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Abstract

ComBase is a widely used microbial modeling database. ComBase data can be used

to develop and validate models and to test novel modeling methods like artificial neu-

ral networks (ANN) and acceptable prediction zones (APZ), which have been shown

to outperform traditional methods. Here, ComBase data were used to evaluate the

ANN and APZ methods for modeling nonthermal inactivation of Campylobacter jejuni

in milk and beef as a function of time, temperature (�20, 1, 10, 20, 30, and 40�C),

and strain (18177, ATCC 29428). Four ANN were developed using Excel and Neu-

ralTools, and the best-performing was a general regression neural network (GRNN)

whose performance and data completeness were evaluated using the APZ method.

Relative variable impacts in the GRNN model were 42.5%, 31.5%, 20.1%, and 5.9%

for time, temperature, food, and strain, respectively. Nonthermal inactivation of

C. jejuni was faster and greater at ambient than at cold temperatures and in milk than

in beef except at 1�C where it was similar. The proportion of residuals in the APZ

(pAPZ) ranged from 0.77 to 1 for individual nonthermal inactivation curves. Although

the model had acceptable performance (pAPZ ≥0.7), it failed validation because of

data gaps like one instead of four replicates per combination of independent vari-

ables and no data at �10�C. Thus, these and other data gaps identified need to be

filled before the model can be used with confidence to predict behavior of C. jejuni in

milk and beef. Nonetheless, results indicated that ANN and APZ methods can be

used to model data for nonthermal inactivation of C. jejuni in food.

1 | INTRODUCTION

Campylobacter is a leading cause of foodborne illness

(campylobacteriosis) that is often attributed to chicken and raw milk

(Batz, Hoffmann, & Morris Jr., 2012; Tack et al., 2020). In fact, Cam-

pylobacter is a zoonotic pathogen and normal member of the gut

microbiome of chickens and dairy cows (Indikova, Humphrey, &

Hilbert, 2015; Rossler et al., 2019; Zbrun et al., 2020). Consequently,

it has been isolated from chicken, raw milk, and beef where the most

common species is jejuni (Del Collo et al., 2017; Nielsen, Engberg, &

Madsen, 1997; Stern et al., 1985; Zbrun et al., 2020).

The primary route of zoonotic transmission of C. jejuni to humans

is the fecal–oral route. This occurs from fecal contamination of milk

during collection and of beef during processing followed by consump-

tion of raw milk or undercooked beef (Troutt & Osburn, 1997). How-

ever, C. jejuni can also infect the udder and milk of dairy cows

providing another route of zoonotic transmission (Hutchinson

et al., 1985).
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Although C. jejuni is sensitive to heat (Christopher, Smith, &

Vanderzant, 1982; Whyte, Hudson, & Graham, 2006), consumption of

raw milk and undercooked beef results in outbreaks and sporadic cases

of campylobacteriosis involving bloody diarrhea, stomachache, fever,

headache, and chronic conditions like Guillain–Barré syndrome

(Heuvelink et al., 2009; Troutt & Osburn, 1997). In addition to heat,

C. jejuni is sensitive to pH, drying, and oxygen leading to nonthermal

inactivation in food stored under acidic, dry, or aerobic conditions (Al-

Qadiri et al., 2015; Christopher et al., 1982; Doyle & Roman, 1982b; Kim

et al., 2017). In general, nonthermal inactivation of C. jejuni is faster and

greater at ambient than at cold temperatures (Olofsson, Berglund, Olsen,

Ellstrom, & Axelsson-Olsson, 2015; Yoon, Burnette, & Oscar, 2004).

Models that predict nonthermal inactivation of C. jejuni in food

(Burnette & Yoon, 2004; Oyarzabal, Oscar, Speegle, & Nyati, 2010; Ritz

et al., 2007) are valuable tools for food safety (Elliott, 1996; Notermans,

Gallhoff, Zwietering, & Mead, 1995). However, because of its sensitivity

to oxygen and other stresses (Al-Qadiri et al., 2015; Christopher

et al., 1982; Doyle & Roman, 1982b; Kim et al., 2017), C. jejuni is difficult

to cultivate and enumerate (Eideh & Al-Qadiri, 2011), which makes it

hard to collect the large amount of data needed for model development

and validation. Consequently, there are few models for C. jejuni.

Validation of models for foodborne pathogens is important

because it provides users with confidence that predictions are reliable

(Zwietering, Cuppers, deWit, & van 'T Riet, 1994). Criteria for test

data, model performance, and model validation help ensure that the

validation is objective, complete, not confounded, accurate, and unbi-

ased (Oscar, 2005b, 2020b). However, few studies use such criteria to

validate models.

Validation of models is also important because it can identify data

gaps and prediction problems that can be repaired by additional

research (Oscar, 2005b). The goal of validation is not to reject models

but, rather, to develop better models.

The acceptable prediction zones (APZ) method was developed to

address limitations of traditional methods, it has been shown to out-

perform traditional methods, and is the only method that has criteria

for test data, model performance, and model validation (Oscar, 2005a,

2005b, 2020b; ). Although it is not used by all predictive microbiolo-

gists, it is used by some (Desriac, Vergos, Achberger, Coroller, &

Couvert, 2018; Jayeola et al., 2019; Luo, Hong, & Oh, 2015; Min &

Yoon, 2010; Mohr et al., 2015).

The APZ method has criteria for three types of data: (a) dependent

data; (b) independent data for interpolation; and (c) independent data for

extrapolation. These criteria require validation for dependent data before

validation for interpolation and validation for interpolation before validation

for extrapolation (Oscar, 2005b, 2020b), which is optional but important

because it can save time and money by identifying independent variables

for which newmodels are not needed (Oscar, 2007, 2013, 2015, 2018a).

The APZ method has performance criteria for three types of models:

(a) secondary models for lag time (Oscar, 2005b); (b) secondary models

for growth rate (Oscar, 2005b); and (c) primary, secondary, and tertiary

models for log number (Oscar, 2005a, 2020b). Criteria for test data and

validation are the same for all three types of models. However, predic-

tion errors and APZ differ among model types (Oscar, 2005a, 2005b).

Not all criteria of the APZ method are used by modelers. There-

fore, the APZ method was incorporated into the Validation Software

Tool (ValT; Oscar, 2020b), which contains formula, decision trees, and

pivot tables that perform the APZ method after data entry. Thus, it is

now easy to use all criteria of the APZ method.

Artificial intelligence (AI), which involves machine learning of pat-

terns in data to perform human behaviors like driving a car or medical

diagnosis is changing the world we live in. Artificial neural network

(ANN) modeling, a method of AI, can learn patterns in complex sets of

microbial data and make predictions of pathogen behavior in food

(Kuroda, Okuda, Ishida, & Koseki, 2019; Yolmeh, Habibi Najafi, &

Salehi, 2014). In the past, ANN was difficult to use in predictive micro-

biology applications. However, with the arrival of commercial soft-

ware programs, it is now easy to develop ANN models for foodborne

pathogens (Oscar, 2009, 2014, 2017a, 2017b, 2018a, 2018b, 2021).

Advantages of ANN models over traditional regression models in

predictive microbiology applications are: (a) more rapid development

of models (one-step vs. three-steps); (b) easier development of models

(less time and knowledge); (c) greater flexibility to predict sets of data

with diverse patterns of pathogen behavior; and (d) same or better

prediction (Hajmeer, Basheer, & Najjar, 1997; Palanichamy, Jayas, &

Holley, 2008).

Disadvantages of ANN models versus traditional regression models

in predictive microbiology applications are (a) parameters lack biological

meaning and (b) over-training (poor interpolation). However, ANN learn

patterns in data in a way that mimics the process used by the human

brain and their output (lag time, growth rate, and log number) has biologi-

cal meaning. Also, predictive microbiology is about prediction and when it

comes to prediction, ANN models are the same or better than regression

models (Hajmeer & Basheer, 2003; Schepers, Thibault, & Lacroix, 2000).

Finally, over-training can be avoided by following the criteria of

the APZ method when developing and validating ANN (Oscar, 2017b,

2018a, 2018b, 2020a, 2021). Thus, there is no reason not to use ANN

in predictive microbiology applications.

ComBase is an open access database for microbial modeling that

is widely used (Baranyi & Tamplin, 2004). Data in ComBase can be

used to test novel modeling methods like ANN and APZ without col-

lecting new data. Data in ComBase are from peer-reviewed publica-

tions. Thus, it is generally assumed by ComBase users that models

developed with data from ComBase provide reliable predictions.

However, this assumption has never been tested. Therefore, data

from ComBase for nonthermal inactivation of C. jejuni in milk and beef

(Christopher et al., 1982) were used to (a) develop an ANN model;

(b) evaluate model performance and data completeness using the APZ

method; and (c) to identify future research needs.

2 | MATERIALS AND METHODS

2.1 | Data source and description

Log number data (n = 328) for nonthermal inactivation of C. jejuni in

milk and beef were mined from ComBase (www.portal.errc.ars.usda.
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gov). These data were collected as described in the original publica-

tion (Christopher et al., 1982).

In brief, inoculums of C. jejuni were prepared by growing them for

3 days at 37�C in Brucella broth supplemented with 0.15% agar, 0.02%

sodium metabisulfite, 0.05% sodium pyruvate, and 0.02% FeSO4. After

incubation, cultures were used to inoculate milk (10 ml, sterile, skim [0%

fat]; pH = 6.6) and beef (10 g, surface sterile, not ground; pH = 6.0) with

6.4 ± 0.5 log per ml or g, respectively, of C. jejuni 18177 or ATCC 29428.

Inoculated samples were incubated at �20�C for 14 (milk) or

30 (beef) days, at 1 or 10�C for 14 days, or at 20, 30, or 40�C for
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F IGURE 1 Nonthermal inactivation of two strains (18177 or ATCC 29428) of Campylobacter jejuni in milk and beef incubated at (a) �20�C;
(b) 1�C; (c) 10�C; (d) 20�C; (e) 30�C; or (f) 40�C. Symbols are observed values and lines are predicted values
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3 days. At evenly spaced time intervals, undiluted or diluted samples

of milk and homogenized beef in Brucella broth were streaked onto

Brucella agar plates supplemented with 10% defibrinated horse

blood. Plates were incubated under microaerophilic (5% O2, 10%

CO2, and 85% N2) conditions for 3 days at 37�C before counting of

colonies.

The lowest reported plate count was 0.1 log/ml or g. Also, it was

reported that C. jejuni was not detected in some samples. When

C. jejuni was not detected, a value of �0.01 log/ml or g was assigned.

This was done to include these samples in model development and

validation. In addition, it was based on the convention used in Com-

Base (Baranyi & Tamplin, 2004).

2.2 | Model development

Data were entered in an Excel (Office 365, MicroSoft Corpora-

tion, Redmond, WA) spreadsheet using six columns: (a) tag (train

or test); (b) strain (independent categorical variable); (c) food

(independent categorical variable); (d) temperature (�C; indepen-

dent numerical variable); (e) time (days; independent numerical

variable); and (f) log number (per ml or g; dependent numerical

variable). There was one replicate per combination of independent

variables.

Based on previous studies (Oscar, 2009, 2014, 2017a, 2017b,

2018a, 2018b, 2021), data were tagged for testing as follows: (a) for a

time course of 30 days at 9 and 21 days; (b) for a time course of

14 days at 4, 9, and 13 days; and (c) for a time course of 3 days at

1 and 2.25 days. This resulted in 270 (82%) data for training and

58 (18%) data for testing the ANN during training.

Tagging was done for two reasons. First, a portion of the data

were needed for testing the ANN during training. Second, to avoid

local prediction problems from data gaps caused by random tagging of

data for training and testing (Najjar, Basheer, & Hajmeer, 1997). In

fact, in the present study, when data were randomly tagged, local

prediction problems were observed (results not shown).

The BestNet Search option of NeuralTools (version 7.6, Palisade

Corporation, Ithaca, NY) was used to find the best-performing ANN

or to develop the best model. Four ANN were evaluated: general

regression neural network (GRNN) and multiple-layer feedforward

neural networks (MLFNN) with one hidden layer of two, three, or four

nodes. Performance was based on the root mean squared error

(RMSE) for testing data. Other details (diagram, formula, and training

algorithms) of the ANN methods used in NeuralTools can be found in

previous publications (Oscar, 2009, 2015).

For proprietary reasons, NeuralTools does not provide ANN

parameters. However, the predict function of NeuralTools can be

used to develop a standalone version of the model (Oscar, 2017c).

This can be accomplished by creating an array of predictions and

then using the CONCATENATE and VLOOKUP functions of Excel

to generate a predicted nonthermal inactivation curve. Once publi-

shed, the model will be available at: www.ars.usda.gov/nea/errc/

PoultryFARM.

2.3 | Model performance and data completeness

Model performance and data completeness were evaluated using the

APZ method in the Validation Software Tool (ValT) (Oscar, 2020b).

Decision trees in ValT were used to combine criteria for test data,

model performance, and model validation into an objective decision

about model performance and data completeness using a series of

“yes” or “no” questions (Q) where answers of “yes” led to model vali-

dation and a single answer of “no” resulted in failure of the validation

process. An answer of “no” indicated that the model had a data gap or

prediction problem that needed to be repaired by additional research

before the model could be used with confidence to make predictions.

Model repair can be accomplished by collection of new data, use of a

different model, or both.

The data used for testing the ANN during training were evaluated

as dependent data even though they were independent data for inter-

polation. This was done because there were too few data to evaluate

TABLE 1 Acceptable prediction zone analysis of model
performance for dependent data

Question Answer Decision tree

1 Yes Were the data used to develop the model?

2 No Were the independent variables evenly

spaced?

3 No Was there a minimum of four prediction

cases per combination of independent

variables?

4 No Did all combinations of independent

variables have the same number of

prediction cases?

5 Yes Was the overall pAPZ ≥0.70?

6 Yes Was pAPZ for all individual levels of

independent variables ≥0.70?

7 Yes Was a single pAPZ ≥0.70 for every three

consecutive combinations of the

independent variables?

8 No Was the model validated for dependent

data?

pAPZa Temperature (�C)

Other �20 1 10 20 30 40 Average

Milk 1.00 1.00 1.00 0.85 0.88 0.78 0.92

18177b 1.00 1.00 1.00 0.85 0.92 0.79 0.93

29428 1.00 1.00 1.00 0.85 0.85 0.77 0.92

Beef 1.00 1.00 1.00 1.00 1.00 0.99 1.00

18177 1.00 1.00 1.00 1.00 1.00 1.00 1.00

29428 1.00 1.00 1.00 1.00 1.00 0.98 1.00

Average 1.00 1.00 1.00 0.92 0.94 0.89 0.96

Note: The bold values in the rows for milk and beef are the average APZ

values for the indicated temperature (column label) when the data for

both strains are combined. The bold values in the row for average is the

average APZ value for the indicated temperature (column label) when the

data for both strains and both food matrices are combined.
aProportion of residuals in the acceptable prediction zones.
bCampylobacter jejuni strain 18177 or ATCC 29428.
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F IGURE 2 Residual (observed – predicted) plots of dependent data and acceptable prediction zones for evaluating performance of a General
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and validate the model for interpolation, as explained below, and

because it simplified presentation of results without changing conclu-

sions. Thus, evaluation of model performance was only done for

dependent data and for extrapolation to the other food matrix.

Global and local model performance were evaluated. Proportion

of residuals (observed -predicted log number per ml or g) in fully

acceptable and partly acceptable prediction zones (pAPZ) were calcu-

lated by ValT (see below). A pAPZ ≥0.7 was considered acceptable

model performance (acceptable prediction accuracy and bias). A local

prediction problem occurred when pAPZ were <0.7 for a single level

of an independent variable or for three consecutive combinations of

independent variables.

The pAPZ were calculated using four APZ: (a) 0 to �1 log/ml or

g (fail-safe and fully acceptable); (b) <�1 to >�2 log/ml or g (fail-safe

and partly acceptable); (c) 0–0.5 log/ml or g (fail-dangerous and fully

acceptable); and (d) >0.5 and <1 log/ml or g (fail-dangerous and

partly acceptable). For calculation of pAPZ, residuals in fully accept-

able APZ were assigned a value of one, residuals in partly acceptable

APZ were assigned values from >0 to <1 depending on their linear

distance from the corresponding fully acceptable APZ, and residuals

outside the APZ were assigned a value of zero. The pAPZ were cal-

culated in ValT for individual levels and combinations of independent

variables and overall. This was accomplished using the pivot table

feature of Excel.

Special prediction cases occurred when observed or predicted

values were �0.01 log/ml or g. In other words, when survival of

C. jejuni was not observed or predicted. When the ANN model

predicted survival (≥0 log/ml or g), but no survival (�0.01 log/ml or g)

was observed, a residual outside the fail-safe APZ (≤�2 log) was

assigned. When the ANN predicted no survival (�0.01 log/ml or g),

but survival (≥0 log/ml or g) was observed, a residual outside the fail-

ure dangerous APZ (≥1 log) was assigned. Finally, when the ANN

model predicted no survival (�0.01 log/ml or g) and no survival (�0.01

log/ml or g) was observed, a residual of 0 log/ml or g was assigned.

For clarity of presentation in the residual plots, assigned residuals for

special prediction cases were equal to the maximum observed residual

in the set of residuals being plotted.

For calculation of pAPZ, a value of one was assigned to special

prediction cases with a residual of zero, whereas a value of zero was

assigned to special prediction cases with an assigned residual outside

the APZ. Inclusion of special prediction cases was done so that

the evaluation of model performance was complete, accurate, and

unbiased (Oscar, 2020b).

3 | RESULTS AND DISCUSSION

3.1 | Nonthermal inactivation curves

Log number of both strains of C. jejuni declined in milk and beef as a

function of time and temperature (Figure 1). This decline was similar

among strains, displayed diverse patterns, and was faster and greater

at ambient (20, 30, and 40�C) than at cold (�20, 1, and 10�C)

temperatures and in milk than in beef except at 1�C where it was

similar.

3.2 | Model development

The RMSE (log/ml or g) for test data were 0.18 for GRNN and 1.49,

0.89, and 0.86 for MLFNN with 2, 3, and 4 nodes in the hidden layer,

respectively. Thus, the GRNN was the best-performing ANN because

it had the lowest RMSE for test data. The RMSE for the training data

used to develop the GRNN model was 0.14 log/ml or g. Relative vari-

able impacts in the GRNN model were 42.5% for time, 31.5% for tem-

perature, 20.1% for food matrix, and 5.9% for strain. Thus, time had

TABLE 2 Acceptable prediction zones analysis of model
performance for extrapolation to the other food matrix

Question Answer Decision tree

1 No Was the model validated for interpolation?

2 Yes Were data independent?

3 Yes Were data collected with the same methods

as dependent data except for the new

independent variable being evaluated?

4 No Were the independent variables at the

same values as those used in model

development?

5 No Was there a minimum of two prediction

cases per combination of independent

variables?

6 No Did all combinations of the independent

variables have the same number of

prediction cases?

7 No Was the overall pAPZ ≥0.70?

8 No Was pAPZ for all individual levels of

independent variables ≥0.70?

9 No Was a single pAPZ ≥0.70 for every three

consecutive combinations of the

independent variables?

10 No Was the model validated for extrapolation?

pAPZa Temperature (�C)

Other �20 1 10 20 30 40 Average

Milk 0.15 0.96 0.60 0.22 0.21 0.08 0.38

18177b 0.17 0.98 0.62 0.17 0.19 0.08 0.38

29428 0.13 0.93 0.58 0.26 0.23 0.09 0.38

Beef 0.19 0.80 0.53 0.04 0.10 0.01 0.31

18177 0.26 0.79 0.67 0.00 0.04 0.00 0.32

29428 0.12 0.80 0.39 0.07 0.15 0.01 0.29

Average 0.16 0.88 0.56 0.13 0.15 0.04 0.35

Note: The bold values in the rows for milk and beef are the average APZ

values for the indicated temperature (column label) when the data for

both strains are combined. The bold values in the row for average is the

average APZ value for the indicated temperature (column label) when the

data for both strains and both food matrices are combined.
aProportion of residuals in the acceptable prediction zones.
bCampylobacter jejuni strain 18177 or ATCC 29428.
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F IGURE 3 Residual (observed – predicted) plots and acceptable prediction zones for evaluation of milk predictions to beef (solid symbols)
and beef predictions to milk (open symbols) for a General Regression Neural Network model that predicts nonthermal inactivation of two strains
(18177 or ATCC 29428) of Campylobacter jejuni in milk and beef as a function of time and temperatures of (a) �20�C; (b) 1�C; (c) 10�C; (d) 20�C;
(e) 30�C; or (f) 40�C
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the most impact on the model output (log number of C. jejuni),

whereas strain had the least impact on the model output.

3.3 | Model prediction

The predict function of NeuralTools was used to create the final GRNN

model, which predicted nonthermal inactivation of C. jejuni in milk or

beef as a function of strain, temperature, and time. For reasons pres-

ented below, pull down menus were used to restrict predictions to the

strains (18177, ATCC 29428), food matrices (milk, beef), and tempera-

tures (�20, 1, 10, 20, 30, and 40�C) used in model development and

formula were used to restrict predictions to the time courses used in

model development. After selection of a strain, food, and temperature

from the pull-down menus, a nonthermal inactivation curve was

predicted by the GRNN model for the range of times investigated. One

of 24 possible nonthermal inactivation curves could be predicted by

the final GRNN model, one for each combination of independent vari-

ables (strain, food, temperature, and time) investigated (Figure 1). The

final GRNN model could interpolate within the nonthermal inactivation

curves to provide predictions for times that were not investigated.

3.4 | Model performance and data completeness

3.4.1 | Dependent data

Overall pAPZ of the GRNN model for dependent data was 0.96

(Table 1), whereas pAPZ for individual nonthermal inactivation curves

(n = 24) ranged from 0.77 to 1 for milk and from 0.98 to 1 for beef

(Table 1). Thus, there were no global (“yes” to Question (Q) 5) or local

(“yes” to Q6 and Q7) prediction problems (Table 1) and model perfor-

mance was considered acceptable (pAPZ ≥0.7). In general, agreement

between observed and predicted values was better at cold (�20,

1, 10�C) than at ambient (20, 30, and 40�C) temperatures (Figure 2).

Although the model provided acceptable predictions (pAPZ ≥0.7)

of dependent data, it failed validation for dependent data (“no” to Q8)

for three reasons (Table 1). First, values for temperature were not

evenly spaced (“no” to Q2) because there were no data at �10�C and

data were collected at 1�C instead of 0�C. Second, there was one

instead of four replicates per combination of independent variables

(“no” to Q3). Third, not all combinations of independent variables had

the same number of replicates because sampling times at �20�C were

different for milk and beef (“no” to Q4). Thus, there were gaps in the

ComBase data that prevented model validation for dependent data. For

these reasons, predictions of the final GRNN model were restricted to

combinations of times, temperature, food, and strain investigated

because these predictions were considered the least unreliable.

3.4.2 | Extrapolation

Although the GRNN model failed validation for dependent data and

was not validated for interpolation because of too few data, it was

evaluated for extrapolation to the other food. This was done to dem-

onstrate how the APZ method can be used to examine the observed

difference (relative variable impact of 20.1% for food) in nonthermal

inactivation of C. jejuni in milk and beef (Table 2). Therefore, within a

combination of strain and temperature and over time, predictions for

milk were compared to observed data for beef and predictions for

beef were compared to observed data for milk (Figure 3).

The only acceptable predictions (pAPZ ≥0.7) in these compari-

sons were at 1�C where the pAPZ for milk to beef predictions was

0.8 and the pAPZ for beef to milk predictions was 0.96 (Table 2).

However, for strain ATCC 29428 at 12, 13, and 14 days of storage

at 1�C, the residuals for both milk to beef and beef to milk predic-

tions were outside the APZ (Figure 3b). Thus, there were local

prediction problems.

In general, beef to milk predictions were overly fail-safe and milk

to beef predictions were overly fail-dangerous (Figure 3) indicating

that nonthermal inactivation of C. jejuni was faster and greater in milk

than in beef. Also, in general, disagreement between observed and

predicted values (size of residuals) for both beef to milk and milk to

beef predictions increased as a function of time and temperature.

Per criteria of the APZ method (Table 2), the GRNN model failed

validation for extrapolation to the other food (“no” to Q10) for five

reasons. First, the model was not validated for interpolation (“no” to

Q1) because of too few data. Second, there was one rather than two

replicates per combination of independent variables (“no” to Q5).

Third, the number of replicates per combination of independent vari-

ables was not the same because sampling times at �20�C were differ-

ent for milk and beef (“no” to Q6). Fourth, there was a global (“no” to
Q7) prediction problem. Fifth, there were local (“no” to Q8 and Q9)

prediction problems.

4 | DISCUSSION

Compared to other major foodborne pathogens (Listeria mono-

cytogenes, Escherichia coli O157:H7, and Salmonella), there are fewer

models for predicting behavior of C. jejuni in food. Thus, published

data (Christopher et al., 1982), which had not been modeled, but that

were archived in ComBase were used to develop an ANN model for

predicting nonthermal inactivation of C. jejuni in milk and beef as a

function of time, temperature (�20, 1, 10, 20, 30, and 40�C), and

strain (18177, ATCC 29428).

Although the data were peer-reviewed, they were too few data

to validate the ANN model using the APZ method (Oscar, 2020b). In

fact, three data gaps were identified. First, data were missing at �10

and 0�C for model development. Second, three replicates per combi-

nation of independent variables were missing for model development.

Third, two replicates per combination of independent variables were

missing at intermediate times and temperatures to those used in

model development. These data were needed to validate the model

for interpolation.

To fill these data gaps, new data would need to be collected with

the same methods as used to collect the dependent data or additional

data gaps would be introduced. For example, if data for nonthermal
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inactivation of a third strain of C. jejuni on chicken at �10 and 0�C

were added, these data would not fill the first data gap. Rather, they

would create more data gaps by introducing four new independent

variable levels (third strain, third food, and two new temperatures) to

the model. Thus, the model would be further away rather than closer

to validation.

A valuable feature of predictive models for foodborne pathogens

is the ability to interpolate or make predictions for combinations of

independent variables that were not investigated but that are within

ranges of independent variables used in model development. Valida-

tion for interpolation is crucial for ANN models because it shows they

are not over-trained. Unfortunately, in the modeled study

(Christopher et al., 1982), there were too few data to perform this val-

idation. In addition, there was evidence that the GRNN developed

from these data was over-trained. Specifically, some of the predicted

nonthermal inactivation curves had wavy appearances as they seemed

to follow the data used to develop the model. This was most evident

at cold (�20, 1, and 10�C) temperatures where residuals were

often zero.

The over-training likely occurred because of data gaps. First,

there was only one rather than four replicates of dependent data per

combination of independent variables. Second, there were no data at

�10 and 0�C. Third, there were no data at times and temperatures

that were intermediate to those used in model development. Fourth,

sampling times differed between cold and ambient temperatures and

between milk and beef at �20�C. These data gaps likely prevented

proper training of the ANN and were identified using the APZ

method.

Although sampling times in the modeled study (Christopher

et al., 1982) were evenly spaced and appropriate within a nonthermal

inactivation curve, they were not the same for all curves and thus, did

not completely follow the preferred experimental design (full factorial

with even spacing of independent variables) of the APZ method

(Oscar, 2020b). In fact, using the test data criteria of the APZ method

as a guide for model development and validation, the following

approach could be used in the future to produce better models for

C. jejuni.

Instead of developing a global and complex model like the one

developed in the present study, which had a performance problem

(over-trained) and data gaps, separate and simple models for milk and

beef could be developed and validated for different time and temper-

ature scenarios in the food production chain. For example, frozen

storage (�20 to 0�C for 0–12 months), refrigerated storage (1–18�C

for 14 days), and meal preparation (16–40�C for 0–8 hr). This would

allow use of the same sampling times within each model, which would

simplify model development and validation (Oscar, 2009, 2021).

Nonthermal inactivation of C. jejuni in milk and beef (Christopher

et al., 1982) was faster and greater at ambient (20, 30, and 40�C) than

at cold (�20, 1, and 10�C) temperatures. In comparison, Yoon

et al. (2004) reported that the rate of nonthermal inactivation of

C. jejuni in laboratory broth and on cooked chicken was constant and

slowest from 4 to 14�C, increased linearly from 14 to 20�C, and was

constant and fastest from 20 to 30�C. The faster nonthermal inactiva-

tion of C. jejuni at ambient temperatures than at cold temperatures

was also observed in other studies conducted with chicken skin

(Chantarapanont, Berrang, & Frank, 2003), milk (Olofsson et al., 2015),

and beef (Kim et al., 2017).

Milk and beef samples used in the modeled study (Christopher

et al., 1982) were pretreated with heat to eliminate or reduce native

microflora. However, Doyle and Roman (1982a) reported that non-

thermal inactivation of C. jejuni in raw milk with native microflora is

faster than nonthermal inactivation in sterile milk without native

microflora. In part, this was attributed to presence of lactoperoxidase

in raw milk resulting in production of reactive oxygen species (H2O2)

that inactivate C. jejuni.

On the other hand, in milk stored under aerobic conditions, non-

thermal inactivation of C. jejuni is slower in the presence of the

amoeba, Acanthamoeba polyphaga (Olofsson et al., 2015). Likewise,

under aerobic conditions, nonthermal inactivation of C. jejuni is slower

in co-culture with Pseudomonas putida (Hilbert, Scherwitzel, Paulsen, &

Szostak, 2010). Scanning electron microscopy revealed that P. putida

and C. jejuni live in close association within an extracellular matrix

where P. putida is believed to create a more favorable (low oxygen

tension) environment for C. jejuni. Therefore, in the future, it may be

important to collect data in food with native microflora to develop

models that provide better predictions of C. jejuni behavior in food.

Initial number of C. jejuni was variable (5.4–7.5 log/ml or g) among

nonthermal inactivation curves in the modeled study (Christopher

et al., 1982). This could be from variation of C. jejuni growth in inocu-

lum cultures among individual challenge trials. This would not be sur-

prising considering the many sensitivities of C. jejuni to environmental

factors and resulting difficulties in cultivating this organism.

Although the effect of inoculum size on nonthermal inactivation

of C. jejuni has not been investigated, with one exception where

results were not conclusive (Eideh & Al-Qadiri, 2011), it could be an

important variable to investigate and model in the future. Also, in

future studies, it may be important to better control this variable and

perhaps include it as an independent variable in predictive models for

C. jejuni.

In addition to variability, initial number of C. jejuni in the modeled

study (Christopher et al., 1982) was higher than typical levels found in

raw milk (0–1.5 log/ml; Jaakkonen, Kivisto, Aarnio, Kalekivi, &

Hakkinen, 2020) and beef liver (1–2 log/g; Enokimoto, Kubo, Bozono,

Mieno, & Misawa, 2007). Quantitative data for C. jejuni in beef muscle

were not found in the scientific literature. Nonetheless, use of lower

inoculum sizes in future studies would likely result in better predictive

models for C. jejuni behavior in food (Grigoriadis, Koidis, Vareltizis, &

Batzios, 1997).

Although C. jejuni strain 18177 is more heat resistant than strain

ATCC 29428 (Christopher et al., 1982), there was no consistent dif-

ference in nonthermal inactivation of these two strains in milk or beef

(relative variable impact of 5.9%). However, other studies have found

significant variation of inactivation rates among strains of C. jeuni in

raw milk (Doyle & Roman, 1982a) and on agar media (Garenaux

et al., 2008) over a range of temperatures. Thus, strain variation will

be an important variable to further investigate in future studies and

perhaps include as an independent variable in predictive models for

C. jejuni.

BOLERATZ AND OSCAR 9 of 13



Another important variable to consider is the physiological state

or previous history of C. jejuni. In fact, when C. jejuni is stressed by

starvation, it can enter a viable but nonculturable (VBNC) state

(Federighi, Tholozan, Cappelier, Tissier, & Jouve, 1998; Painter

et al., 2013). In addition, frozen storage of food can injure C. jejuni

(Ritz et al., 2007). These altered physiological states due to previous

history combined with an enumeration method that uses selective

media ingredients could result in overestimation of inactivation and

development of models that make fail-dangerous predictions of

C. jejuni survival. However, a method like viability qPCR, which uses

intercalation dyes to block quantification of DNA from dead cells,

could be used to enumerate VBNC and injured cells in modeling stud-

ies (Wulsten, Galeev, & Stingl, 2020). It is also possible that a most

probable number method could be designed to allow resuscitation

and enumeration of VBNC and injured cells (Ritz et al., 2007). Regard-

less, in future studies, it will be important to use enumeration

methods that detect and quantify VBNC and injured cells so that

resulting models make accurate and unbiased predictions of C. jejuni

survival in food.

Kim et al. (2017) investigated and modeled nonthermal inactiva-

tion of C. jejuni on beef tartare stored under aerobic conditions at

4, 10, 15, 25, and 30�C. Log number data within a temperature

were graphed as a function of time and were fitted to a primary

(Weibull) model that had two parameters: (a) the time to the first

log reduction (δ) and (b) shape of the curve (ρ). A secondary (Davey)

model was developed for predicting δ as a function of temperature

but the data at 4�C were excluded. Although ρ was affected by

temperature, a secondary model was not developed. Consequently,

a full (tertiary) model that predicts nonthermal inactivation of

C. jejuni on beef tartare as a function of time and temperature was

not developed and validated.

Like the study of Kim et al. (2017), a three-step, traditional regres-

sion method for model development was tried in the current study

(results not shown). Log number data for a single combination of inde-

pendent variables (food, strain, and temperature) were graphed as a

function of time and the resulting nonthermal inactivation curve was

fitted to a three-phase (lag, log-linear inactivation, and bottom pla-

teau) linear model that had four parameters: (a) initial log number;

(b) lag time; (c) time to the bottom plateau; and (d) log number at the

bottom plateau. However, because of the diverse patterns of nonther-

mal inactivation in the dataset (Figure 1), not all curve-fits provided

results for all primary model parameters. Thus, because of these data

gaps, it was not possible to develop secondary models for the primary

model parameters or a full (tertiary) model for predicting nonthermal

inactivation of C. jejuni in milk and beef as a function of time, tempera-

ture, and strain. However, it was possible to develop a full (tertiary)

model in one-step using ANN modeling methods.

Kim et al. (2017) evaluated performance of their secondary

model for δ. They used the coefficient of determination (R2) to eval-

uate how well the model predicted the dependent data. An R2 of

0.927 was obtained and it was concluded that the model was

appropriate. Next, the secondary model for δ was evaluated for pre-

diction of independent data obtained at 12 and 23�C. Observed and

predicted values for δ were compared using RMSE, which was

0.475. Based on this result it was concluded that the model pro-

vides reliable prediction of C. jejuni behavior in beef tartare. How-

ever, there was no stated criterion for RMSE, which evaluates the

model for prediction accuracy but not for prediction bias. In addi-

tion, no data were obtained between 25 and 30�C and the δ model

only predicts part of the nonthermal inactivation curve. Thus, model

development was incomplete and model validation was subjective,

incomplete, inaccurate, and biased.

Like the δ model of Kim et al. (2017) there were too few data to

validate the current ANN model. However, unlike the δ model Kim

et al. (2017), the current model predicted the entire nonthermal inacti-

vation curve and the evaluation of model performance was based on

stated criteria. Also, unlike Kim et al. (2017), it was concluded that the

current model did not provide reliable predictions. This conclusion

was based on data gaps and prediction problems identified by the

APZ method. A similar conclusion is reached when the APZ method is

applied to the δ model of Kim et al. (2017).

A special prediction case occurred when the ANN model

predicted survival, but no survival was observed or when the ANN

model predicted no survival, but survival was observed. Quantitative

comparison of differences in observed and predicted numbers is not

possible in this situation because there is not a log number for zero.

However, it is possible to make qualitative comparisons. This was

accomplished by assigning a residual of that was outside the APZ to a

no survival observation or prediction and then assigning an APZ value

of zero to the prediction case, which was used in the calculation of

pAPZ. In this way, special prediction cases could be included in model

validation. This was important because if special prediction cases had

been excluded, the evaluation of model performance would have

been incomplete, inaccurate, and biased.

In the modeled study (Christopher et al., 1982), C. jejuni was not

detected in some milk samples incubated for extended times, which

resulted in a number of special prediction cases. Fortunately, these

data were included in model development and validation because of

the ANN and APZ methods used. In contrast, these data and special

prediction cases would have been excluded if traditional regression

and statistical methods had been used to develop and validate the

model, as explained next.

A common practice in the secondary modeling step of the

traditional regression method is to log transform the dependent

variable (lag time, growth rate, and number) before curve-fitting

(Buchanan & Phillips, 1990; Zwietering et al., 1994). However,

dependent variable values of zero are excluded when this method is

used because there is no log value for zero. Exclusion of these data

during secondary modeling can result in a local prediction problem

(Oscar, 2005b).

Exclusion of zero values from calculation of some model perfor-

mance statistics is also necessary. For example, when lag time is not

observed, it is not possible to calculate the relative error (residual/

observed value) for the prediction case because it is not possible to

divide by zero or into zero (Delignette-Muller, Rosso, & Flandrois,

1995). Moreover, any model performance statistic that uses a ratio,

such as the bias and accuracy factors (Ross, 1996), would have to

exclude values of zero. The result is a model validation process that is
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incomplete, inaccurate, and biased. Thus, it is important to use model-

ing methods like those (ANN and APZ) used in the present study that

include pathogen-free samples and special prediction cases in model

development and validation.

In the modeled study (Christopher et al., 1982), milk and beef

samples were heated before they were inoculated with C. jejuni. This

heat treatment was done to inactive or reduce native microflora, but

it also inactivated enzymes and other proteins that could affect the

behavior of C. jejuni in these foods. Moreover, in contrast to milk,

which was heated throughout, beef was only heated on its surface.

Thus, native microflora, enzymes, and other proteins below the sur-

face heating zone may have persisted and affected the results. Espe-

cially since C. jejuni was inoculated into the interior center of the beef

samples.

In the modeled study (Christopher et al., 1982), nonthermal inacti-

vation of C. jejuni was faster and greater in milk than in beef. Differ-

ences in pH, water activity, oxygen tension, nutrient composition

(sulfur and iron), form (liquid and solid), native microflora (number and

type), and enzyme activity (lactoperoxidase and superoxide dismutase)

could explain the faster and greater nonthermal inactivation of

C. jejuni in milk than beef, but the exact reason is not known. Thus,

additional research is needed. Nonetheless, these results show the

importance of the food matrix as an independent variable in predictive

models for C. jejuni.

In the modeled study (Christopher et al., 1982), nonthermal inacti-

vation of C. jejuni was faster and greater or the same at frozen than

refrigeration temperatures. In part, this can be explained by formation

of ice crystals during freezing of milk and beef that could damage cel-

lular membranes and kill or injure C. jejuni. Skim milk (0% fat) was

used. Thus, upon freezing, the milk was a one-phase system.

Although reduced metabolic activity during frozen storage would

reduce generation of reactive oxygen species (ROS), it would also

reduce activity of enzymes that protect C. jejuni from ROS. Thus, if

the balance is in favor of damage from ROS during frozen storage, this

could help to explain the faster and greater nonthermal inactivation of

C. jejuni in milk and in beef under some circumstances during frozen

versus refrigerated storage. Also, if an enumeration method is used

with selective ingredients, injured cells of C. jejuni might be missed

and counted as dead resulting in an underestimation of survival, which

could help explain the observed results. Regardless, more research is

needed to better understand why nonthermal inactivation of C. jejuni

is faster and greater in some cases during frozen than refrigerated

storage.

In the modeled study (Christopher et al., 1982), nonthermal inacti-

vation of C. jejuni was faster and greater at ambient than at refrigera-

tion temperatures. It is believed that a general response to cold stress

involving synthesis of cold shock proteins like superoxide dismutase

at refrigeration temperatures may offer cross-protection from oxida-

tive stress (Garenaux et al., 2008; Stintzi & Whitworth, 2003). Also,

lower metabolic activity at refrigeration temperatures is believed to

reduce activity and production of ROS that kill or injure C. jejuni

(Garenaux et al., 2008; Hazeleger, Wouters, Rombouts, & Abee,

1998). Thus, cold shock response and lower metabolic activity are

plausible explanations for the observed results in Christopher

et al. (1982). However, other factors and mechanisms may help

explain the observed findings. Therefore, additional research is

needed to better understand why nonthermal inactivation of C. jejuni

is faster and greater at ambient than at refrigeration temperatures.

This knowledge may facilitate design of better processes to control

this foodborne pathogen and mitigate the risk it poses to public

health. However, it is not being suggested that milk and beef should

be held at ambient temperatures to reduce risk of campylobacteriosis

as this mitigation measure would be risky because of other pathogens

(Listeria monocytogenes, E. coli O157:H7, and Salmonella) in milk and

beef that could grow under these conditions to high and dangerous

levels.

5 | CONCLUSIONS

An ANN model was developed using data from ComBase for non-

thermal inactivation of C. jejuni in milk and beef. Although the model

failed validation because of data gaps, results were encouraging for

two reasons. First, model performance was acceptable (pAPZ ≥ 0.7).

This indicated that ANN has potential for modeling complex sets of

data for nonthermal inactivation of C. jejuni in food; especially when

the same data could not be completely modeled using traditional

regression methods. Second, the APZ method was found to be

effective at identifying data gaps and prediction problems in the

model. Thus, together, ANN and APZ showed promise as novel

methods for modeling C. jejuni behavior in food. However, in the

future, it may be important to consider additional independent vari-

ables like inoculum size, native microflora, and previous history

(physiological state) when developing predictive models for C. jejuni

in food. Also, when developing models with data from ComBase, it

should not be assumed that model predictions will be reliable.

Rather, model performance and data completeness should be care-

fully evaluated using an objective set of criteria like those in the APZ

method.
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