WRRC Highlights: 1940-2000

Year	Innovation	Outcome	Links
Late	Built a nuclear magnetic resonance	With modifications, it was used to	Cited for More Than 60
1940s	instrument, years before commercial	identify compounds that are key flavor	Years of Flavor
	models, to determine the moisture	constituents of wines, peas, green	<u>Research</u>
	content of foods.	coffee, certain cheeses, chili peppers,	
		and other varieties of peppers.	
Late	Investigated the steps required for	The effort proved instrumental in	Frozen Food That's
1940s	taking foods from field to freezer to	helping the fledgling frozen food	Freezer Friendly
through	fork in a series of "Time-	industry develop the tastes, textures,	
mid-	Temperature Tolerance" studies.	and aromas now in hundreds of foods	
1960s		found today in supermarket freezers.	
1953	Designed and built one of the	Gas chromatography quickly became	Cited for More Than 60
1933	world's first practical gas	an essential tool for food scientists	Years of Flavor
	chromatographs (GC) to identify	studying the chemistry of flavor and	Research
	volatile flavor compounds, making	aroma.	<u>Research</u>
	GC essential for studying flavors.	aroma.	
1960	Developed a method that allows	The processes were quickly adopted	Protecting U.S. Troops
1700	wool fabrics to be machine-washed	by large textile firms in the United	With Fireproof Wool
	and tumble-dried without shrinking.	States and Europe and proved	With Theproof Wool
	Later developed processes for	instrumental in improving the quality	
	making wool blankets flame	of wool clothing, blankets, carpets and	
	resistant, and wool fabric stain	other woolen products.	
	resistant and receptive to certain	r	
	dyes.		
1961	First to analyze aroma compounds	The method became a food industry	Cited for More Than 60
	by injecting the vapor collected	standard and is widely used by	Years of Flavor
	above a food into a gas	scientists in other fields.	Research
	chromatograph.		
1960s	Discovered that chilling chickens	Meat processors applied the findings	It Takes a Tough
	and turkeys at low temperatures	and over the next 5 years, turkey and	Scientist To Make a
	before freezing them improves	chicken consumption increased by 2.5	Tender (and Juicy)
	tenderness.	billion pounds.	<u>Chicken</u>
1960s	Developed methods to peel fruits	Reduced waste sent to landfills, saved	Tomato Cannery
	and vegetables that reduced water	food processors major disposal costs	Tackles Tough Water-
	use and food waste.	and helped them meet state and	Reuse Issues
		federal water pollution standards.	
Late	Found a bacterium and a strain of	Allowed San Francisco sourdough	Science in Your
1960s	yeast in San Francisco sourdough	bread to be baked nationwide.	Shopping Cart
	bread that are key to its distinctive		
	flavor.		
Late	Developed high-protein blends of	The process was quickly adopted and	Exposing Wheat's
1960s	wheat and rice in response to an	used in certain breads to fight	Genetic Secrets
and	international call to address	malnutrition both in the United States	
1970s	malnutrition in developing nations.	and overseas.	
Early	Discovered that almonds	Reduced costs for almond producers	Infrared Heating: Hot
1970s	contaminated with aflatoxin	and made almonds safer to eat.	Idea for Keeping
	fluoresce under ultraviolet light and		Almonds Safe To Eat
	developed a fluorescent-based		
	sampling method that improved		
	processing.		