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1  | INTRODUC TION

Models that predict growth of pathogens on or in food are valu-
able tools for verifying compliance with performance standards 
for food safety. For example, models can be used to verify less 
than one- log of growth of Clostridium perfringens during cool-
ing of commercially cooked red meat and poultry products as 
part of a Hazard Analysis and Critical Control Points (HACCP) 
program for food safety (Mohr et al., 2015; Smith- Simpson & 
Schaffner, 2005). In addition, predictive models can be used 
in risk assessments to help determine consumer exposure to 
pathogens in food produced by different farm- to- table scenar-
ios (Gonzalez et al., 2018; Santillana Farakos et al., 2016). This 

is an important application of predictive models because risk 
assessments are used to establish new food safety regulations 
and practices aimed at protecting public health (Lambertini 
et al., 2019; Membre & Boue, 2018).

Risk assessment can also be used at the processing plant to 
identify unsafe food before it is shipped to consumers and causes 
foodborne illness (Notermans et al., 1995; Oscar, 1998). This can 
be done by simulating the food production chain as a series of unit 
operations (e.g., retail transport … meal preparation … serving) and 
pathogen events (e.g., growth, death, survival; Oscar, 2004; Whiting 
& Buchanan, 1997). Predictive models can be used to forecast how 
pathogen number changes within each unit operation of the food 
production chain (Buchanan & Whiting, 1996).
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Abstract
A neural network model was developed for predicting growth of a chicken isolate of 
Salmonella Newport on cucumber portions as a function of times (0 to 8 hr) and tem-
peratures (16 to 40℃) observed during meal preparation and serving for use in risk 
assessment. Model development and validation were accomplished using the test 
data, model performance, and model validation criteria of the Acceptable Prediction 
Zones (APZ) method in the Validation Software Tool (ValT). The model was consid-
ered to provide acceptable predictions when the proportion of residuals in the APZ 
(pAPZ)	was	≥0.70.	Data	for	model	development	(n = 140) and validation (n = 72) sat-
isfied all criteria of the APZ method in ValT with pAPZ of 0.97 and 0.93, respectively. 
Thus, the model was successfully validated and can be used with confidence in risk 
assessment to predict growth of Salmonella Newport from chicken on cucumber dur-
ing meal preparation and serving.
Novelty impact statement: The model can be used by risk assessors to help predict 
variability and uncertainty of consumer exposure to Salmonella from individual lots 
of chicken produced by a farm- to- table scenario that includes cross- contamination of 
sliced cucumbers with Salmonella Newport from raw chicken followed by growth of 
Salmonella Newport on cucumber for times and temperatures observed during meal 
preparation and serving.
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Many cases of human salmonellosis are attributed to chicken 
(Painter et al., 2013; Scharff, 2020). Consumers can be exposed to 
Salmonella that survive during undercooking of chicken or they can 
be exposed to Salmonella that cross- contaminate and grow on ready- 
to- eat (RTE) food that are prepared and served with chicken (Akil & 
Ahmad, 2019; Maffei et al., 2017). Models that predict growth of 
Salmonella on RTE food following cross- contamination from chicken 
are	 valuable	 tools	 for	 risk	 assessment	 and	 food	 safety	 (Jayeola	
et al., 2019; Scolforo et al., 2017) but are not widely available.

Salad is an RTE food that is often served with chicken and it often 
contains diced or sliced cucumber. Although growth of Salmonella 
on cucumber has been investigated (Elexson et al., 2011; Ha 
et al., 2020), insufficient data were collected for full development 
and validation of predictive models. In addition, there are no data 
or models for growth of chicken isolates of Salmonella on cucum-
ber. This is important because Salmonella Newport from cucumbers 
grown on the Delmarva Peninsula, an area of intense chicken pro-
duction, caused an outbreak of human salmonellosis in 2014 (Angelo 
et al., 2015). Thus, it is possible that isolates of Salmonella from 
chicken could cross- contaminate cucumbers in the field or during 
meal preparation and serving and then grow to high numbers and 
cause foodborne illness. Therefore, to provide a valuable tool for 
better assessing this risk to public health, this study was undertaken 
to develop and validate a predictive model for growth of a chicken 
isolate of Salmonella Newport on cucumber as a function of times (0 
to 8 hr) and temperatures (16 to 40℃) observed during meal prepa-
ration and serving (da Silva et al., 2020) for use in risk assessment.

The traditional approach in predictive microbiology is to use 
linear and nonlinear regression methods to develop models that 
predict pathogen growth as a function of time, temperature, and 
other important independent variables (e.g., pH, water activity, 
atmosphere) associated with food (Buchanan & Phillips, 1990; 
Palumbo et al., 1991). This is a three- step process that involves: 
(1) primary modeling; (2) secondary modeling; and (3) tertiary 
modeling (Whiting, 1995). In primary modeling, pathogen growth 
over time for single combinations of independent variables being 
investigated are fitted to a regression model to obtain primary 
model parameters like lag time, growth rate, and maximum pop-
ulation density (Baranyi et al., 1993; Huang, 2014). In secondary 
modeling, linear and nonlinear regression models are used to pre-
dict the primary model parameters as a function of the indepen-
dent variables being investigated (Gibson et al., 1988; McClure 
et al., 1993). Finally, in tertiary modeling, secondary models for 
the primary model parameters are used in the primary model to 
predict pathogen growth over time as a function of the ranges 
of independent variables investigated and usually in the form of 
a user- friendly computer software application (Buchanan, 1993; 
McClure et al., 1994). Limitations of this approach are: (1) it is time- 
consuming; (2) regression models are inflexible, which can result in 
local prediction bias; and (3) prediction errors accumulate during 
each step of the process. One way to improve this process is by 
using a global regression method that combines the three steps 
into	one	(Jia	et	al.,	2020;	Martino	&	Marks,	2007).

Another one- step approach that can be used to develop pre-
dictive models for pathogen growth is neural network modeling 
(Hajmeer et al., 1997; Najjar et al., 1997). This is a less popular 
method in the field of predictive microbiology. Nonetheless, it learns 
patterns in data using methods that simulate how the human brain 
processes information and is the basis for new technologies such as 
self- driving cars. One advantage of neural network modeling versus 
regression methods is their flexibility to model diverse patterns of 
pathogen growth without prediction bias. However, it is important 
to not over- train neural networks or they will not generalize or inter-
polate well. Thus, it is important to validate them against a properly 
collected independent set of data.

With the advent of commercial software programs (e.g., 
NeuralTools), it is now easy to develop neural network models for 
predictive microbiology applications (Oscar, 2015). In addition, some 
neural network programs are compatible with Monte Carlo simu-
lation software programs (e.g., @Risk) that allow use of probability 
distributions in the model for simulating variability and uncertainty 
of independent variables, which is an important characteristic of 
predictive models used in risk assessment (Oscar, 2009). Therefore, 
in this study, compatible software programs (i.e., Excel, NeuralTools, 
and @Risk) were used to develop a neural network model that could 
provide stochastic predictions of Salmonella growth on cucumber 
as a function of variable and uncertain times and temperatures ob-
served during meal preparation and serving (da Silva et al., 2020).

Proper validation of models is important because it provides 
users of models with confidence that predictions are reliable 
(Delignette- Muller et al., 1995; Ross, 1996; Walls & Scott, 1996). In 
addition, it helps model developers to identify prediction problems 
that can be repaired before models are distributed to end users and 
are used to make important food safety decisions. Like traditional 
predictive model development, model validation is a three- step pro-
cess that involves evaluating model performance for: (1) dependent 
data or data used in model development; (2) independent data for 
interpolation or data not used in model development but that are 
within the prediction range of the model; and (3) independent data 
for extrapolation or data not used in model development but that are 
outside the prediction range of the model (Oscar, 2005).

To properly validate models, criteria are needed for test data 
(Oscar, 2005), model performance (Ross et al., 2000), and model val-
idation (Oscar, 2020). These criteria help to ensure that a model is 
developed that provides accurate and unbiased predictions. In ad-
dition, they ensure that the model validation process is complete, 
accurate, unbiased, not confounded, and objective. The Acceptable 
Prediction Zones (APZ) method in the Validation Software Tool 
(ValT) is the only method in the field of predictive microbiology 
that has criteria for test data, model performance, and model vali-
dation (Oscar, 2020). Moreover, these criteria are statistically based 
and have been carefully developed over a long period of time. 
Consequently, models developed and validated with these criteria 
can be used with confidence in food safety and risk assessment ap-
plications. Thus, the APZ method in ValT was used in this study for 
guiding model development and for model evaluation and validation.
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2  | MATERIAL S AND METHODS

2.1 | Data collection

To simulate cross- contamination of cucumber with Salmonella from 
utensils used to prepare raw chicken for cooking, a chicken isolate 
of Salmonella Newport was grown for 96 hr at 22℃ (meal prepara-
tion temperature) in buffered peptone water (BPW; Microbiology 
International, Frederick, MD) to obtain stationary phase cells (non-
growing cells) for inoculation of cold (4℃) cucumber portions (0.2 g) 
from mesocarp with native microflora. Cucumbers obtained from 
a local retail store (Salisbury, MD, USA) and were the wax- coated 
slicing variety. Cucumber portions were inoculated with a low initial 
number (0.85 log) of Salmonella Newport because in a previous study 
(Oscar, 2017), it was found that the number of Salmonella transferred 
to RTE food from utensils used to prepare raw chicken for cooking 
was between 0 and 1 log when the raw chicken was properly stored 
(4℃ for 6 hr) after purchase and before meal preparation.

Inoculated cucumber portions in 1.5 ml polystyrene tubes with 
caps were incubated at 16 to 40℃ in heating and cooling blocks 
(ThermoStat Plus, Eppendorf, Hamburg, Germany). Heating and 
cooling blocks are a common piece of equipment in laboratories that 
do molecular biology research. They hold 1.5 ml microcentrifuge 
tubes, have a small footprint on the laboratory bench, and can simu-
late	a	wide	range	(−10	to	100℃) of temperatures encountered in the 
food production chain.

At designated times of storage, a sample was removed and 0.7 ml 
of cold (4℃) BPW was added to cover the cucumber portion and stop 
growth of Salmonella, which do not grow or die but survive at 4℃ 
for an extended period (up to 10 days) of time (Oscar, 2011). After 
addition of BPW, samples were vortexed for 1 min at 3,000 rpm 
(Digital Disruptor Genie, Scientific Industries, Bohemia, NY) to re-
cover Salmonella Newport into BPW for enumeration using a 6 
replicate by 8 or 16 serial dilution (1:10) automated, whole sample 
enrichment, miniature most probable number (WSE- mMPN) method 
(Oscar, 2015). In brief, the three steps of the method were: (1) serial 
dilution (1:10) in BPW followed by incubation for 24 hr at 40℃; (2) 
transfer of 10 µl of BPW incubate to 1 ml of Rappaport Vassiliadis 
broth with novobiocin (RVBN) followed by incubation for 24 hr at 
42℃; and (3) drop plating of 2 µl of RVBN incubate onto xylose ly-
sine tergitol 4 (XLT4) agar followed by incubation for 24 hr at 40℃. 
The first two steps were conducted in 96- well, deep- well (2 ml) 
plates. Serial dilution, transfer, and drop plating were performed 
by a custom- designed robotic pipettor (SoloPlus, Hudson Robotics, 
Springfield,	NJ).	The	MPN	was	calculated	using	an	Excel	calculator	
(Jarvis	et	al.,	2010).

2.2 | Experimental designs

The experimental design for model development was a 5 × 7 full fac-
torial of time (0, 2, 4, 6, 8 hr) and temperature (16, 20, 24, 28, 32, 36, 
40℃) with four replicates per combination of independent variables. 

The experimental design for model validation (interpolation) was a 4 
× 6 full factorial of time (1, 3, 5, 7 hr) and temperature (18, 22, 26, 
30, 34, 38℃) with three replicates per combination of independent 
variables. All replicates were from different challenge trials.

These experimental designs were based on criteria of the APZ 
method in the ValT for predictive microbiology (Oscar, 2020). More 
specifically, even spacing of times and temperatures for model devel-
opment, intermediate times and temperatures for model validation 
for interpolation, a minimum of four replications per combination of 
independent variables for model development, a minimum of two 
replications per combination of independent variables for model 
validation for interpolation, and use of the same data collection 
methods for model development and validation for interpolation. 
These criteria were developed and used to facilitate development of 
a model that makes accurate and unbiased predictions and to ensure 
that the model validation process was complete, accurate, unbiased, 
not confounded, and objective.

2.3 | Model development and simulation

The model was developed and simulated in Excel (Office 365; 
MicroSoft Corp., Redmond, WA) using NeuralTools (version 7.6, 
Palisade Corp., Ithaca, NY) and @Risk (version 7.6, Palisade Corp.), 
which are spreadsheet add- in programs. Data for model develop-
ment (n = 140) and validation (n = 72) were arranged in four columns 
of an Excel spreadsheet: (1) tag (train or test); (2) temperature (℃; 
independent numerical variable); (3) time (hr; independent numerical 
variable); and (4) MPN (log/portion; dependent numerical variable). 
Data for model development were tagged “train,” whereas data for 
model validation were tagged “test.”

A multiple layer feedforward neural network with two hid-
den layers of two nodes each was trained using NeuralTools 
(Oscar, 2018). The predict function of NeuralTools was used to sim-
ulate growth of Salmonella Newport on cucumber as a function of 
time (0 to 8 hr) and temperature (16 to 40℃). In addition, to demon-
strate how the model could be used in risk assessment, pert (min-
imum, most likely, maximum) distributions for times (0.5, 1, 6 hr) 
and temperatures (22, 25, 34℃) observed during meal preparation 
and serving (da Silva et al., 2020) were entered into the model and 
simulated with @Risk.

The @Risk settings for simulation of the model were Latin 
Hypercube sampling, Mersenne Twister, a random number gener-
ator seed of one, and 1,000 iterations. The BestFit option of @Risk 
and Akaike’s Information Criterion were used to find the best fitting 
distribution for risk assessment.

2.4 | Model performance and validation

Model performance was evaluated using the APZ method in ValT 
(Oscar, 2020). Values for independent variables (time and temper-
ature) and observed and predicted values (log MPN/portion) for 
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dependent data, and independent data for interpolation were en-
tered in ValT, which then calculated residuals (observed –  predicted) 
and assigned APZ values (0 to 1) for each prediction case (n = 212). 
Pivot tables were then used to count prediction cases and calculate 
pAPZ (proportion of residuals in the APZ) for each combination and 
level of independent variables and overall. These values were used 
to answer a series of “yes” or “no” questions for test data and model 
performance criteria that were organized in decision trees for de-
pendent data and independent data for interpolation in ValT. Model 
validation occurred when all questions for both sets of data were 
answered in the affirmative (“yes”).

Model performance was considered acceptable (i.e., acceptable 
prediction	accuracy	and	bias)	when	pAPZ	was	≥0.7	and	there	were	
no local prediction problems. A local prediction problem occurred 
when pAPZ was <0.7 for three consecutive combinations of inde-
pendent variables or when pAPZ was <0.7 for one level of an inde-
pendent variable.

The pAPZ or average APZ value for individual levels and combi-
nations of independent variables and overall were calculated using 
four	APZ:	(1)	0	to	−1	log/portion	(fail-	safe	and	fully	acceptable);	(2)	
<	−1	to	>	−2	log/portion	(fail-	safe	and	partly	acceptable);	(3)	0	to	0.5	
log/portion (fail- dangerous and fully acceptable); and (4) >0.5 and 
<1 log/portion (fail- dangerous and partly acceptable). Residuals in 
the fully acceptable APZ were assigned an APZ value of one, resid-
uals in partly acceptable APZ were assigned APZ values from >0 to 
<1 depending on their linear distance from the corresponding fully 
acceptable APZ, and residuals outside the APZ were assigned an 
APZ value of zero.

3  | RESULTS

3.1 | Salmonella growth

Representative MPN data used for model development and valida-
tion are shown in Figure 1 along with predicted growth curves. These 
data show that Salmonella Newport growth on cucumber increased 
as a function of time and temperature. The data are shown to pro-
vide a representative sample for visual evaluation of data quality and 
repeatability among independent challenge trials. A more formal and 
complete analysis of data quality is provided below.

3.2 | Model predictions

Figure 2 shows the neural network model that was developed in 
Excel and was simulated with NeuralTools and @Risk. The model 
was used to predict growth of Salmonella Newport on cucumber 
for times and temperatures used and not used in model develop-
ment but that were within ranges of time (0 to 8 hr) and tempera-
ture (16 to 40℃) used for model development. For example, in 
Figure 2, the model predicted growth of Salmonella Newport on 

cucumber from 0 to 8 hr at 25℃, a temperature that was not inves-
tigated but that was within the range of temperatures investigated 
and modeled.

The model was also used to make stochastic predictions for use 
in risk assessment. For example, for the variable time and tempera-
ture scenario shown in Figure 2, the model predicted that Salmonella 
Newport growth on cucumber would range from 0 to 1.2 with an 
average of a 0.05 log increase per portion. The distribution that fit-
ted best to these results was a Kumaraswamy. This distribution can 
be used in a risk assessment model to simulate growth of Salmonella 
Newport on cucumber after cross- contamination from utensils used 
to prepare raw chicken for cooking.

3.3 | Model performance and validation

3.3.1 | Dependent	data

Figure 3 shows representative plots of residuals for data used in 
model development and validation. These plots provide a visual as-
sessment of model performance and were used to look for unac-
ceptable systematic prediction bias, which was not observed. They 
also show distribution of residuals among fully acceptable and partly 
acceptable APZ. A more formal and complete evaluation of model 
performance is provided next.

Data used for model development met all criteria for test data 
of the APZ method as indicated by answers of “yes” to questions 1 
to 4 in the decision tree for dependent data in ValT (Table 1). This 
indicated that these data could be used with confidence to provide 
a complete, accurate, unbiased, and nonconfounded evaluation of 
model performance for data used in model development.

Overall pAPZ for dependent data (n = 140) was 0.97, whereas 
pAPZ ranged from 0.95 to 1 for time, from 0.91 to 1 for temperature, 
from 0.74 to 1 for combinations of time and temperature, and the 
maximum number of consecutive pAPZ <0.70 was zero (Table 1). 
Consequently, answers to questions 5 to 7 for model performance 
criteria of the APZ method in the decision tree for dependent data 
in ValT were “yes” (Table 1). This indicated that the model did not 
have any global or local prediction problems for dependent data. 
Thus, the model was validated for dependent data because it sat-
isfied all criteria for test data and model performance of the APZ 
method in ValT.

3.3.2 | Independent	data	for	interpolation

Data used to evaluate the model for interpolation met all criteria for 
test data of the APZ method as indicated by answers of “yes” to ques-
tions 1 to 6 in the decision tree for interpolation in ValT (Table 2). 
This indicated that these data could be used with confidence to pro-
vide a complete, accurate, unbiased, and nonconfounded evaluation 
of model performance for interpolation.



     |  5 of 11OSCAR

Overall pAPZ for independent data for interpolation (n = 72) 
was 0.93, whereas pAPZ ranged from 0.9 to 1 for time, from 0.83 
to 1 for temperature, from 0.67 to 1 for combinations of time 
and temperature, and the maximum number of consecutive pAPZ 
<0.70 was two (Table 2). Consequently, answers to questions 7 
to 9 for model performance criteria of the APZ method in the 

decision tree for interpolation in ValT were “yes” (Table 2). This 
indicated that the model did not have any global or local predic-
tion problems for the independent data for interpolation. Thus, 
the model was successfully validated for interpolation because it 
satisfied all test data and model performance criteria of the APZ 
method in ValT.

F I G U R E  1   Observed (symbols) and predicted (lines) growth of a chicken isolate of Salmonella Newport on cucumber as a function of time 
and temperature for representative data used in model development (16, 24, 32, 40℃) and validation (26, 38℃)
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4  | DISCUSSION

Results of this study indicated that after simulated cross- 
contamination from utensils used to prepare raw chicken for cook-
ing, Salmonella Newport (0.85 log) grew on cucumber portions 
(0.2 g) with native microflora at times (0 to 8 hr) and temperatures 
(16 to 40℃) observed during meal preparation and serving (da Silva 
et al., 2020). These results agree with other studies that investigated 
growth of Salmonella on cucumber slices held at room temperatures. 
For example, Elexson et al. (2011) investigated growth of Salmonella 
Enteritidis (1 or 3 log) on cucumber slices (10 g) added to egg sand-
wiches and then held at refrigeration (4℃) or room temperature (not 
specified) for 0 to 6 hr. They observed time- dependent growth (0 
to 4 log/10 g) at both inoculum sizes and temperatures during 6 hr 
of storage. Although Salmonella Enteritidis is often isolated from 
chicken	meat	and	eggs	(Borges	et	al.,	2017;	Jackson	et	al.,	2013)	and	
thus, is a good serotype for model development, data in the study 
of Elexson et al. (2011) were insufficient (only two temperatures) to 
develop and validate a predictive model for growth of Salmonella on 
cucumber for use in risk assessment.

In another study, Bardsley et al. (2019) investigated growth of 
a mixture of outbreak isolates of Salmonella serotypes Michigan, 
Enteritidis, Meunchen, Newport, and Saintpaul (3 log) on cucumber 
slices (10 g) incubated at 23℃ for 0 to 8 hr. After 5 and 8 hr of stor-
age at 23℃, 1.5 and 2.9 log of growth were observed, respectively. 
In comparison, in this study, Salmonella Newport growth on cucum-
ber portions after 5 and 8 hr at 23℃ was predicted to be 0.3 and 
1.2 log, respectively. No firm conclusions can be made about why 

growth was predicted to be less in this study than in the study of 
Bardsley et al. (2019) because data on which these comparisons are 
based were collected with different methods (Salmonella serotypes, 
inoculum size, previous history, enumeration method). Nonetheless, 
both studies show that Salmonella can grow on cucumber stored for 
times and a temperature (i.e., 23℃) observed during meal prepara-
tion and serving (da Silva et al., 2020).

In another study, Ha et al. (2020) isolated three strains of 
Salmonella from cucumber and then inoculated them as a mixture 
(3.6 to 5.2 log) onto cucumber slices (25 g) by dipping. The inoculated 
cucumber slices were stored in pairs at 10℃ (0 to 96 hr), 20℃ (0 to 
48 hr), 25℃ (0 to 48 hr), and 30℃ (0 to 48 hr) and then Salmonella 
growth over time of storage was determined by viable counts (CFU). 
The CFU data were fitted to a primary growth model (Baranyi) and 
then secondary models (polynomial) were developed that predicted 
lag time and growth rate (primary model parameters) as a function of 
temperature (10 to 30℃).

Growth of Salmonella on the cucumber slices was observed to 
increase as a function of time and temperature and at 8 hr of stor-
age was predicted to be 0.4 log at 20℃, 1.5 log at 25℃, and 2.1 
log at 30℃ (Ha et al., 2020). In comparison, in this study, growth of 
Salmonella Newport on cucumber at 8 hr of storage was predicted 
to be 0.6 log at 20℃, 1.6 log at 25℃, and 3.3 log at 30℃. However, 
these comparisons are confounded by differences in data collec-
tion (Salmonella type, inoculum size, previous history, enumeration 
method) and modeling methods (regression vs. neural network) and 
thus, no firm conclusions can be made about why growth was pre-
dicted to be higher in this study than in the study of Ha et al. (2020). 

F I G U R E  2   Neural network model for simulating and predicting growth of a chicken isolate of Salmonella Newport on cucumber after 
simulated cross- contamination from utensils used to prepare raw chicken for cooking. An output of the model is a probability distribution 
for growth (log increase) of Salmonella Newport on cucumber held for variable (pert: minimum, most likely, maximum) times (0.5, 1, 6 hr) and 
temperatures (22, 25, 34℃) observed during meal preparation and serving for use in risk assessment
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Nonetheless, both studies indicate that Salmonella can grow on cu-
cumber at a range of times and temperatures encountered during 
meal preparation and serving (da Silva et al., 2020).

For data used in model development, Ha et al. (2020) reported 
coefficients of determination (R2) of 0.996 for the secondary model 
for lag time and 0.971 for the secondary model for growth rate. 

F I G U R E  3   Representative residual (observed –  predicted) plots for growth of a chicken isolate of Salmonella Newport on cucumber as a 
function of time and temperature for data used in model development (20, 28, 36℃) or validation (22, 30, 34℃). Residuals in the gray shaded 
area were fully acceptable, residuals in the non- shaded areas with dashed borders were partly acceptable, and residuals outside these areas 
were unacceptable
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Although the models had high goodness- of- fit (R2 > 0.97), they were 
not evaluated for their ability to predict data for lag time and growth 
rate that were not used in model development. In other words, they 
were not validated for interpolation. In contrast, in this study, the 
neural network model for growth of Salmonella Newport on cucum-
ber was validated for interpolation using the test data, model per-
formance, and model validation criteria of the APZ method in ValT 
(Oscar, 2020).

In contrast to this study, Ha et al. (2020) evaluated their model 
for extrapolation to a fluctuating temperature condition. They re-
ported a root mean squared error (RMSE) of 0.367 log and concluded 
that the model provided good predictions of Salmonella growth on 
cucumber. However, this conclusion was based on one scenario for 
fluctuating temperature and a limited amount of CFU data (n = 14). 
In contrast, in this study, model validation for interpolation against 
independent data was based on six scenarios and a large amount of 
MPN data (n = 72).

Although the current model was not evaluated for extrapolation 
to a fluctuating temperature condition, data used in model devel-
opment and validation were collected under changing temperature 
conditions. In this study, cucumber portions were cold (4℃) when 

inoculated with Salmonella Newport. They were then incubated 
at higher temperatures (16 to 40℃) for 0 to 8 hr. This resulted in 
collection of data for Salmonella growth over time under changing 
temperature conditions as cucumber portions warmed from 4℃ to 
the test temperatures. In fact, these storage trial scenarios were 
designed to simulate transition from the previous unit operation 
(i.e., refrigerated storage of cucumbers) and pathogen event (cross- 
contamination of utensils) in the food production chain to the unit 
operation (i.e., meal preparation and serving) and pathogen event 
(i.e., growth) being simulated for use in risk assessment.

Proper development and validation of models for foodborne 
pathogens is important because it provides model users with confi-
dence that predictions are reliable (Ross, 1996; Ross et al., 2000). In 
addition, it helps modelers identify prediction problems that can be 
repaired before models are shared with end users. In this study, the 
neural network model for growth of Salmonella Newport on cucum-
ber was carefully developed and validated using the test data, model 
performance, and model validation criteria of the APZ method in 
ValT (Oscar, 2020). In contrast, the model of Ha et al. (2020) for 

TA B L E  1   Acceptable prediction zones analysis for data used in 
model development

Question Answer Decision tree for dependent data

1 yes Were the data used to develop the model?

2 yes Were the independent variables evenly 
spaced?

3 yes Was there a minimum of four prediction cases 
per combination of independent variables?

4 yes Did all combinations of independent variables 
have the same number of prediction cases?

5 yes Was	the	overall	pAPZ	≥0.70?

6 yes Was pAPZ for all individual levels of 
independent	variables	≥0.70?

7 yes Was	a	single	pAPZ	≥0.70	for	every	three	
consecutive combinations of the independent 
variables?

8 yes Was the model validated for dependent data?

pAPZ Time

Temp 0 2 4 6 8 Average

16 1.00 1.00 1.00 1.00 1.00 1.00

20 1.00 1.00 1.00 1.00 1.00 1.00

24 1.00 1.00 1.00 1.00 1.00 1.00

28 1.00 0.93 0.98 1.00 0.97 0.98

32 1.00 1.00 1.00 0.85 1.00 0.97

36 0.97 1.00 1.00 0.83 1.00 0.96

40 1.00 0.74 0.94 1.00 0.86 0.91

Average 1.00 0.95 0.99 0.95 0.97 0.97

Abbreviations: pAPZ, proportion of residuals in the acceptable 
prediction zones; Temp, temperature in ℃; Time, time in hours.

TA B L E  2   Acceptable prediction zones analysis for data used in 
model validation for interpolation

Question Answer Decision tree for interpolation

1 yes Was the model validated for dependent data?

2 yes Were the data independent?

3 yes Were the data collected using the same 
methods as dependent data?

4 yes Were the independent variables at values 
intermediate to those used in model 
development?

5 yes Was there a minimum of two prediction cases 
per combination of independent variables?

6 yes Did all combinations of independent variables 
have the same number of prediction cases?

7 yes Was	the	overall	pAPZ	≥0.70?

8 yes Was pAPZ for all individual levels of 
independent	variables	≥0.70?

9 yes Was	a	single	pAPZ	≥0.70	for	every	
three consecutive combinations of the 
independent variables?

10 yes Was the model validated for interpolation?

pAPZ Time

Temp 1 3 5 7 Average

18 1.00 1.00 1.00 1.00 1.00

22 1.00 1.00 0.94 1.00 0.99

26 1.00 1.00 0.92 1.00 0.98

30 1.00 1.00 1.00 0.91 0.98

34 1.00 0.77 0.84 0.69 0.83

38 1.00 0.67 0.67 1.00 0.84

Average 1.00 0.91 0.90 0.93 0.93

Abbreviations: pAPZ, proportion of residuals in the acceptable 
prediction zones; Temp, temperature in ℃; Time, time in hours.
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growth of Salmonella on cucumber was developed and validated 
without using criteria for test data, model performance, and model 
validation. In addition, it was not evaluated for local prediction prob-
lems like the current model was.

Results of model validation in this study indicated that the neu-
ral network model for growth of Salmonella Newport on cucumber 
provided highly reliable predictions (pAPZ > 0.92) and thus, does not 
need to be repaired before distribution to end users. However, that 
does not mean that the current model cannot be improved. In fact, 
the current model can be improved by seeing how broadly it can be 
applied to other independent variables such as other inoculum sizes, 
other serotypes, other previous histories, and other food matrices.

More specifically, the current model can be improved using the 
test data, model performance, and model validation criteria for ex-
trapolation in the APZ method of ValT (Oscar, 2020). These criteria 
require that the independent data for extrapolation to a new inde-
pendent variable are collected using the same experimental design 
and methods as used to collect data for model development except 
for the new independent variable being evaluated. In addition to 
providing a proper evaluation for model extrapolation to the new 
independent variable, this approach makes it possible to expand the 
current model to include the new independent variable if it fails val-
idation for extrapolation.

In a previous study (Oscar, 2018), a neural network model for 
growth of Salmonella Newport on Roma tomato portions was evalu-
ated for extrapolation to ten other serotypes of Salmonella using the 
APZ method in ValT. Most (7 of 10) of them had similar growth kinet-
ics as Salmonella Newport. However, three serotypes failed the vali-
dation for extrapolation. Thus, the neural network model for growth 
of Salmonella Newport on Roma tomato portions can be improved by 
expanding it to include these serotypes.

5  | CONCLUSIONS

A neural network model for growth of a chicken isolate of Salmonella 
Newport on cucumber portions incubated for 0 to 8 hr at 16 to 40℃ 
was successfully developed and validated using the test data, model 
performance, and model validation criteria of the APZ method in 
ValT. Thus, the model can be used with confidence to fill an impor-
tant data and modeling gap in risk assessments for Salmonella and 
chicken. Namely, lack of data and models for predicting growth of 
Salmonella on cucumber (RTE food) after cross- contamination from 
utensils used to prepare raw chicken for cooking.
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