth of S.

typhimurium DT104 on ground chicken with a natural
microflora. When models developed with one initial density
were used to predict growth parameters obtained with the
other initial density, unacceptable predictions of l, m and
Nmax were obtained. These results indicate that in contrast
to modeling growth in sterile broth, initial density is an
important factor to consider when modeling growth of S.

typhimurium DT104 on ground chicken with a natural
microflora. This conclusion is consistent with previous
results with sterile chicken (Oscar, 2005a) but does not
agree with findings in minced beef incubated at 10–35 1C
where initial density (1.6 versus 4 log10 cfu g

�1) did not alter
l, m or Nmax of a three strain cocktail of Salmonella

(Mackey and Kerridge, 1988).

4.3. Evaluation of model performance

The prediction bias (Bf) and accuracy (Af) factors are the
most widely used method for evaluating performance of
predictive models (Ross, 1996). However, when compared
to the acceptable prediction zone method, Bf and Af were
found less effective at detecting prediction problems in
published growth models for Salmonella and Escherichia
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Fig. 3. Acceptable prediction zone analysis of prediction errors (PE) for dependent (J) and independent (K) data (replicate) for (A) the low initial density

model for lag time (l), (B) the high initial density model for l, (C) the low initial density model for maximum specific growth rate (m), (D) the high initial

density model for m, (E) the low initial density model for maximum population density (Nmax) and (F) the high initial density model for Nmax.
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coli O157:H7 (Oscar, 2005b). Consequently, the acceptable
prediction zone method rather than Bf and Af were used to
evaluate model performance in this study.

The criterion for acceptable performance of a model in
the acceptable prediction zone method is that 70% or more
of the predictions errors should be in the acceptable
prediction zone for the growth parameter (Oscar, 2005b).
The acceptable prediction zone is wider in the fail-safe
direction than in the fail-dangerous direction because
greater prediction error can be tolerated in the fail-safe
direction when models are used to predict food safety
(Ross et al., 2000). Different acceptable prediction zones
are used for evaluating performance of secondary models
for l, m and Nmax because the experimental error for
determining the individual growth parameters differs
(Oscar, 2005a). In the current study, all secondary models
for l, m and Nmax had %PE of 70% or higher when mean
values were evaluated. However, when replicate values
were evaluated, only the high initial density models for l
and Nmax had %PE of 70% or more. Failure of the other
models to provide acceptable predictions of the growth
parameters was primarily due to unacceptable performance
at the lower incubation temperatures of 10–18 1C, where
variation of growth parameters among replicates was
highest. Including an independent variable in the model
in addition to temperature that can help explain the
variation of growth among replicates at lower temperatures
might result in secondary models with acceptable perfor-
mance for predicting replicate values of l, m and Nmax. For
example, adding an independent variable for the initial
level of a general group (total aerobes), specific genus
(Pseudomonas) or strain (P. fluorescens F-21) of the native
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Fig. 4. Acceptable prediction zone analysis of prediction errors (PE) for dependent (J) and independent (K) data (mean) for (A) the low initial density

model for lag time (l), (B) the high initial density model for l, (C) the low initial density model for maximum specific growth rate (m), (D) the high initial

density model for m, (E) the low initial density model for maximum population density (Nmax) and (F) the high initial density model for Nmax.

T.P. Oscar / Food Microbiology 24 (2007) 640–651 649
microflora or activity of an anti-Salmonella compound
produced by the native microflora, such as the inhibitory
pigment of P. fluorescens F-21 (Oblinger and Kraft, 1970),
might improve the ability of the secondary models to
predict the variation of pathogen growth among replicate
batches of ground chicken.

4.4. S. typhimurium DT104 (ATCC 700408) as a surrogate

for other Salmonella

An accomplishment of the present study was the
successful modeling of Salmonella growth on ground
chicken with a natural microflora using a strain
(S. typhimurium DT104 ATCC 700408) that occurs in
nature. Modeling was accomplished by taking advantage
of the strain’s natural resistance to multiple antibiotics and
its selective growth requirements. Agar plates with selective
ingredients including multiple antibiotics were incubated at
an optimal growth temperature (38 1C) for the pathogen
and were observed to be free of native microflora
throughout the study, which made it easy to enumerate
the pathogen after inoculation onto ground chicken. A
non-selective medium with multiple antibiotics was not
used because it was previously demonstrated that such an
approach did not suppress growth of native food micro-
organisms enough to allow enumeration of inoculated
pathogens (Blackburn and Davies, 1994).
Although it is possible that indigenous S. typhimurium

DT104 could be present in ground chicken and inflate mpn
and cfu values, there was no evidence (outliers) of this
in the current study. The use of a small portion size (1-g)
and the reported low prevalence of S. typhimurium

DT104 on chicken (Antunes et al., 2003) could account
for these observations. In fact, in a separate study (Oscar,
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unpublished data), when samples of chicken thigh skin
(2.83 cm2) were incubated in sterile buffered peptone water
for 24 h at 38 1C followed by inoculation and incubation on
XLH-CATS, zero of 100 samples were positive for
Salmonella.

There are over 2000 serotypes and many more strains of
Salmonella. Which serotype or strain to use in model
development is an important consideration as variation of
growth among Salmonella has been observed (Fehlhaber
and Kruger, 1998; Oscar, 2000). Before selecting the strain
of S. typhimurium DT104 used in this study to develop
predictive models, its growth kinetics on sterile chicken at
10–40 1C were compared and found to be similar to those
of S. typhimurium ATCC 14028 (Oscar, unpublished data).
The latter strain has been used to model growth of
Salmonella (Thayer et al., 1987; Oscar, 1999c) and has
been shown to have similar growth kinetics as other strains
of Salmonella from chicken (Oscar, 1998). Thus, the strain
used in this study was considered an appropriate surrogate
strain for modeling Salmonella growth on ground chicken
with a native microflora.
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