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Introduction 
Current irrigation practices in arid and semi-arid regions are not sustainable. These regions are 
experiencing increasing population and development with increasing demands for limited fresh water 
for municipal and industrial use. In arid areas fresh water use is currently in excess of sustainable 
quantities. In the southwestern U.S. there are reductions in water deliveries to irrigated areas and total 
irrigated acreage is currently declining and projected to decline further. Reductions in water deliveries 
are the result of various factors, including drought, court mandated surface water flow releases for 
environmental concerns, purchases of irrigation water by municipal water organizations, and 
restrictions on the discharge of drainage waters.  

The southwestern U.S. as well as other regions of the world, are predicted to be drier as a result of 
global climate change. In addition, the already documented warming in winter and spring in the 
southwestern U.S. means that the winter snowpack will be smaller and the early and rapid spring 
runoff cannot be captured with our current surface storage capacity. Many predict the demise or at 
least drastic reduction in irrigated acreage in the southwestern U.S. as a result of these combined 
factors. This result would have a major social and economic impact, as irrigated agriculture produces 
40% of the agricultural revenue and most of the U.S. fruits and vegetables. Nonetheless, at current 
food prices, irrigated agriculture cannot compete against the urban sector for fresh water resources in 
an economically competitive water market.  

Improvements in irrigation efficiency and leaching control are possible and can reduce the use of 
fresh water by irrigated agriculture.  However these improvements are not sufficient as they provide 
only a partial solution to sustaining irrigation.  Most regions have abundant quantities of low quality 
saline, drainage and municipal waste waters, most of which could potentially be used for irrigation. 
These resources will almost certainly be a major source of irrigation water in the future. Use of these 
waters requires new strategies for water management including new knowledge of factors affecting 
infiltration and crop production and development of numerical models that consider the numerous 
interactions, enabling evaluation of various management practices. We also need to develop 
alternative crops, and new varieties that are tolerant to salinity, ion imbalances and toxic elements.  

Water quality criteria for irrigation 
Current water quality criteria were developed in the era of abundant fresh water supplies. The 
objectives were simple criteria that would avoid problems under most conditions. These criteria 
currently reject waters that in some instances can be detrimental. Often the criteria have been 
developed into regulatory standards, further restricting use of low quality waters.  In many instances 
use of recycled and brackish water, currently considered unsuitable, can result in some reduction in 
potential yield.  Nonetheless this can be acceptable and still desirable if the absolute yield is 
considered in the context of society needs and grower profitability. This may require incentives for 
the farmers to exchange fresh water for saline and degraded waters, or to compensate for needed 
amendments.  The criteria do not consider that in many regions, the crop water requirements can be 
met by a combination of rain, fresh water and saline water, thereby diminishing the predicted salinity 
impact when considering the saline water. The criteria also do not consider that in Mediterranean 
climates winter rain leaches the soil.  Thus salinity is low in the early stages of plant growth which are 
often the most salt sensitive, suggesting that the criteria overestimate salt damage. Use of degraded 
waters may either reduce yield or cause additional management expenses. Treated wastewaters have 
elevated pH, alkalinity, and sodium, relatively low Ca/Mg ratios, high concentrations of dissolved 
organic matter, all adverse to infiltration and soil structure, as well as ion imbalances and elevated 
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concentrations of potentially toxic elements. Use of these waters may require periodic application of 
amendments and/or leaching, utilizing new knowledge about factors affecting infiltration and crop 
production.  Environmental concerns about recycled water include plant uptake of toxic elements, 
pharmaceuticals, endocrine disrupters etc. as well as off-site impacts to discharge areas.  

Water suitability for irrigation and sodicity hazard related to infiltration has been established primarily 
from laboratory experiments, These are almost all based on packing sieved and ground soil into 
columns for short term experiments of saturated hydraulic conductivity with waters of decreasing 
electrical conductivity (EC) and constant sodium adsorption ratio (SAR).  As mentioned above, rain is 
an important factor in the soil water budget of most irrigated areas and it impacts the soil chemical 
and physical conditions.  We have examined both calcareous soils from the Upper Great Plains of the 
U.S. and a non calcareous soil from the arid southwestern U.S. in year- long outdoor studies with 
conditions of combined simulated rain and irrigation and wetting and drying cycles with waters of 
varying SAR and at an electrical conductivity of either 1.0 and 2.0 dS/m, and varying pH.   

Rain has an adverse impact related to the SAR of the soil water at the time of infiltration. Contrary to 
results from column studies, there were little differences in the infiltration results from the two 
salinity levels. Based on these studies, we conclude that when considering rain as well as irrigation 
water, there is no threshold SAR value at which there is a reduction in soil infiltration. Any increase 
in SAR above the control results in a reduction in infiltration (Suarez et al. 2006, Suarez et al. 2008). 
Similar results, but with less infiltration rate loss, has been observed under experiments with irrigation 
only (Suarez and Gonzalez in preparation).  Long term changes in infiltration are also greater than the 
changes observed in short term laboratory column studies (Suarez et al., 2008).  These results indicate 
a need to modify the Ayers and Westcot (1985) guidelines. The impact of decreasing infiltration 
depends on site-specific conditions. For example for sandy soils a 20% reduction in infiltration over 
the course of a year is not significant but for a clay soil with limited infiltration, the impact could 
result in a corresponding reduction in water availability and crop yield.   

In addition to EC and SAR there are other important factors that impact water suitability related to 
infiltration. Elevated pH adversely impacts saturated hydraulic conductivity in column studies 
conducted at constant EC and SAR (Suarez et. al. 1984), as well as infiltration measured in outdoor 
plots (Suarez and Gonzalez, in preparation) . Soils also differ in terms of their susceptibility to SAR, 
related to clay type, organic matter content, oxide content, among other factors. Climatic conditions 
(ET0), crop water demands, irrigation system, tillage and other management practices also impact the 
adverse effect of sodium on infiltration. Degraded waters generally contain increased levels of 
alkalinity (thus elevated pH) and often contain elevated concentrations of minor elements such as 
boron that may adversely affect crop growth. In many instances use of these waters may be judged 
unsuitable based on steady state considerations however transient conditions suggest conditions under 
which they may be used. Examples are given for model simulations using high boron waters for 
irrigation and suggestions for optimal management.    

Irrigation water salinity and leaching requirement 
Leaching requirements for salinity control have been based on steady state analysis of irrigation water 
with simplifying assumptions about the relation of EC of soil water extract to EC of soil water, how 
plants integrate water uptake and soil salinity, and sensitivity to salts at different stages of growth.  
Converting soil water salinity to the salinity of the water extracted by the plant is generally done by 
specifying a leaching fraction.  

The salinity status (EC) of soils as well as soil SAR is most commonly reported in terms of the 
saturation extract. This is considered by most to provide a good reference water content for 
comparisons among experiments and field conditions. The salt tolerance of crops is also reported in 
terms of the saturation extract EC.  Alternatively other standards such as 1:2 and 1:5 soil:water 
extracts are also utilized in some  regions, and water standards have been developed in terms of those 
extracts.  
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Plants respond to soil water EC and not the measured EC of a diluted, reference water content. Simple 
conversions of soil water EC (generally at field capacity) to saturation extract EC exist but can 
sometimes lead to significant errors. These errors increase for extraction methods at higher water 
contents. For gypsum containing soils, soil water salinity is considerably lower than estimated from 
the extracts. This salinity over-estimation leads to over-estimation of salt damage in gypsum 
containing soils. Additionally EC is not linear with dilution as assumed, this is usually a minor error 
but it results in overestimation of the soil water salinity. These factors can be evaluated using the 
Extract Chem. model (Suarez and Taber, 2007). This model also serves to allow more accurate 
conversion of 1:2 and 1:5 extract information. The model also enables us to evaluate the existing 
guidelines based on different extraction methods.  

Extent and timing of rain is an important aspect that needs to be considered when evaluating 
suitability of waters for irrigation. Rain is generally ignored. As a first approximation we can consider 
that crops respond to the average of the rain and irrigation water composition, thus indicating 
improved plant response relative to irrigation only conditions. Where winter rains and leaching occur, 
such as in Mediterranean climates, soil salinity is reduced during the early stages of crop growth, 
which are generally the most salt sensitive stages, thus increased salinity may be tolerated. Model 
simulations using UNSATCHEM (Suarez and Simunek, 1997), allow for evaluation of different 
management strategies related to leaching, transient conditions, sequential use versus blending etc.  

Salt tolerance tables are used to recommend suitable crops based on irrigation water salinity and 
avoidance of yield loss. . Because salt tolerant crops are generally lower value crops, and often lower 
yielding crops, they should not be automatically recommended for saline conditions. Despite some 
yield loss, moderately salt tolerant crops such as alfalfa may out-produce more salt tolerant crops 
forage grasses, such as wheatgrass at salinities up to 15 dS/m. In some instances moderate salt stress 
may enhance product quality. Many plants adapt to salt stress by increased accumulation of secondary 
metabolites such as soluble solids, sugars, organic acids, and proteins, thus increasing quality and 
marketability.  For example, salinity stress increases sugar and dissolved solids content of tomatoes 
and melons, increases content of beneficial antioxidant compounds in strawberries and increases oil 
and particularly the desired lesquerolic acid in lesquerella.  

Soil salinity can now be actively monitored at the field scale. Remote sensing technology can be used 
to provide rapid and inexpensive detailed field salinity assessments (Corwin and Lesch, 2005, and 
Lesch, 2006) and site specific management including evaluation of the need for amendments. Using 
this technology in combination with modeling (Suarez, 2001), allows for site specific leaching and 
reclamation within a field. Reduction in the use of amendments and leaching water for sodic soil or 
saline soil reclamation can be achieved by blocking the fields into different gypsum requirement 
zones, based on variations in clay content and SAR. These technologies, have already been 
commercialized using air imagery. Current amendment requirements to lower the soil exchangeable 
Na levels do not consider the significant calcium inputs from dissolution of calcite, thus 
overestimating gypsum requirements. This reduction in salt loading can be especially important if 
reclamation occurs in combination with high soil carbon dioxide concentrations (warm soil 
temperatures combined with wet surface soil conditions).  

Calculation of the leaching requirement is generally based on an assumed water uptake function, then 
calculation of salinity with depth (4 quarters) assuming EC is inversely related to water uptake. The 
root zone salinity is next averaged and compared to the published salt tolerance tables. This 
calculation overestimates the soil salinity experienced by the plant. Precipitation of calcite and the 
nonlinear interaction of water content and salinity mean that the osmotic pressure or EC is not as high 
as assumed in the lower depths of the soil. This calculation also does not account for the water uptake 
function used in the calculation of the soil EC.  Plants extract less water from the deeper depths 
(which are more saline) and more water from the surface.  This consideration also reduces the 
estimated salinity experienced by the plant. In addition, consideration that plants respond to salinity 
by preferentially growing roots and extracting water from non saline regions of the soil may further 
reduce the calculated need for leaching (Letey and Feng, 2007).      
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