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Abstract  A study was undertaken to investigate and model the effect of inoculum size on the thermal inactivation 
of Salmonella to elimination in ground chicken by conduction heating. To develop the model, ground chicken thigh 
meat portions (0.76 cm3) in microcentrifuge tubes were inoculated with 2.0, 3.6, or 5.2 log of a single strain of 
Salmonella Typhimurium followed by cooking for 0 to 10 min at 52 to 100°C in a heating block. To validate the 
model, the ground chicken portions were inoculated with 2.8 or 4.4 log of S. Typhimurium followed by cooking for 
0 to 9 min at 55 to 97°C. An automated, whole sample enrichment, miniature most probable number (MPN) method 
with a lower limit of detection of one Salmonella cell per portion was used for enumeration. The MPN data were 
used to develop (n = 851) and validate (n = 256) a multiple layer feedforward neural network model with two hidden 
layers of two nodes each. Model performance was evaluated using the acceptable prediction zone (APZ) method. 
The proportion of residuals in an APZ (pAPZ) from -1 log (fail-safe) to 0.5 log (fail-dangerous) was 0.945 (804/851) 
for dependent data and 0.945 (242/256) for independent data for interpolation. A pAPZ ≥ 0.7 indicated that model 
predictions had acceptable bias and accuracy. Thus, the model was successfully validated. The time for elimination 
of Salmonella at 58°C was 5.6, 7.1, and 8.7 min for inoculum sizes of 2.0, 3.6 and 5.2 log per portion, respectively. 
This relationship was observed for all cooking temperatures and among all inoculum sizes investigated indicating 
that inoculum size was an important independent variable to include in the model. 
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1. Introduction 

The thermal inactivation of Salmonella in chicken has 
been extensively investigated, modeled, and reviewed 
[1,2,3]. There are multiple variables in addition to time 
and temperature that affect the kinetics of Salmonella 
death during cooking of chicken. For example, 
composition of chicken meat and meat products [4,5], 
strain of Salmonella [6,7], and size and shape of chicken 
meat and meat products [7]. One variable that has not 
received much attention but that could be important is 
inoculum size. This variable has not been investigated and 
modeled because it is generally assumed that the kinetics 
of Salmonella death during the cooking of chicken are 
independent of the initial number present. However, that is 
not what was found in the present study.  

Several researchers [8,9,10] that have investigated and 
modeled the thermal inactivation of Salmonella in chicken 
have used a similar approach. In these studies, a single  
and high initial number (e.g. 7 log/g) of a cocktail of 

Salmonella serotypes was inoculated into chicken meat. 
The inoculated samples were then placed in a plastic bag, 
heat sealed, and flattened to a thin layer (1-3 mm). The 
samples were then cooked in a preheated water bath and 
cooled rapidly after cooking by immersion in an ice bath. 
Survivors were then enumerated by spread plating onto a 
nonselective or selective agar media. Most often, the death 
kinetics were log-linear, which allowed determination of D-
values (time for a one log reduction) and then  
z-values (change in temperature for a one log reduction of 
the D-value). The D- and z-values were then used in a 
lethality model to predict the thermal inactivation of 
Salmonella in chicken under dynamic conditions of 
heating and cooling. However, this approach does not 
simulate how chicken is actually cooked and cooled by 
consumers. 

Consequently, a new approach for investigating and 
modeling the thermal inactivation of Salmonella in chicken 
meat was developed that more closely simulates how 
chicken is cooked and cooled by consumers [11]. This 
new approach involves cooking small cylindrical portions 
(0.76 cm3) of ground chicken meat in microcentrifuge 
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tubes by conduction in a heating block followed by 
cooling at and to room temperature. After cooling, survivors 
are enumerated by an automated, whole sample enrichment, 
miniature most probable number (WSE-mMPN) method. 
This enumeration method has a lower limit of detection  
of one Salmonella cell per chicken portion, which  
allows modeling pathogen death to elimination without 
extrapolating beyond the data. In the present study, this 
new approach was used to investigate and model the effect 
of inoculum size on the thermal inactivation of Salmonella 
to elimination in ground chicken during cooking. 

2. Materials and Methods 

2.1. Data Acquisition 

Data for development and validation of the model were 
acquired in a series of cooking trials using a protocol 
developed and described in a previous study [11]. In brief, 
cylindrical portions (0.76 cm3) of ground chicken thigh 
meat with native microflora in polypropylene microcentrifuge 
tubes (1.5 ml) were inoculated (2.0, 3.6, or 5.2 log) with 
stationary phase cells of a single strain of Salmonella 
Typhimurium, which was isolated from a chicken breast. 
The chicken portions were cooked by conduction in a 
heating block. After cooling at and to room temperature 
for 30 min, the number of Salmonella remaining in the 
chicken portions was determined by an automated (serial 
dilution and transfer steps were performed by a robotic 
pipettor), whole sample enrichment (WSE), miniature (m) 
most probable number (MPN) method (3 replicate by 8 
dilution) in a 2 ml, 96 deep well format.  

The WSE-mMPN method has a lower limit of detection 
of one Salmonella cell per chicken portion and involved 
incubation (24 h at 40°C) in buffered peptone water (to 
allow injured cells to recover and be quantified) followed 
by incubation (48 h at 42°C) in Rappaport Vassiliadis R10 
broth (RVB) to detect and enumerate Salmonella 
survivors. After 48 h of incubation in RVB, wells that 
contained Salmonella were white, whereas wells that did 
not contain Salmonella were blue. This was confirmed by 
an AOAC-approved lateral flow assay for Salmonella. The 
number of Salmonella was calculated by the method of 
Thomas [12]. The temperature of a non-inoculated 
chicken portion was recorded during cooking trials using a 
digital thermometer. The initial temperature of the chicken 
portions was 24.2 ± 1.9°C (mean ± SD, n = 140 trials). 

2.2. Experimental Designs 
Two experiments were conducted. Both used full 

factorial designs. The first experiment involved three 
inoculum sizes (2.0, 3.6, 5.2 log/portion), eight sampling 
times (0, 1, 2, 3, 4, 6, 8, 10 min), nine cooking 
temperatures (52, 58, 64, 70, 76, 82, 88, 94, 100°C) and 
four replicate trials (trial = one combination of the 
independent variables: inoculum size, cooking temperature, 
and sampling time) for a total of 108 cooking trials. The 
data (dependent) from this experiment were used to 
develop the model. 

The second experiment was conducted at intermediate 
levels of the independent variables used to develop the 

model and involved two inoculum sizes (2.8, 4.4 log/portion), 
eight sampling times (0, 0.5, 1.5, 2.5, 3.5, 5, 7, 9 min), 
eight cooking temperatures (55, 61, 67, 73, 79, 85, 91, 
97°C), and two replicates for a total of 32 cooking trials. 
The data (independent) from this experiment were used to 
evaluate the model for its ability to interpolate. 

The data in the second experiment were collected using 
the same methods as those used to collect the data in the 
first experiment. This was done so that comparisons of 
these data to model predictions would not be confounded. 
In addition, they were collected in such a manner that they 
provided complete and uniform coverage of model 
predictions so that a complete and unbiased evaluation of 
model performance could be obtained. 

2.3. Modeling 

The model consisted of two sub-models. The first  
sub-model predicted the thermal inactivation of  
S. Typhimurium in ground chicken as function of cooking 
temperature, inoculum size, and cooking time. To develop 
this model, a dataset (n = 1,107) with the dependent  
(n = 851) and the independent data (n = 256) was created 
in an Excel 2013 spreadsheet (MicroSoft Corp., Redmond, 
WA). It had five columns: 1) tag; 2) cooking temperature 
(independent numerical variable); 3) inoculum size 
(independent numerical variable); 4) cooking time 
(independent numerical variable); and 5) log number per 
portion (dependent numerical variable). The tag variable 
identified the dependent data for model development and 
the independent data for interpolation.  

A spreadsheet add-in program NeuralTools (version 
6.3.1, Palisade Corp., Ithaca, NY) was used to develop the 
model. However, before developing the model, the 
dependent variable was transformed. Specifically, when 
the log number per portion was greater than zero, it was 
normalized by dividing it by the inoculum size with the 
restriction that the maximum transformed value was one. 
Samples that tested negative for Salmonella were assigned 
a value of -1 log per portion for modeling purposes. 

A multiple layer feedforward neural network with two 
hidden layers of two nodes each was then developed as 
previously described [11]. This model used the hyperbolic 
tangent function in the hidden layers and the identity function 
in the output layer. After the neural network was developed, 
the predict function of NeuralTools was used to construct 
the sub-model. A formula was included in the sub-model that 
untransformed the dependent variable so that the sub-model 
predicted the log number per portion versus time.  

The second sub-model was developed in a similar 
manner. This sub-model predicted the temperature profile 
at the center of the chicken portion during cooking. As 
before, a dataset (n = 1,121) with the dependent data (n = 
865) and the independent data (n = 256) was created in an 
Excel 2013 spreadsheet. However, this dataset only had 
four columns: 1) tag; 2) cooking temperature (independent 
numerical variable); 3) cooking time (independent 
numerical variable); and 4) meat temperature in °C 
(dependent numerical variable). Again, the tag variable 
identified the dependent and independent data and 
NeuralTools was used to develop the sub-model, which 
was a multiple layer feedforward neural network with a 
single hidden layer of two nodes. 
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For proprietary reasons, NeuralTools does not  
provide weights and bias values for the neural networks 
 it produces and the current model was too complex  
to easily develop a stand-alone version of the model  
like we have done in previous studies [11,13]. Thus,  
users of the current model will need have access to 
NeuralTools to run it. Nonetheless, once published,  
the model and the data used to develop and evaluate it  
will be made available at no cost on our website at 
www.ars.usda.gov/nea/errc/PoultryFARM. 

2.4. Model Performance 

Performance of the sub-model for thermal inactivation 
was evaluated using the acceptable prediction zone (APZ) 
method [14]. In brief, a prediction was considered 
acceptable when the residual (observed – predicted)  
was in an APZ from -1 log (fail-safe) to 0.5 log  
(fail-dangerous). Model predictions for a set of data 
(whole dataset or data for an individual thermal 
inactivation curve) were considered to have acceptable 
bias and accuracy when the proportion of residuals in the 
APZ (pAPZ) was ≥ 0.7. The model was considered 
validated when the independent data for interpolation  
met the test data criteria (i.e. data were not used in  
model development, they were collected with the same 
methods, and they provided uniform and complete 
coverage of model predictions) of the APZ method, which 
they did, and the pAPZ for the dependent data and the 

pAPZ for the independent data for interpolation were 
acceptable.  

2.5. Data Analysis  

The validated model was used to determine the predicted 
time for elimination of Salmonella from the chicken 
portions. To accomplish this, the cooking temperature and 
inoculum size of interest were entered into the model and 
then the time was adjusted until the predicted log number 
of Salmonella changed from 0.00 to -0.01. The non-linear 
portion of the thermal inactivation curve was included in 
the determination of this kinetic parameter.  

3. Results  

3.1. Model Predictions 
The model developed is shown in Figure 1. The user 

enters the cooking temperature in cell E2 and the 
inoculum size in cell E3 and then the model predicts the 
thermal inactivation curve, the meat temperature profile, 
and the cell death profile. The cooking temperature should 
be a value between 52 and 100°C, whereas the inoculum 
size should be a value between 2.0 and 5.2 log per portion. 
Entering values outside these ranges, which were used to 
develop and validate the model, is not recommended 
because it may result in predictions that are not reliable. 

 

Figure 1. Neural network model that predicts the thermal inactivation, meat temperature profile, and cell death profile of Salmonella Typhimurium in 
ground chicken thigh meat portions (0.76 cm3) as a function of cooking temperature and inoculum size. Results are for a cooking temperature of 72°C 
and an inoculum size of 4.4 log/portion 

 

Figure 2. Neural network model that predicts the thermal inactivation, meat temperature profile, and cell death profile of Salmonella Typhimurium in 
ground chicken thigh meat portions (0.76 cm3) as a function of cooking temperature and inoculum size. Results are for a cooking temperature of 59°C 
and an inoculum size of 4.4 log/portion 
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The results in Figure 1 are for a cooking temperature of 
72°C and an inoculum size of 4.4 log per portion. The 
temperature of the center of the chicken portion, which 
was 5 mm from the heat source, increased during cooking 
in a non-linear manner until it plateaued around five 
minutes of cooking. There was no initial change in the 
number of Salmonella (lag phase) until the chicken 
warmed to temperatures that caused inactivation. Once 
inactivation started at around 1.5 min it proceeded quickly 
with total elimination of Salmonella by 2.3 min of 
cooking. 

The model predictions in Figure 2 are for a cooking 
temperature of 59°C and an inoculum size of 4.4 log per 
portion. At this lower cooking temperature the inactivation 
of Salmonella started around 3.6 min and took longer to 
complete around 6.9 min. 

3.2. Model Performance 
The first step in evaluating the data acquired for model 

development and validation involved graphing the mean 
observed values and the predicted values as a function of 
the independent variables (i.e. temperature, time, and 
inoculum size). A representative sample of the 17 graphs 
prepared are shown in Figure 3. A few general 
observations can be made. First, the meat temperature 
profile during cooking followed a similar pattern across all 

cooking temperatures investigated. More specifically, the 
temperature at the center of the chicken portion increased 
in a non-linear manner over time until it plateaued at about 
5 min of cooking. Second, the final temperature of the 
chicken portion at 10 min of cooking was always slightly 
below the cooking temperature (Table 1). Third, at all 
cooking temperatures there was an initial phase where the 
number of Salmonella did not change (lag phase), which 
lasted until the chicken portion warmed to temperatures 
that were high enough to kill the pathogen. Once lag phase 
ended, death was rapid; especially at higher cooking 
temperatures. 

The second step of evaluating the data acquired for 
model development and validation was to compare the 
observed and predicted values (log number per portion) 
using the acceptable prediction zone (APZ) method. A 
representative sample of the 17 residual plots prepared are 
shown in Figure 4. The proportion of residuals in the 
acceptable prediction zone (pAPZ) was calculated for 
each thermal inactivation curve and found to range from 
0.75 to 1 (Table 1). Overall, the pAPZ was 0.945 (804/851) 
for dependent data and 0.945 (242/256) for independent 
data for interpolation. A pAPZ of 0.7 or higher indicated 
that the model provided predictions with acceptable bias 
and accuracy. Thus, the model was successfully validated 
because it provided acceptable predictions for both the 
dependent data and the independent data for interpolation.  

 

Figure 3. Thermal inactivation curves for Salmonella Typhimurium in ground chicken thigh meat portions (0.76 cm3) and meat temperature profiles 
during cooking at A) 52°C (dependent data); B) 70°C (dependent data); C) 79°C (independent data for interpolation); and D) 97°C (independent data 
for interpolation) and as a function of inoculum size. Symbols are mean observed values and lines are predicted values 
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Table 1. Effect of cooking temperature and inoculum size on predicted final meat temperature, predicted time for elimination, and model 
performance for thermal inactivation of Salmonella Typhimurium in ground chicken thigh meat for dependent and independent data  

Type of data Cooking temperature 
(°C) 

Inoculum size 
(log/portion) 

Predicted final meat 
temperature (°C) 

Predicted time for 
elimination (min) 

Model performance 

In Total pAPZa 

Dependent 52 5.2 50.6 >10 29 32 0.906 

  3.6  >10 32 32 1.000 

  2.0  >10 32 32 1.000 

 58 5.2 55.9 8.7 24 30 0.800 

  3.6  7.1 29 32 0.906 

  2.0  5.6 29 32 0.906 

 64 5.2 61.4 3.9 26 31 0.839 

  3.6  3.4 29 32 0.906 

  2.0  3.0 28 32 0.875 

 70 5.2 67.1 2.6 30 31 0.968 

  3.6  2.4 30 32 0.938 

  2.0  2.1 31 32 0.969 

 76 5.2 72.8 2.0 29 31 0.935 

  3.6  1.8 30 31 0.968 

  2.0  1.6 32 32 1.000 

 82 5.2 78.7 1.7 30 31 0.968 

  3.6  1.5 32 32 1.000 

  2.0  1.4 31 31 1.000 

 88 5.2 84.6 1.5 31 32 0.969 

  3.6  1.3 29 32 0.906 

  2.0  1.2 31 31 1.000 

 94 5.2 90.6 1.3 31 31 1.000 

  3.6  1.2 29 30 0.967 

  2.0  1.1 31 32 0.969 

 100 5.2 96.7 1.2 29 31 0.935 

  3.6  1.1 29 32 0.906 

  2.0  0.9 31 32 0.969 

Independent 55 4.4 53.3 >10 16 16 1.000 

  2.8  9.5 14 16 0.875 

 61 4.4 58.6 5.0 14 16 0.875 

  2.8  4.1 16 16 1.000 

 67 4.4 64.2 3.0 12 16 0.750 

  2.8  2.7 15 16 0.938 

 73 4.4 69.8 2.2 16 16 1.000 

  2.8  1.9 16 16 1.000 

 79 4.4 75.7 1.7 15 16 0.938 

  2.8  1.6 14 16 0.875 

 85 4.4 81.6 1.5 14 16 0.875 

  2.8  1.4 16 16 1.000 

 91 4.4 87.6 1.3 16 16 1.000 

  2.8  1.2 16 16 1.000 

 97 4.4 93.6 1.2 16 16 1.000 

  2.8  1.1 16 16 1.000 

aProportion of residuals (observed - predicted) in an acceptable prediction zone (pAPZ) from -1 log (fail-safe) to 0.5 log (fail-dangerous). 
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Figure 4. Performance of the model for thermal inactivation of Salmonella Typhimurium in ground chicken thigh meat portions (0.76 cm3) at cooking 
temperatures of A) 52°C (dependent data); B) 70°C (dependent data); C) 79°C (independent data for interpolation); and D) 97°C (independent data for 
interpolation) and as a function of inoculum size. The acceptable prediction zone (grey box) was from -1 log (fail-safe) to 0.5 log (fail-dangerous). 
Residuals > 1.5 log were graphed as 1.5 log for clarity of presentation 

 

Figure 5. Predicted time for elimination of Salmonella Typhimurium in 
ground chicken thigh meat portions (0.76 cm3) as a function of cooking 
temperature and inoculum size 

The third step for evaluating the data used in model 
development and validation involved determining the 
predicted time for elimination of Salmonella from the chicken 
portions during cooking. These values (Table 1) were 
found to decrease in a non-linear manner as the cooking 

temperature increased (Figure 5). In addition, regardless of 
cooking temperature, the time for elimination increased as 
the inoculum size increased. For example, at 58°C, the 
time for elimination was 5.6, 7.1, and 8.7 min for inoculum 
sizes of 2.0, 3.6, and 5.2 log per portion, respectively. 
These results indicated that inoculum size was an important 
independent variable to include in the model. 

4. Discussion 

Bellara et al. [15] investigated the thermal inactivation 
of Salmonella Typhimurium in agar cylinders heated at 
70°C in a water bath. To enumerate survivors they sliced 
open the agar cylinder, incubated the slices, and then 
quantified the radius of Salmonella growth using image 
analysis. They found that the radius of growth decreased 
as a function of time of heating until all of the Salmonella 
were eliminated. Similar to the current study, the 
temperature profile at the center of the agar cylinder 
during heating increased in a non-linear manner and then 
plateaued. Likewise, a lag period was observed in the 
thermal inactivation curve until the agar cylinder warmed 
to temperatures that could kill Salmonella. Once this 
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critical point was reached, Salmonella death occurred 
rapidly just like in the present study. Thus, the general 
observations concerning the thermal inactivation of 
Salmonella Typhimurium in cylinders of ground chicken 
thigh meat in this study were similar to those reported by 
Bellara et al. [15] for thermal inactivation of Salmonella 
Typhimurium in agar cylinders. 

Mackey et al. [16] used the agar cylinder method to 
investigate the effect of inoculum size on the thermal 
inactivation of Salmonella Typhimurium. Similar to the 
current study, the time for elimination of Salmonella in 
agar cylinders heated at 70°C in a water bath increased as 
inoculum size increased. More specifically, the time for 
elimination increased from 30.5 to 33.0 min as inoculum 
size increased from 3 to 7 log/ml. In comparison, in the 
present study, the time for elimination of Salmonella in 
cylinders of ground chicken thigh meat heated at 70°C 
increased from 2.1 to 2.6 min as inoculum size increased 
from 2 to 5.6 log/portion. This finding makes sense as it 
should take longer for more cells to die under the same 
conditions of heating. In other words, it should take longer 
for 1,000 cells to die than 100 cells.  

A challenge to developing and validating a model for 
thermal inactivation of Salmonella to elimination in 
ground chicken thigh meat with native microflora as a 
function of inoculum size and a broad range of cooking 
temperatures and times is that it requires a large amount of 
enumeration data. Obtaining this type of data in food with 
native microflora is very time consuming and labor 
intensive. However, by using an automated, WSE-mMPN 
method that determines presence/absence of Salmonella as 
well as number in chicken with native microflora, it was 
possible to acquire the large amount of enumeration data 
(n = 1,107) needed to develop and validate the model. In 
fact, all of the data acquired in the present study were 
collected by a single undergraduate student working part-
time for a period of about nine months.  

The novel aspects of the current approach to 
investigating and modeling thermal inactivation of 
Salmonella in chicken with native microflora were 
discussed in a previous study [11]. In brief, the novel 
aspects were: 1) use of WSE-mMPN to determine 
presence, absence, and number of Salmonella survivors;  
2) modeling the data using a neural network approach that 
simplified data modeling to a single step saving time and 
money; 3) validation of the model against independent 
data for interpolation; 4) acquiring and modeling data 
under dynamic conditions of heating; and 5) developing a 
model that predicts both thermal inactivation and the meat 
temperature profile and now the cell death profile.  

The limitations of the modeling approach that were 
previously discussed [11] were: 1) using a single serotype 
of Salmonella; 2) using one inoculum size, which was 
addressed in the present study; 3) using a single initial 
temperature (room temperature); 4) using one distance (5 
mm) from the heat source; 5) using a maximum cooking 
temperature of 100°C, which is below temperatures 
actually used to pan fry ground chicken; and 6) using a 
single formulation of chicken meat (thigh meat).  

The previous paper [11] also discussed in some detail 
the difference in the current data collection and modeling 
approach from that of most other studies in this field. This 

included: 1) using WSE-mMPN instead of viable counts 
to enumerate survivors; 2) inoculation of samples with a 
single strain instead of a cocktail of strains; 3) acquiring 
data under dynamic temperature conditions instead of 
constant temperature conditions; 4) having come-up time 
versus no come-up time; 5) cooling cooked samples at 
room temperature versus in ice; 5) modeling the data 
using a neural network versus a multiple step regression 
approach; and 6) validation of the model against 
independent data versus no validation.  

5. Conclusion 

The general conclusion being that the current approach 
simulates better how chicken is cooked and cooled in the 
real world and thus, results in models that provide more 
realistic and reliable predictions. However, several 
important data gaps (see aforementioned limitations) exist 
in the current models that need to be addressed with 
further research in order to provide the chicken industry 
with models that provide even better predictions of the 
thermal inactivation of Salmonella in chicken with native 
microflora. The major advance accomplished in the 
present study was adding inoculum size as an independent 
variable in the model. 
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