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Summary

 

Recent breakthroughs in CO

 

2

 

 fumigation methods using free-air CO

 

2

 

 enrichment
(FACE) technology have prompted comparisons between FACE experiments and
‘enclosure studies’ with respect to quantification of the effects of projected atmospheric
CO

 

2

 

 concentrations on crop yields. On the basis of one such comparison, it was argued
that model projections of future food supply (some of which are based on older enclosure
data) may have significantly overestimated the positive effect of elevated CO

 

2

 

 concentra-
tion on crop yields and, by extension, food security. However, in the comparison, no
effort was made to differentiate ‘enclosure study’ methodologies with respect to
maintaining projected CO

 

2

 

 concentration or to consider other climatic changes (e.g.
warming) that could impact crop yields. In this review, we demonstrate that relative
yield stimulations in response to future CO

 

2

 

 concentrations obtained using a number
of enclosure methodologies are quantitatively consistent with FACE results for three
crops of global importance: rice (

 

Oryza sativa

 

), soybean (

 

Glycine max

 

) and wheat
(

 

Triticum aestivum

 

). We suggest, that instead of focusing on methodological disparities

 

per se

 

, improved projections of future food supply could be achieved by better
characterization of the biotic/abiotic uncertainties associated with projected changes
in CO

 

2

 

 and climate and incorporation of these uncertainties into current crop models.
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I. Rising CO

 

2

 

 and agricultural crop yields

 

Although terrestrial plants evolved at a time of high atmospheric
CO

 

2

 

 (4–5 times present values), concentrations appear to have
declined to relatively low values during the last 25–30 million yr
(Amthor, 1995; Bowes, 1996). However, records of atmospheric
CO

 

2

 

 concentration beginning in the late 1950s on Mauna Loa
provided proof that the global atmospheric concentration of
CO

 

2

 

 was increasing (Keeling 

 

et al

 

., 1976). These recent increases,
and the projected concentrations of atmospheric CO

 

2

 

 (i.e. 500–
1000 µmol mol

 

–1

 

 by the end of the 21st century; see Houghton

 

et al

 

., 2001), therefore represent an upsurge of an essential resource,
exceeding anything plants have experienced since the late
Tertiary (Pearson & Palmer, 2000; Crowley & Berner, 2001).

Although scientists have known for 200 yr that enhanced
concentrations of CO

 

2

 

 stimulate the growth of plants (T. De
Sassure, 1804, as cited in Kimball, 1983), the number of stud-
ies involving CO

 

2

 

 fumigation of agricultural and horticultural
plants increased markedly in the 1960s and 1970s (Allen,
1979). By the early 1980s, Kimball (1983) had documented over
400 observations with respect to agricultural yield in response
to elevated CO

 

2

 

 conditions, data that could potentially be used
to forecast the impact of rising CO

 

2

 

 on crop productivity.
However, many of these observations involved the response

of individual agronomic plants grown in pots in glasshouse or
growth cabinet conditions. It seems unlikely that the response
of single plants to CO

 

2

 

 could act as a reasonable surrogate for
prediction of the future of global agriculture given the spatial
and temporal aspects of plant function, from the molecular to
the ecosystem level. In addition, CO

 

2 

 

is not just the source of
carbon in the biosphere, but a longwave-radiation trapping gas,
with consequences for surface temperature and precipitation,
climatic variables that affect crop productivity.

 

II. Expanding methodologies

 

Clearly, a better and more thorough analysis of how plant
growth and yield would respond to CO

 

2

 

/climate was needed.
To that end, a number of methodological papers throughout

the 1980s and early 1990s described new, innovative means to
simulate future CO

 

2

 

/temperature/climate such as soil–plant–
atmosphere research (SPAR) units (e.g. Mortensen, 1982),
temperature gradient tunnels (TGT; e.g. Horie 

 

et al

 

., 1991),
open-top chambers (OTC; e.g. Rogers 

 

et al

 

., 1983; Drake 

 

et al

 

.,
1989) and free-air CO

 

2

 

 enrichment (FACE) systems (e.g. Allen

 

et al

 

., 1985; Hileman 

 

et al

 

., 1992a). The FACE technology was
developed, in large part, because earlier results using enclosures
(laboratory and field) indicated that small plot size and artificial
enclosure could produce microclimatic and edge effects that
would influence crop responses (Hendrey, 1994). However,
as with all simulations, each methodology is able to add (or
subtract) various abiotic parameters from the system (Table 1).
In general, as the spatial/temporal scale increases, microcli-
matic effects do diminish, but short-term control of variables
becomes more difficult. For example, a 5-s sample of air from
an elevated CO

 

2

 

 OTC was within 

 

±

 

 10% of the set point 80%
of the time (L. H. Ziska, unpublished data; Hileman 

 

et al

 

.,
1992b), whereas a 5-s air sample from an elevated rice (

 

Oryza
sativa

 

) FACE system in Japan was within 

 

±

 

10% of the set
point only 50% of the time (Table 2; Okada 

 

et al

 

., 2001).

 

III. Which methodology gives the ‘truest’ 
prediction of future yields?

 

As systems for simulating future atmospheric composition
and/or climates have become more sophisticated over greater
spatial scales, is it fair to state that the results from such newer
systems represent (or are closer to representing) the ‘true’ response
of crop yields to projected changes in CO

 

2

 

/climate? In a recent
hypothesis first published in the 

 

Philosophical Transactions of
the Royal Society 

 

(Long 

 

et al

 

., 2005), and later reiterated in

 

Science

 

 (Long 

 

et al

 

., 2006), Long and colleagues argued that
current modeling efforts overestimate the impact of increasing
CO

 

2 

 

on future crop yields, because the models used are para-
metrized with data obtained from earlier ‘enclosure studies’
and not from the more sophisticated FACE systems.

However, Long 

 

et al

 

.’s (2005, 2006) hypothesis made
no distinction among ‘enclosure studies’ which would include

Table 1 Comparison of different methods used to simulate future climate, and their spatial/temporal scales

Method [CO2] Temperature Nutrients Water Air quality Spatial/temporal scales

Growth chamber +/– +/– +/– +/– +/– Plant, weeks–months
Glasshouse +/– +/– +/– +/– +/– Plant/canopy, months
SPAR unit +/– +/– +/– +/– +/– Plant/canopy, months
Tunnels + +/– + +/– +/– Ecosystem, months–years
OTC + +/– + +/– +/– Ecosystem, months–years
FACE + + + +/– Ecosystem, months–years 

For a given method, ‘+’ indicates that a given parameter can be added (i.e. supra-ambient); ‘–’ means that subambient levels of the parameter 
can be achieved. The spatial scale is the highest (and subsequent lower) organizational levels represented by the system (e.g. ‘whole plant’ 
includes leaf and cellular responses). Air quality refers to the addition (or scrubbing) of ozone or other aerobic pollutants.
FACE, free-air CO2 enrichment; OTC, open-top chambers; SPAR, soil–plant–atmosphere research.
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crop yield data obtained from a variety of sources, including
single plant experiments in growth chambers or glasshouses,
as well as assemblages of plants grown in field-based open-top
chambers. As we have already pointed out, single plant data
are unlikely to reflect global crop responses to CO

 

2

 

 and/or
climatic change; hence, the comparison of ‘enclosure studies’

 

in toto

 

 with FACE systems requires further elucidation as
to what exactly is meant by the term ‘enclosure studies’ and
whether, in fact, all enclosure studies overestimate the impact
of rising atmospheric CO

 

2

 

 on crop yields.
For a more precise comparison, we examined relative yield

response to elevated CO

 

2

 

 for a number of enclosure method-
ologies for three crops of global significance: rice, soybean
(

 

Glycine max

 

) and wheat (

 

Triticum aestivum

 

). In examining
the literature we have defined ‘experiment’ as a single replicated

study of one cultivar, i.e. multiple years or cultivars are multiple
‘experiments’ (cf. Ainsworth 

 

et al

 

., 2002). In addition, as most
comparisons of yield enhancement (relative to ambient,
background concentration) have been made at 

 

∼

 

700, rather
than 550 µmol mol

 

–1

 

 CO

 

2

 

 (i.e. the concentration used in
the FACE experiments), it is easier to use 700 µmol mol

 

–1

 

 as
a common point of comparison. It should also be stressed that
ambient CO

 

2

 

 concentration itself has changed appreciably
during the experimental era (e.g. from 

 

∼

 

320 in early enhance-
ment studies to a current concentration of 

 

∼

 

380 µmol mol

 

–1

 

),
such that we have scaled the relative yield to a ratio of 700
to 370 µmol mol

 

–1

 

 CO

 

2

 

 (Tables 2–4). (The use of 370 rather
than 380 µmol mol

 

–1

 

 is a consequence, in part, of the fact that
many recent papers still list ambient CO

 

2

 

 concentration as
370 µmol mol

 

–1

 

; e.g. Morgan 

 

et al

 

., 2005.) Scaling the observed
(published) response to these concentrations was accomplished
using a beta (

 

β

 

) factor (

 

β

 

 

 

=

 

 [(

 

Y

 

H

 

 – 

 

YL)/YL]/ln(CH/CL), where CL
is the ‘low’ (always approximately ambient; 315–408 ppm) CO2
concentration used, CH is an elevated CO2 concentration
used, YL is yield in the CL treatment, and YH is yield in the CH
treatment for any published experiment). Following calcula-
tion of the beta factor for a given experiment, the relative

Table 2 Mean relative enhancement of rice (Oryza sativa) yields at 
700 relative to 370 µmol mol–1 CO2 for a range of methodologies

 Methodology
Relative yield 
(700/370)a Comments/reference

Various 1.13 Cure & Acock (1986)b; 
review of three studies

Glasshouse 1.44 (0.91–3.41) Average of 20 experimentsc

Tunnels 1.24 (1.18–1.37) Average of 6 experimentsd

SPAR 1.19 (1.04–1.27) Average of 10 experimentse

OTC 1.26 (0.91–1.57) Average of 6 experimentsf

FACE 1.20 (1.11–1.22) Average of 6 experimentsg 

Minimum and maximum values are shown in parentheses.
Rice data were determined only for rice growing under nonlimiting 
conditions of temperature, water, nutrients, etc.
aBecause different experiments use different concentrations of ‘ambient’ 
and ‘elevated’ CO2, we scaled the published data to a 700 relative to 
370 µmol mol–1 comparison using a beta factor β = [(YH – YL)/YL]/
ln(CH/CL), where CL is the ‘low’ (always approximately ambient; 
315–408 ppm) CO2 concentration used, CH is an elevated CO2 
concentration used, YL is yield in the CL treatment, and YH is yield in 
the CH treatment. Following calculation of the beta factor for a given 
experiment, the relative stimulation of yield (1 + [(YH – YL)/YL]) was 
then solved for using 700 and 370 µmol mol–1 as CH and CL, respectively 
(Tables 2–4). The appropriateness of using a beta response function 
(curvilinear response) for these species is consistent with published 
yield response curves over a range of CO2 values (e.g. fig. 1 in Baker 
et al., 1996 for rice; fig. 14 in Baker & Allen, 1993 for soybean 
(Glycine max); Amthor, 2001 for wheat (Triticum aestivum); for a 
more detailed explanation of β, please see Amthor & Koch, 1996).
bThe Cure & Acock (1986) reference is used for comparison to the 
Long et al. (2006) study.
cAlberto et al. (1996); Imai et al. (1985); Teramura et al. (1990); 
Ziska & Teramura (1992); Ziska et al. (1996).
dKim et al. (1996); Nakagawa & Horie (2000).
eBaker et al. (1996); Sakai et al. (2004).
fDeCosta et al. (2003); Moya et al. (1998).
gKim et al. (2003); Yang et al. (2006).
FACE, free-air CO2 enrichment; OTC, open-top chambers; SPAR, 
soil–plant–atmosphere research.
(See the Supplementary Material Appendix S1 for references grouped 
by crop type.)

Table 3 Mean relative enhancement of soybean (Glycine max) yields 
at 700 relative to 370 µmol mol–1 CO2 for a range of methodologies

Methodology
Relative yield 
(700/370)a Comments/reference

Various 1.27 Cure & Acock (1986); 
review of 12 studies

Glasshouse 1.34 (1.09–1.91) Average of 17 experimentsb

Growth chamber 1.36 (1.08–1.59) Average of 11 experimentsc

SPAR 1.28 (0.96–1.63) Average of 13 experimentsd

OTC 1.37 (1.19–1.50) Average of 30 experimentse

FACE 1.40 (1.24–1.87) Average of four experimentsf

Minimum and maximum values are shown in parentheses.
Data were determined only for optimal conditions of temperature, 
water, nutrients, and unmanipulated ozone concentrations. In studies 
where multiple CO2 concentrations were used, including an elevated 
concentration near 700 µmol mol–1 CO2, only the data for 
700 µmol mol–1 CO2 are included here.
aCalculated as determined in Table 1.
bFerris et al. (1999); Teramura et al. (1990); Ziska et al. (1998); Ziska 
et al. (2001).
cCure et al. (1988a); Cure et al. (1988b); Heinemann et al. (2006); 
Sionit et al. (1987).
dAllen et al. (1991); Baker et al. (1989); Boote et al. (2005); 
Nakamoto et al. (2004).
eBooker et al. (2005); Bunce (2005); Deepak & Agrawal (2001); 
Heagle et al. (1998); Heagle et al. (1999); Prior et al. (2005); Rogers 
et al. (1986); Torbert et al. (2004); Ziska (2000); Ziska & Bunce 
(2000); Ziska & Goins (2006).
fMiglietta et al. (1993), Morgan et al. (2005).
FACE, free-air CO2 enrichment; OTC, open-top chambers; SPAR, 
soil–plant–atmosphere research.
(See the Supplementary Material Appendix S1 for references grouped 
by crop type.)
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stimulation of yield (1 + [(YH – YL)/YL]) was then solved
for 700 and 370 µmol mol–1 as CH and CL, respectively
(Tables 2–4). The appropriateness of using a beta response
function for these species is consistent with published yield
response curves over a range of CO2 values (e.g. fig. 1 in Baker
et al., 1996 for rice; fig. 14 in Baker & Allen, 1993 for soybean).
In addition, we have only included data for plants under
favorable conditions of temperature, water, light, nutrients,
and unmanipulated ozone concentrations. There are obvious
complications imposed by both abiotic and biotic interac-
tions with regard to stimulation of crop yields by elevated
CO2, but these will be discussed in greater detail in the latter
part of this review.

IV. Comparing responses among methodologies

1. Rice

We determined the relative yield enhancement of rice for five
different methodologies. The relative response of rice under
glasshouse conditions appears to be high, in part as a result of
the very large enhancement effect observed for two cultivars
(Ziska et al., 1996); however, overall, the relative stimulation
of yield in rice is consistent for tunnels, SPAR units, OTCs
and FACE methodology (Table 2). Long et al. (2006) also
reported small differences in relative yield stimulation for rice

between enclosure studies and FACE at a common CO2
concentration of 550 µmol mol–1.

2. Soybean

The relative enhancement of soybean yield has, on average,
been quite consistent among exposure systems (Table 3).
There are two FACE publications for soybean yield. Miglietta
et al. (1993), using a natural CO2 spring, reported a relative
enhancement effect of 1.85 at an average daytime CO2 of
652 µmol mol–1, and Morgan et al. (2005) reported an average
enhancement effect of 1.15 at 550 µmol mol–1 CO2 over 3 yr.
Normalizing the Morgan et al. (2005) data based on their
quoted ambient value of 370 µmol mol–1, their response ratios
would extrapolate to values of 1.24, 1.24, and 1.25 for 3 yr at
700 relative to 370 µmol mol–1. We obtained the same scaling
using the soybean response curve given in Long et al. (2006).
Overall, the mean response ratio of the four free-air studies
would be 1.40, slightly higher than the overall mean from the
other enrichment systems (1.34; Table 3).

It could be argued that the Miglietta et al. (1993) study is
suspect because it used plants in pots. However, a greater rela-
tive CO2 response in this pot experiment would be inconsistent
with the generalization that plants in pots show a reduced CO2
response when compared with field-grown plants (e.g. Ainsworth
et al., 2002, but see also Booker et al., 2005). Another possibly

Table 4 Mean relative enhancement of wheat (Triticum aestivum) yields at 700 relative to 370 µmol mol–1 CO2 for a range of methodologies

Methodology Relative yield (700/370)a Comments/reference

Various 1.33 Cure & Acock (1986)b; review of eight studies
Growth chamber 1.33 (0.96–1.58) Average of 12 experimentsc

Glasshouse 1.47 (1.12–1.85) Average of 10 experimentsd

Tunnels 1.26 (1.03–1.69) Average of 18 experimentse

OTC 1.31 (0.99–1.99) Average of 49 experimentsf

FACE 1.19 (1.13–1.23) Average of four experimentsg

FACE 1.23 (1.22–1.23) Results for the two experiments with proper
FACE-infrastructure ambient-CO2 control plots (see Amthor, 2001)

Minimum and maximum values are shown in parentheses.
Data are from experiments with favorable temperature, water, ozone concentration, and nutrient supply.
aCalculated as determined in Table 2.
bThe Cure & Acock (1986) reference is used for comparison to the Long et al. (2006) study.
cAmthor (2001) experiments L2a, L2e, L4, L5a, L7a (three ambient/elevated CO2 combinations), L11a, L11b, L13a, L14a and L14b.
dAmthor (2001) experiments G2a, G3a, G4, G5a, G6, G7a, G8 and G9a; Derner et al. (2004) second- and third-generation plants.
eClosed-top field chambers, including temperature gradient tunnels. Amthor (2001) experiments C1a (two ambient/elevated CO2 
combinations), C1c (two ambient/elevated CO2 combinations), C2a, C2b, C3a, C3c, C3e, C3g, C3i, C3k, C5a, C5b, C5d, C5f, C5h and C5j.
fAmthor (2001) experiments O3a (four ambient/elevated CO2 combinations), O3b (four ambient/elevated CO2 combinations), O4, O5a (two 
ambient/elevated CO2 combinations), O5b (two ambient/elevated CO2 combinations), O6a, O7a (two ambient/elevated CO2 combinations), 
O7c (two ambient/elevated CO2 combinations), O7e (three ambient/elevated CO2 combinations), O8a (two ambient/elevated CO2 
combinations), O9d, O9e, O9f, O10a (two ambient/elevated CO2 combinations), O11a, O12, O13a, O14a, O14d (two ambient/elevated CO2 
combinations), O14e, O15, O17a (two ambient/elevated CO2 combinations), O17b (two ambient/elevated CO2 combinations), and O18; 
Donnelly et al. (2005); Manderscheid et al. (2003); Ravi et al. (2001), with the unspecified ambient CO2 concentration assumed to be 370 ppm; 
Schutz & Fangmeier (2001).
gAmthor (2001) experiments F1a, F1c, F1e and F1g.
(See the Supplementary Material Appendix S1 for references grouped by crop type.)
FACE, free-air CO2 enrichment; OTC, open-top chambers.
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significant difference between the open-air studies is that the
Miglietta et al. (1993) system produced high night-time CO2
concentrations (as a result of low wind speed), while in the
Morgan et al. (2005) SoyFACE system, no CO2 was added at
night. Recent OTC data for soybean over a 4-yr period indicate
that additional CO2 only given during the daytime stimulated
seed yield of soybean only half as much as elevated CO2
given continuously when compared with ambient conditions
(Bunce, 2005; but see also Heagle et al., 1999). However, even
if only the three values from the Illinois SoyFACE system are
considered, equal or lower response ratios were obtained in
about a third (24 of 71) of the other enrichment studies from
enclosed systems in Table 3. The mean response ratio (extrapo-
lated to 700 µmol mol–1) of 1.24 for SoyFACE is, in fact, identical
to the overall response ratio reported in the soybean meta-analysis
of Ainsworth et al. (2002) (i.e. 1.24 at 689 µmol mol–1 among
all enclosure studies examined).

3. Wheat

The estimated effect of increasing CO2 concentration from
370 to 700 ppm (by mathematical extrapolation) was a 23%
increase in yield in the wheat FACE experiments that used
proper ambient CO2 control systems. This 23% compares to
33% for growth chamber experiments, 47% for glasshouse
experiments, 26% for closed-top field chambers (including
temperature gradient tunnels), and 31% for open-top field
chambers. Thus, the stimulation of yield for the given CO2
concentration increase in glasshouses for individual plants was
double that for FACE (as was the case for rice; Table 2), but
for the two non-FACE field methodologies yield stimulation
was only 13 and 35% greater than for FACE. Overall, these
values are consistent with the CO2 enhancement values reported
previously for FACE studies (Long et al., 2006).

While field enclosure studies in wheat have produced
modestly greater yield stimulation for a given CO2 concentra-
tion increase relative to FACE (Table 4), the small number
of wheat FACE experiments (all conducted in a single field in
Arizona, USA) makes a general comparison difficult. Also,
the wheat FACE experiments were not conducted in a major
wheat-growing region, so the applicability of FACE results to
major wheat-growing areas remains unknown. In any case,
the elevated-CO2 stimulation of wheat yield in FACE experi-
ments has been only modestly smaller than the yield stimula-
tion produced by the same CO2 concentration increase in field
enclosure studies. Moreover, the ranges of results from the
different methodologies overlap, indicating that a significant
methodological bias in the CO2 fertilization effect on yield has
not been established for wheat.

4. Overall

We could find no support for a consistent, large (∼2×) overes-
timation of relative yield response to elevated CO2 in rice,

soybean or wheat in (field) enclosure methodologies relative
to FACE systems as reported by Long et al. (2005, 2006).
Does this mean that there are no methodological ‘artifacts’
related to enclosures that could influence plant response?
Hardly. For example, a SPAR unit, because of its small size,
is almost certainly subject to edge effects. However, SPAR
units typically provide neutral density shadecloth to minimize
unrealistic side lighting and are also quite sophisticated in being
able to provide precise control over a range of air temperatures,
CO2 concentrations (even subambient concentrations) and
soil types – certainly useful information in improving model
projections of effects of CO2 and/or climatic change on
crop yields.

Does this mean, then, that SPAR units are the superior
methodology for obtaining the ‘true’ response of crop yields
to projected changes in CO2/climate? It would be easy
enough to highlight the benefits of SPAR methodology (e.g.
it allows independent control of temperature, light, nutrients
and CO2) while stressing the limitations of a FACE system
(e.g. CO2 fluctuations may underestimate the yield response
of plants; Holtum & Winter, 2003). But such subjective pars-
ing of benefits and limitations would, in effect, simply create
a specious argument (i.e. SPAR units are inherently superior
to all other methodologies).

If methodological and technological considerations are a
concern, we suggest that the way to determine differences
and establish ‘superiority’ is not through parsing the benefits
and limitations of a particular methodology, but by direct
scientific inquiry. That is, a side-by-side comparison of different
methodologies should be performed using the same soil,
cultivar, temperature, nutrition level, etc. Surprisingly, in all of
the debate regarding the ‘realism’ of CO2 enrichment meth-
odologies, we could find only one study (Kimball et al., 1997)
that attempted such a comparison. They report an experiment
with wheat in Arizona where OTCs operated concurrently in
the same field as a FACE experiment. Data from this com-
parison demonstrated that the relative responses of the above-
ground biomass (unfortunately, yield was not measured or
reported) and absolute growth relative to elevated CO2 were
nearly identical in the two systems. In a later review, Kimball
et al. (2002) suggested that microclimatic effects, while important
with respect to absolute yields under field conditions, probably
did not dominate the first-order linear effects of elevated
CO2 concentration per se. Kimball concluded, ‘for the most
part, the FACE- and chamber-based results have been con-
sistent, which gives confidence that conclusions drawn from
both types of data are accurate’. This conclusion is in line with
the observations reported here (i.e. Tables 2–4).

V. Methodology vs future uncertainty

In the methodology debate, there is another, larger, considera-
tion. The goal of any of the methodologies discussed so far is
to quantify how crop yields will respond to projected changes
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in CO2 and associated changes in climate in order to assess
the potential threat to future food security. Suppose that,
in a side-by-side comparison between methods, that one
of the methods (call it ‘A’) could be shown to be the superior
technology for simulating future CO2 concentrations. Would
the response of a given crop cultivar to a single elevated CO2
concentration provide an accurate picture of future yield?
Probably not. It is still unclear if smaller increases in CO2
concentration provide a similar response to that found in larger
‘doubling’ experiments, and it is likely that different varieties,
probably with different responses to a change in CO2 concen-
tration, will be grown in the future.

But is any quantification of yield in response to increasing
CO2 by itself sufficient to provide us with an accurate estimate
of future yields? It is becoming increasingly clear that any
effect of CO2 concentration on yield will be modulated by
other abiotic variables such as temperature, moisture, and
nutrient availability. In addition, biotic factors such as
weeds, insects, and diseases might modify the effect of increas-
ing CO2 concentration on yield. Indeed, the large range of
responses obtained with all methodologies, as documented
in Tables 2–4, for experiments under nominally optimal con-
ditions suggests that large abiotic and/or biotic interactions
exist. Both abiotic and biotic factors, in turn, are also likely to
be directly or indirectly altered by changes in CO2 and/or
climate.

Therefore, if our goal is to achieve greater consistency between
experimental and model results for crop yield in a future
climate, then an improved understanding of how abiotic and
biotic parameters alter the response of crop yield to CO2 con-
centrations may also be crucial in providing a more accurate
estimate of agricultural productivity and potential threats to
food security. For the remainder of this review, we would like
to focus on what we perceive as key areas of biotic and abiotic
uncertainty; and to address, in a preliminary fashion, how
questions associated with such uncertainties could be used
to improve yield forecasts of rice, soybean, and wheat with
increasing CO2 concentration.

VI. Abiotic uncertainties

Two of the most important edaphic factors related to crop
yields are soil moisture and nutrient availability. For rice and
wheat, there are now sufficient data to indicate that any
stimulation of crop yield by increasing CO2 will be dependent
on nitrogen (N) availability (e.g. see Kim et al., 2003 for rice;
Wolf, 1996 for wheat) whereas stimulation of yield by CO2
in soybean appears to be independent of supplemental N
(Cure et al., 1988a). However, a number of questions remain
unaddressed. What is the optimal application of N needed
with increasing CO2 to maximize rice and wheat yields?
If root growth is stimulated by CO2, how will this affect
the timing of N application and temporal exploitation of soil
resources? If, for economic reasons, N is limiting for a given

region, what will be the expected impact on crop yield as CO2
rises? What about the supply of other nutrients, particularly
phosphorous?

In contrast to nutrients, there is a surfeit of data indicating
that, under water-limiting conditions, the indirect effect of CO2
on stomatal aperture (and potential reductions in transpira-
tional water use) may enhance the relative effect of elevated
CO2 on crops (see Polley, 2002 for a review). However, here
too there are a number of unresolved questions. How will
elevated CO2 affect crop yields under flooded conditions?
Will yield sensitivity to water quality (e.g. salinity) be similar
at higher CO2 concentrations to the yield sensitivity today?

One of the largest uncertainties remains air temperature.
Initial assessments based on photosynthetic biochemistry
suggested a positive interaction between projected increases
in temperature and CO2 (e.g. Long, 1991). However, such
positive interactions do not necessarily translate into addi-
tional seed yield with simultaneous increases in CO2 and tem-
perature as opposed to elevated CO2 alone (e.g. Matsui et al.,
1997; Batts et al., 1998; Amthor, 2001). For rice, increasing
CO2 and temperature may, in fact, negate any yield enhance-
ment related to increasing CO2 (Moya et al., 1998; Ziska
et al., 1996) as a result, in part, of reductions in transpirational
cooling, higher canopy temperatures and increased pollen ste-
rility (Fig. 1). The interaction of temperature and CO2 seems
more complex for wheat, with a majority of experiments indi-
cating a reduction in yield with elevated CO2 in combination
with warming compared with elevated CO2 alone (table 7 in
Amthor, 2001). A few studies have compared responses
of soybean crops grown for the full season under different

Fig. 1 Relationship between percentage of filled spikelets (with 10 
or more germinated pollen grains) and increasing air temperature 
at ambient (open circles) and elevated (closed circles; ambient 
+300 µmol mol–1) atmospheric CO2 concentration. Data are from 
paddy rice (Oryza sativa cv. IR 72) grown in open-top chambers in 
the Philippines. Bars are ± standard error. Additional details can be 
found in Matsui et al. (1997). Recent data obtained by Peng et al. 
(2004) indicate that higher night relative to daytime temperatures 
may already be limiting rice yields globally.
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temperature regimes (Sionit et al., 1987; Baker et al., 1989;
Boote et al., 2005; Heinemann et al., 2006) but have found
only minor effects of these treatments on the yield response to
elevated CO2.

Another atmospheric uncertainty is anthropogenic pollu-
tion. Ozone concentrations have certainly risen precipitously
throughout the 20th century (Marenco et al., 1994), although
some evaluations indicate that ozone may be declining, par-
ticularly in the eastern states (Fiore et al., 1998; EPA, 2004).
Because ozone is phytotoxic, a number of studies have examined
whether the increase in ozone will offset any positive effect of
CO2 on crop yield. In a review of studies of wheat, Amthor
(2001) evaluated experimental protocols and concluded that
four studies (all OTC experiments) were relevant with respect
to a combination of possible future ozone and CO2 concentra-
tions. Recent work with soybean has indicated that ozone
fluxes that suppressed net photosynthesis, growth and yield
of soybean were generally much less harmful if plants were
grown simultaneously with elevated CO2 (Booker & Fiscus,
2005). Heagle et al. (1998) found that increasing ozone
concentration above the ambient outdoor concentration
increased the seed yield response to elevated CO2. Although
Heagle et al. (1999) also reported a significantly smaller yield
response to enhanced CO2 at low ozone, it is unlikely that
high ozone is necessary for CO2 stimulation of yield; other-
wise, there would be little CO2 response of soybean in SPAR,
glasshouse or growth chamber experiments. The fact that
consistent responses to CO2 were observed for a wide range of
methodologies, some of which filter ozone, indicates that
ambient ozone concentrations per se may not impose a signi-
ficant limitation to CO2 enhancement of yield in soybean,
contrary to some reports (e.g. Long et al., 2005). In contrast
to soybean and wheat, almost no data have been published
for ozone, CO2 and rice yields. Overall, given the spatial and
temporal distribution of ozone, and the fact that different
stages of plant growth will exhibit different sensitivities, a
satisfactory understanding of how ozone could modify crop
yield response to rising CO2 has not been forthcoming, and
should be a priority for further research.

VII. Biotic uncertainties

Since the inception of agriculture, insects and diseases have
limited crop yield potential. Will such limitations increase
or decrease in response to future changes in CO2/climate?
Certainly it is reasonable to expect that climate stability with
respect to temperature and precipitation is likely to affect the
range of specific species of insects and diseases for a given crop
growing region. For example, Cannon (1998) has suggested
that migratory insects could colonize crops over a larger
range in response to temperature increases, with subsequent
reductions in yield. Gutierrez (2000) has suggested that
predator and insect herbivores are likely to respond differently
to increasing temperature, with possible reductions in insect

predation (i.e. greater insect numbers). Unfortunately, while
there is evidence suggesting that insect damage could increase
as a function of climate, specific experimental results related
to rice, soybean and wheat remain scarce. Similarly, while
we recognize plant–pathogen interactions as a factor affecting
crop yields, our ability to predict CO2/climate change impacts
on pathogen biology and the impact of subsequent changes
on the yield of rice, soybean or wheat is tenuous at best as
specific experimental data are not available.

Given the importance of weeds to crop production, it is
surprising to find so few assessments of how changes in CO2/
climate will alter their impact on agriculture (a recent review
of all crop/weed competition studies is given in table 2.2 in
Ziska & Bunce, 2006). Yet, we are aware of only a handful
of weed/crop competition studies with respect to soybean
(Ziska, 2000; Ziska & Goins, 2006), one study with respect
to rice (Alberto et al., 1996) and no studies with respect to
wheat, where the effects of projected changes in CO2/climate
on seed yield have been quantified (Fig. 2). As with pests and
diseases, CO2/climate effects on weed biology and crop/weed

Fig. 2 Per cent reduction in seed yield for sorghum (Sorghum bicolor) 
and soybean (Glycine max) (a C4 and C3 crop, respectively) as a 
function of competition from C3 (velvetleaf (Abutilon theophrasti) 
and lambsquarter (Chenopodium album)) and C4 (red-root pigweed 
(Amaranthus retroflexus)) weeds at ambient CO2 (open bars) and at 
∼250 µmol mol–1 above ambient (closed bars). Weed spacing was 
two plants per meter of crop row in all cases. Increasing CO2 resulted 
in a greater loss in crop seed yield from weedy competition (indicated 
by the asterisk) in all cases, except for red-root pigweed in soybean. 
See Ziska (2000, 2003) for additional details.
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competition represent a significant biological uncertainty with
respect to predicting future yields of rice, soybean and wheat.

Another biological uncertainty is the range of intraspecific
variability within a given crop to changes in CO2 and/or climate.
Morgan et al. (2005) suggested that variation among soybean
cultivars in yield response to enhanced CO2 was small and
unlikely to be a factor in soybean response in a FACE system.
This is in contrast to cultivar comparisons that have shown large
differences in response ratios in glasshouse and OTC studies
for soybean (Heagle et al., 1998; Ziska & Bunce, 2000; Ziska
et al., 2001). Overall, in fact, there are at least enough prelim-
inary data to suggest that genotypic variation in the response
of rice, soybean and wheat yields to CO2 could be substantial
(e.g. Manderscheid & Weigel, 1997; Moya et al., 1998; Ziska
et al., 2001, 2004; for a recent review, see Newton & Edwards,
2006). Analysis of cultivar differences in CO2 responsiveness
and exploitation of such differences could significantly improve
global food security as CO2 increases. Much of the US Depart-
ment of Agriculture, Agricultural Research Service (USDA-ARS)
effort for soybean in this regard was switched to the SoyFACE
system at its inception, because that system is better suited to field
comparisons among multiple cultivars, but no reports of com-
parative yield responses from FACE have been published to date.

However, to properly assess intraspecific variation, other
variables in addition to CO2 need to be examined. These data
are noticeably lacking, particularly for soybean and wheat. In
a glasshouse study involving 17 different rice varieties, geno-
typic variation in response to CO2 was negated as temperature
increased, because, for all cultivars, high temperature resulted
in pollen sterility no matter the CO2 concentration (Ziska
et al., 1996). Similarly, for a field OTC study, the combination
of increasing CO2 and air temperature resulted in reduced grain
yield and declining harvest index compared with increased
CO2 alone for three rice cultivars (Moya et al., 1998). Still,
given that there are over 100 000 rice cultivars (and thousands
of soybean and wheat cultivars), it seems reasonable to suggest
that a more thorough evaluation of the response of crop germ-
plasm to CO2/climate is warranted. Unfortunately, at present,
we are unaware of any such systematic evaluation in regard to
CO2/climate at the government, university or corporate level.
Yet such an assessment is imperative for identifying those
cultivars that could maintain, or improve, yields in response
to changes in CO2/climate and improve food security.

VIII. Uncertainty vs methodology

The uncertainties listed here are not meant to be inclusive, but
illustrative. If our goal is to improve our predictive capacity
regarding crop yields with respect to CO2/climate, then a
better understanding/quantification of these (and other)
uncertainties would seem to be a high priority. Which meth-
odology, then, is best suited to studying these uncertainties?
At present, no one methodology is capable of providing a
perfect evaluation of future CO2/climate with precise control

(i.e. all current methodologies have limitations). However, given
that CO2/climate is likely to affect a range of biological properties
over spatial and temporal scales, a number of methodologies
could, and should, be used to improve our knowledge of these
uncertainties. For example, superambient changes in CO2 for
a range of temperatures could be assessed for crop yields using
SPAR units; greenhouses or growth chambers could be used
to assess genetic and proteomic differences and responses among
crop lines to CO2/climate; FACE could be used to assess
ecosystem interactions among weeds, pests and diseases, etc.
Ultimately, appropriate technologies should be determined by
the specific level(s) of organization the researcher wishes to
investigate and/or the relative ability to adequately control the
environmental variable of interest.

This does not mean that we should ignore methodological
deficiencies. New and innovative strategies to simulate and
control a range of projected environments using methodologies
that include control of abiotic/biotic uncertainties over large
spatial scales are crucial in bettering our understanding of the
underlying plant processes likely to be affected by projected
changes in CO2/climate. Understanding of such processes, in
turn, will allow us to extrapolate experimental data to improve
model scenarios for a wide range of crop yields with respect to
global climate change. To that end, improvement of current
systems, such as inclusion of heaters to allow warming to be
included as an experimental variable in large FACE rings, and
improved technology to minimize microclimate effects in
SPAR units and OTCs, as well as new approaches (e.g.
urbanization as a surrogate for climate change; see Ziska et al.,
2003), need to be explored and characterized.

IX. Modelers and experimentalists

Given the unprecedented scale and scope of anticipated changes
in CO2/climate, it is tempting to ignore the large number of
uncertainties as being unquantifiable, and to focus on one or
two parameters (e.g. CO2 in isolation from other changes) that
can be well defined. In general, such an approach is consistent
with that of many experimentalists who work in large part on
quantifying one or two variables, usually in the short term
(1–2 yr). Such an approach is also certainly valid as it provides
key information, but only for a specific set of circumstances.

However, given the large adjustment in scale, uncertainties
in crop yields may be magnified in global change models.
This is not an expression of the modeler’s aptitude; rather, it
is a reflection of experimental unknowns. For example, early
projections by Kropff et al. (1993) of the effect of climate on
rice yields assumed that rising CO2 and temperature acted
independently (i.e. the response to CO2 did not change with
temperature). Yet, since these early assessments, it has become
apparent that elevated CO2 may exacerbate the negative effects
of temperature, particularly on pollen sterility (Kim et al., 1996;
Matsui et al., 1997), and that higher night-time temperature
may limit rice yields (Peng et al., 2004). Incorporation of
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temperature/CO2 interactions might, of course, improve the
efficacy of model projections regarding the consequences of
CO2/climate changes on rice yield (as might incorporation of
weeds, pests and disease impacts, or cultivar variability, or
nitrogen deposition, etc.).

X. Final thoughts

Given a current population of more than six billion with a
projected increase of an additional billion every 12 yr, being
able to reliably predict the impact of changing CO2/climate
on global crop productivity certainly should be ‘food for
thought’ for scientists and policy makers (Long et al., 2006).
How, then, do we improve our predictive capacity? Long et al.
(2005, 2006) contended that re-evaluation of crop yields in
response to elevated CO2 concentration using FACE technology
is a key means to improve model reliability. While FACE
technology can offer some advantages to the experimentalist,
we have also shown that the relative effect of CO2 on yield
stimulation of rice, soybean and wheat is, with the exception
of single plant evaluations, consistent across a range of CO2
concentration control methodologies.

Given the importance of models in predicting the impact
of CO2 and/or climate change on food security, it is of obvious
interest to try, whenever possible, to improve the efficacy of
existing models (Tubiello et al., 2007). However, in addition
to the concerns related to methodology (Long et al., 2005,
2006), we would suggest a broader evaluation and inclusion
of more of the biotic and abiotic factors mentioned here
into any integrated assessment of rising CO2 and crop yields.
Incorporation of these factors will certainly require unprece-
dented cooperation and data sharing between modelers and
experimentalists of all disciplines at the government, university
and private sector levels – a daunting task in an age of specializa-
tion and increased competition for diminished resources.
Nevertheless, by more precisely defining the impact of CO2/
climate on crop yield, we hope to be able to reduce uncertainty
regarding global food supply in an uncertain and changing
environment.
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