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Abstract: Although alfalfa is moderately tolerant of salinity, the effects of salinity on nutrient 

composition and forage parameters are poorly understood. In addition, there are no data on 

the effect of salinity on the antioxidant capacity of alfalfa. We evaluated four non-dormant, 

salinity-tolerant commercial cultivars, irrigated with saline water with electrical 

conductivities of 3.1, 7.2, 12.7, 18.4, 24.0, and 30.0 dS·m−1, designed to simulate drainage 

waters from the California Central Valley. Alfalfa shoots were evaluated for nutrient 

composition, forage parameters, and antioxidant capacity. Salinity significantly increased 

shoot N, P, Mg, and S, but decreased Ca and K. Alfalfa micronutrients were also affected 

by salinity, but to a lesser extent. Na and Cl increased significantly with increasing salinity. 

Salinity slightly improved forage parameters by significantly increasing crude protein, the 

net energy of lactation, and the relative feed value. All cultivars maintained their 

antioxidant capacity regardless of salinity level. The results indicate that alfalfa can tolerate 

moderate to high salinity while maintaining nutrient composition, antioxidant capacity, and 

slightly improved forage parameters, thus meeting the standards required for dairy  

cattle feed. 
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1. Introduction 

Alfalfa (Medicago sativa, L.) is the most cultivated legume worldwide and the fourth most cultivated 

crop in the United States. Alfalfa is cultivated in most continents and in more than 80 countries occupying 

more than 35 million ha [1]. In the USA, it is among the top three field crops cultivated in 26 states, thus 

contributing more than US $10 billion a year to the farm economy, primarily as an animal feed [2]. 

Alfalfa is considered to be the most important forage crop for providing protein to dairy and beef 

cattle, sheep, horses, birds, and other livestock [1]. Feeding of alfalfa hay to lactating dairy cows has 

decreased sharply in the past 10 years, primarily as a result of economic issues associated with high 

water use, the costs of multiple harvests, and storage [3]. These authors also mentioned the increased 

use of corn and cereal silages in animal diets to replace alfalfa. However, dry matter intake is 

significantly higher for cows fed alfalfa and barley silages than for cows fed oat and triticale silages [4]. 

According to these authors, alfalfa silage contains higher concentrations of all minerals analyzed 

compared with cereal silages, except for Na. Moreover, the cows also absorbed K better from alfalfa 

silage (89%) than from cereal silages (74% to 83%). Alfalfa is highly important to livestock 

considering its fast canopy recovery after each harvest, its relative tolerance of salinity, its capacity to 

endure temperature extremes (e.g., hot days and cold nights), its nutritional value, and palatability to 

livestock. 

In arid lands, irrigation is necessary for high forage mass production. However, this irrigation is often 

associated with salinization. Among the approximately 270 million hectares of irrigated land worldwide, 

about 40% is located in arid/semiarid zones [5] where soil salinization generally occurs. Some of the 

typical agronomic parameters used to evaluate the salinity tolerance of crops include yield, survival, 

plant height, and relative growth rate or reduction [6–8]. Few researchers have evaluated alfalfa forage 

mass production, nutrient composition, and forage parameters for livestock under high salinity  

stress [9–12]. Further, we found no published reports on the effects of salinity on the antioxidant 

capacity of alfalfa. It has been reported that salinity stress imposed on a model legume (Lotus japonicus) 

increased antioxidant enzyme levels in leaves [13], and that the expression of genes associated with 

antioxidant enzymes increased in response to excessive levels of reactive oxygen species (ROS) 

generated by salinity stress [14]. These authors postulated that these enzymes protect plant tissues from 

ROS damage triggered by salinity stress, but there are no reports on the biosynthesis of non-enzymatic 

antioxidants, such as flavonoids and phenolic compounds, by alfalfa in response to salinity. Alfalfa 

shoots are a rich source of antioxidant flavonoids, mainly apigenin, tricin, luteolin, and chrysoeriol 

glycosides [15], and of phenolic compounds reported to have anti-inflammatory [16], antioxidant, and 

neuroprotective activity in mice [17]. The ratio of alfalfa antioxidant flavones acylated with 

hydroxycinnamic acid to non-acylated (lower antioxidant capacity) flavones increases in summer when 

plants are exposed to a higher amount of UV-B radiation [15]. Antioxidant flavonoids in Ligustrum 

vulgare were reported to increase under both UV-B and NaCl salinity stress [18]. Thus, although 
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alfalfa is fed to livestock for its high protein content, digestibility, and palatability, there is a scarcity of 

information on the effects of salinity on alfalfa mineral composition and forage quality, while there is 

no information on its antioxidant capacity under salinity stress. 

In this work, we evaluated four commercial alfalfa cultivars, tolerant to salinity, for their response 

to salinity when cultivated in outdoor sand tanks and irrigated at six salinity levels with water high in 

sodium, chloride, and sulfate. The goal of our work was to evaluate the effects of increasing salinity on 

the mineral nutritional composition, forage quality, and antioxidant capacity of alfalfa shoots. 

2. Experimental Section 

2.1. Plant Material and Growth Conditions 

Four commercial non-dormant, salinity-tolerant, Medicago sativa L. cultivars “Salado”, “SW8421S”, 

“SW9215”, and “SW9720” (S&W, Fresno, CA, USA, www.swseedco.com) were grown from seeds in 

24 outdoor sand tanks from 23 June 2011 to 17 April 2012 at the Salinity Laboratory (USDA-ARS) in 

Riverside, California. Irrigation water at different levels of electrical conductivity (EC) was applied to 

four cultivars in a split-plot design. The irrigation water EC (measured in deciSiemens per meter) levels 

consisted of a control using Riverside tap water (EC = 0.6 dS·m−1) plus fertilizers (EC = 3.1 dS·m−1), 

and treatments of 7.2, 12.7, 18.4, 24.0 and 30.0 dS·m−1, with four tanks (replicates) per treatment. The 

tanks measured 82 cm wide by 202 cm long by 85 cm deep. Further details on sowing density per 

cultivar and irrigation frequency are described elsewhere [19]. Salinity treatments and the irrigation 

water control (EC of 3.1 dS·m−1) were designed to simulate the drainage water composition of the Central 

Valley, CA, with subsequent concentration of salts considering mineral precipitation (calcite and/or 

gypsum) using the UNSATCHEM model [20], which simulates typical soil water interactions. All 
reservoirs had modified Hoagland’s solution, and added Na+, SO2−

4 , and Cl− (including control water) to 

reach the target EC; the detailed composition is described elsewhere [19]. The composition of Riverside 
tap water (EC = 0.6 dS·m−1) in mmolc·L−1 was: 3.4 Ca2+, 0.8 Mg 2+, 1.6 Na+, 0.1 K+, 1.3 SO2−

4 , 0.8 Cl−, 

and 0.49 NO3
−. The water composition of all the treatment waters is shown in Table 1. 

2.2. Plant Growth and Nutrient Composition 

Growth and forage mass measurements were collected at seven harvest dates except for the plants that 

were irrigated with water with an EC = 24.0 dS·m−1, which were harvested three times (4th, 6th, and 

7th harvests) during the 299 days of cultivation and are presented elsewhere [19]. For this work, we 

present data on ionic and nutrient composition at 84 days after seeding (DAS) (2nd harvest, on 15 

September 2011) and at 299 DAS (7th harvest, on 17 April 2012). The second harvest was conducted 

when the control plants were at the early flowering stage, corresponding to morphological stage 5 [21]. 

The seventh harvest was conducted when the control plants were at a late vegetative stage (due to the 

absence of flowering). The shoot fresh and dry weights (dried at 60 °C for 48 h) were recorded at each 

harvest and all plants were cut back to 5–8 cm above the sand surface. 
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Table 1. Chemical composition of the water used in the six salinity treatments in this 

study. EC, electrical conductivity of irrigation water that defines each salinity level (in  

deciSiemen per meter); mmolc·L−1, millimole of charge of each cation or anion listed. 

Treatment 1 2 3 4 5 
EC (dS·m−1) 3.1 7.2 12.7 18.4 24.0 

Ion Concentration in mmolc·L−1 
Ca2+ 6.4 19.2 25.0 29.4 28.4 
Mg2+ 4.0 14.3 24.1 40.7 58.5 
Na+ 15.5 54.2 101 169 229 
K+ 6.4 6.4 6.2 6.4 6.6 

SO4
2− 15.3 53.3 85.0 132 182 

Cl− 8.0 31.8 62.9 104 133 
PO4

3− 0.3 0.3 0.3 0.4 0.5 
NO3

− 5.5 5.6 5.5 6.0 6.0 

All salinity levels had the following added nutrients, (in mmolc·L−1): 0.3 KH2PO4, 5.0 KNO3, 3.1 MgSO4.7H2O, 

3.0 CaCl2, and 1.0 KCl. Table modified from [19]. Highest salinity level (30 dS·m−1) not shown as all plants 

died at this level. 

The levels of the macronutrients N, P, K, Ca, Mg, and total S, and of the micronutrients Fe, Cu, Mn, 

Zn, and Mo were determined from nitric acid digestions of the dried and ground plant material using 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES, 3300DV, Perkin-Elmer Corp., 

Waltham, MA, USA). There was insufficient plant material to analyze samples from the EC = 24 dS·m−1 

treatment at 84 DAS, and there are no data from the EC = 30 dS·m−1 treatment as all plants died at this 

salinity level. 

2.3. Oxygen Radical Absorbance Capacity (ORAC) and Total Phenolics (TP) Analyses 

Ground dried samples (0.5 g) of alfalfa tops were mixed with 5 g of sand. Each mixture was then 

extracted in a pressurized stainless steel cell (ASE 350, Thermo Scientific/Dionex, Sunnyvale, CA, 

USA) using hexane to extract the lipophilic fraction and acetone:water:acetic acid (70:29.5:0.5 by 

volume) for the hydrophilic fraction. The extraction time was 5 min, followed by a 100% flush, a 60-s 

purge with 2 cycles, at 80 °C and 1500 psi. The hexane extract was evaporated to dryness with nitrogen 

in an evaporator (N-EVAP, Organomation, Berlin, MA, USA) at 37 °C and then redissolved in 10 mL 

of pure acetone; a 50-μL aliquot was collected for dilution and lipophilic ORAC analysis. After 

extraction with aqueous acetone by the ASE 350, the samples were made up to a volume of 25 mL in 

the acetone-water-acetic acid solution. A 150-μL aliquot of the aqueous acetone extracts was diluted for 

hydrophilic ORAC analysis. The ORAC assay is based on the inhibition of the peroxyl-radical-induced 

oxidation initiated by thermal decomposition of azo-compounds such as [2,2′-azobis(2-amidino-

propane) dihydrochloride (AAPH)] [22]. Samples were analyzed for their antioxidant capacity 

(ORAC) in triplicate. The same ASE 350 aqueous acetone extracts were used for quantification of TP 

according to the Folin-Ciocalteu method [23,24] using gallic acid (cat. No. 398225, Sigma-Aldrich, 

Saint Louis, MO, USA) as the standard. A 20-μL aliquot of the extracts or a gallic acid standard 

solution was pipetted into a cell of a 96-cell microplate, followed by the addition of 100 μL of 0.4 N 

Folin Ciocalteu phenol reagent (stock solution F9252, Sigma-Aldrich, Saint Louis, MO, USA) and the 
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addition of 80 μL of 0.94 M Na2CO3. The plate was covered with a plastic plate cover and allowed to 

develop color for 5 min at 50 °C. The absorbance was read at 765 nm using a microplate 

spectrophotometer (xMark™, BIO-RAD, Hercules, CA, USA). 

2.4. Forage Quality 

Shoots were dried at 60 °C for 48 h. Samples were ground to a size of 1.0 mm and analyzed for acid 

detergent fiber (ADF), neutral detergent fiber (NDF), and moisture by an independent laboratory 

(Analytical Feed & Food Laboratory, Visalia, CA, USA), according to AOAC International  

Methodology [25]. The parameters and analytical methods used were AOAC 973.18 for ADF, AOAC 

2002.04 for NDF, and AOAC 930.15 for moisture. The parameters calculated according to ADF, NDF, 

and/or moisture include the net energy for lactation (NEL), calculated as NEL = 0.8611 – (0.00835 × 

ADF); relative feed value (RFV), calculated as RFV = (DMD × DMI)/1.29; dry matter intake (DMI), 

calculated as DMI = 120/NDF; and dry matter digestibility (DMD), calculated as DMD = 88.9 – 

(0.779 × ADF), according to National Forage Testing Association [26]. Crude protein (CP) was 

estimated as N% × 6.25 [27]. Nitrogen was determined by sample combustion in pure oxygen and 

measured by thermal conductivity detection (AOAC, 2000; ID 990.03) using a Vario Pyro Cube® 

(Elementar Americas, Inc., Mt. Laurel, NJ, USA). 

2.5. Statistical Analysis 

The nutrient composition data for each harvest were analyzed using a split-plot procedure, with the 

following statistical model: 

Yijk = μ + Sj + Ri+ Ck + (SC)jk + εijk 

where R, S and C represent the replicates (i = 1,…4), salinity level (j = 1,…5), and cultivars  

(k = 1,…4) respectively. All effects were considered as fixed. Thus, Yijk is the response to replicate i in 

Sj and Ck, μ is the overall mean; and εijk represents the random error. The significance in the split-plot 

design was calculated by deriving the mean squares in the analysis of variance using the InfoStat 

program [28] with a completely randomized design (CRD). The significance of the main plot (salinity, 

S) was tested by S > R (salinity inside replicate) as an experimental error of the main plot, and the 

mean square error was used to test significance of the subplot (C) and the interaction S × C (salinity 

per cultivar). The mean differences were determined using the Fisher LSD test at p ≤ 0.05. Chemical 

analyses for forage parameters were performed on two samples per cultivar, which were combined to 

represent each salinity level (n = 8) per harvest. These data (Figure 1) were subjected to a one-way 

(salinity) ANOVA with means compared by the Fisher LSD test. For total phenolics (TP) and 

antioxidant capacity (ORAC) analyses, samples were analyzed in triplicate, where total phenolics were 

quantified from a gallic acid standard curve. The effects of salt as a main plot, cultivar as a subplot, 

and the interaction between salt and cultivar (salt × cultivar) for ORAC and TP concentrations were 

analyzed at p ≤ 0.05 using the GLM procedure with a standard split-plot test format in SAS  

(version 9.3; SAS Institute, Cary, NC, USA). The differences in ORAC and TP between the two 

harvests were analyzed at p ≤ 0.05 using the T-test procedure in SAS (version 9.3; SAS Institute, Cary, 

NC, USA).   
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3. Results 

3.1. Forage Quality 

The impact of salinity on forage quality, expressed as the mean of the four cultivars at each salinity 

level per harvest, is presented in Figure 1. The parameters used to evaluate forage quality include acid 

detergent fiber (ADF), neutral detergent fiber (NDF), net energy for lactation (NEL), crude protein 

(CP), and relative feed value (RFV). 

 

Figure 1. Impact of salinity increase on acid detergent fiber (ADF), neutral detergent fiber 

(NFD), net energy of lactation (NEL), crude protein (CP), and relative feed value (RFV) of 

salt-tolerant alfalfa. Data points represent the means (±SD) of the salinity-tolerant cultivars  

(n = 8). Means with the same letter are not significantly different according to a Fisher LSD 

test (p ≤ 0.05). For the harvest at 84 DAS, the lack of data at 24 dS·m−1 was due to there 

being insufficient plant material for analysis because of growth limitations. 

Salinity had a significant effect on the forage quality for both harvests (p ≤ 0.001). At 84 DAS, 

there were no differences up to EC = 7.2 dS·m−1 for all parameters evaluated. Above that level, ADF 

and NDF decreased by approximately 8% and 9%, respectively, from 12.7 to 18.4 dS·m−1. 

Consequently, the RFV (related to the ADF and NDF contents) increased sharply between those levels. 

CP increased by 5.2% from 7.2 to 18.4 dS·m−1 (Figure 1). In addition, the mean NEL increased as 

salinity increased. At 299 DAS, salinity also affected all forage parameters (p ≤ 0.05). In contrast to 84 
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DAS, at 299 DAS significant differences between the control and salinity treatments generally were 

first observed at 12.7 dS·m−1 instead of at 7.2 dS·m−1 (Figure 1). 

3.2. Nutrient Composition of Alfalfa 

3.2.1. Macronutrients 

The macronutrient (modified from [19]) data, including N and P, are expressed on a dry matter 

(DM) basis (Table 2). The main macronutrients found in alfalfa shoots (g·kg−1 DM) at both harvests 

were N, K, and Ca, while total S, Mg, and P were present at much lower levels (Table 2). Salinity had a 

significant effect on all macronutrients for both harvests, except for total S at 299 DAS. Nitrogen 

increased with salinity for both harvests, reaching levels that were significantly higher than those of the 

control at and above 12.7 dS·m−1 (84 DAS), and at and above 18.4 dS·m−1 (299 DAS). Shoot K 

decreased significantly (P ≤ 0.01) for all cultivars and harvests as salinity increased. The calcium 

content remained constant up to 7.2 dS·m−1 (84 DAS) or up to 12 dS·m−1 (299 DAS), but decreased 

significantly for both harvests (more drastically at 299 DAS) as salinity increased. The Mg levels 

significantly increased for both harvests, with salinity, from the control to the highest level of salinity 

(84% and 48% increases for 84 DAS and 299 DAS, respectively). Sulfur concentrations increased with 

salinity, being significant (p ≤ 0.01) at 84 DAS, but not at 299 DAS. Concentrations of P remained 

constant up to 12.7 dS·m−1, but increased significantly (p ≤ 0.01) above that salinity level for both 

harvests (Table 2). There was a significant (p ≤ 0.01) cultivar effect for all macronutrients (except for 

N) at 84 DAS, while at 299 DAS, there was a significant cultivar effect only for Ca and Mg (both at p 

≤ 0.05). Both Na and Cl increased significantly (p ≤ 0.01) in shoots with increasing salinity, but these 

and detailed data by cultivar and salinity are presented in a companion paper [19]. 

Table 2. Average macronutrients (±SE) in alfalfa shoot dry matter (DM) according to 

salinity levels. EC, electrical conductivity of irrigation water in deciSiemens per meter. 

ND, not determined (insufficient biomass). Modified from [19]. 

N P K Ca Mg Total S 

DM (g·kg−1) 

EC dS·m−1 Second Harvest (84 DAS) 

3.1 40.8 c ± 1.43 2.6 b ± 0.09 46.4 a ± 1.05 14.1 a ± 0.4 2.6 c ± 0.14 3.5 d ± 0.08
7.2 42.1 c ± 1.04 2.7 b ± 0.09 41.4 b ± 0.94 13.5 a ± 0.5 2.7 c ± 0.16 3.9 c ± 0.10

12.7 46.0 b ± 0.56 2.9 b ± 0.08 38.6 c ± 0.62 13.0 c ± 0.69 3.4 b ± 0.22 4.8 b ± 0.20
18.4 50.5 a ± 0.80 3.8 a ± 0.13 34.3 d ± 0.88 12.1 b ± 0.24 4.8 a ± 0.07 7.4 a ± 0.17
24 ND ND ND ND ND ND 

Seventh Harvest (299 DAS) 

3.1 34.1 d ± 1.07 3.4 b ± 0.17 40.3 a ± 1.12 18.0 a ± 0.51 2.5 c ± 0.08 3.8 a ± 0.12
7.2 37.6 bc ±1.37 3.1 b ± 0.06 30.4 bc ± 0.74 18.3 a ± 0.61 2.8 bc ± 0.12 4.6 a ± 0.20

12.7 30.8 d ± 1.77 2.8 b ± 0.14 31.0 b ± 0.68 16.7 a ± 0.51 3.2 ab ± 0.12 4.8 a ± 0.15
18.4 45.3 a ± 2.11 4.1 a ± 0.12 27.3 cd ± 0.56 12.1 b ± 0.45 3.0 bc ± 0.10 4.8 a ± 0.15
24 40.8 a ±1.92 4.3 a ±0.16 26.7 d ± 0.61 11.0 b ± 0.83 3.6 a ± 0.20 5.3 a ± 0.39

Different small letters within each column, and between EC levels, represent significantly different means 

according to Fisher’s LSD test (p ≤ 0.05), where n = 16 (except for N, n = 8) for EC levels. 
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3.2.2. Micronutrients 

Shoot micronutrients analyzed for the four alfalfa cultivars were iron (Fe), copper (Cu), manganese 

(Mn), zinc (Zn), and molybdenum (Mo) (Table 3). At 84 DAS, there were no differences in mean Fe 

concentrations (ranging from 99.1 to 109.6 mg·kg−1 DM) or Cu (2.07–3.11 mg·kg−1 DM) as a function 

of increasing salinity (EC). Mean concentrations of Mn and Mo tended to increase with increasing 

salinity with significant (p ≤ 0.05 and p ≤ 0.01, respectively) differences between the control and the 

highest salinity level (18.4 dS·m−1) at 84 DAS. There was a significant (p ≤ 0.01) increase in Zn 

concentration at each level of salinity increase at 84 DAS. At 299 DAS, the Fe, Cu, Mn, and Zn levels 

remained mostly unchanged, but there was a small but significant (p ≤ 0.05) decline (16%–28%) in the 

Fe levels between the 3.1 dS·m−1 control (116 mg·kg−1 DM) and the other saline treatments. Mn 

showed a transient increase of 42% (17.3 to 24.6 mg·kg−1 DM) as salinity increased from 3.1 to  

7.2 dS·m−1, and then declined to the salinity control levels. In general, the shoot Mo concentrations for 

all levels of salinity were significantly (p ≤ 0.05) higher than those of the control (Table 3). 

Table 3. Average micronutrient concentrations (±SE) in alfalfa shoot dry matter (DM), 

according to salinity levels. EC, electrical conductivity of irrigation water in deciSiemens 

per meter. ND, not determined (insufficient biomass). 

Fe Cu Mn Zn Mo 

DM (mg·kg−1) 

EC dS·m−1 Second Harvest (84 DAS) 

3.1 104.0 a ± 6.29 2.1 a ± 0.27 25.5 b ± 3.38 40.9 d ± 1.32 2.0 c ± 0.09 
7.2 99.1 a ± 4.90 2.3 a ± 0.10 31.7 ab ± 4.8 45.9 c ± 1.00 3.1 b ± 0.11 

12.7 106.5 a ± 5.89 3.1 a ± 0.16 34.8 a ± 4.10 54.9 b ± 1.11 3.2 b ± 0.14 
18.4 109.6 a ± 5.0 3.1 a ± 0.19 34.8 a ± 1.10 60.5 a ± 1.25 4.1 a ± 0.11 
24 ND ND ND ND ND 

Seventh Harvest (299 DAS) 

3.1 116.1 a ± 6.35 5.8 a ±0.83 17.2 b ± 0.91 97.6 a ± 3.36 2.7c ± 0.19 
7.2 97.7 b ± 7.35 6.1 a ± 0.64 24.6 a ± 1.44 89.9 a ± 3.26 6.4 a ± 0.43 

12.7 89.9 b ± 7.35 6.5 a ± 0.41 18.9 b ± 0.99 105.6 a ± 3.18 6.3 a ± 0.44 
18.4 83.5 b ± 3.17 5.3 a ± 0.26 17.4 b ± 1.05 101.3 a ± 3.26 4.7 c ± 0.36 
24 92.3 b ± 7.69 5.7 a ± 0.49 14.8 b ± 1.04 98.3 a ± 3.85 4.2 c ± 0.21 

Different lower case letters within each column, and between EC levels, represent significantly different 

means according to Fisher’s LSD test (p ≤ 0.05), where n = 16. 

3.3. Antioxidant Capacity of Alfalfa 

Salinity had no effect (p > 0.05) on either the oxygen radical absorbance capacity (ORAC) or the 

total phenolic levels of the four alfalfa cultivars. The hydrophilic fractions of shoots had most  

(68%–99%) of the shoot total antioxidant capacity (Table 4). At early plant development (84 DAS), 

alfalfa shoots had hydrophilic ORAC (ORACHydro) levels that ranged from 190–230 μmoles·TE·g−1 

DM (Figure 2), while at 299 DAS, ORACHydro ranged from 229–274 μmoles·TE·g−1 DM, and the 

shoot total antioxidant capacity ranged from 244–287 μmoles·TE·g−1 DM (Figure 2, Table 4). Total 

phenolic (TP) concentrations ranged from 5.0–5.6 mg·GAE·g−1 DM for both harvests (Figure 2). 
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Table 4. Oxygen radical absorbance capacity of the lipophilic (ORACLipo) and hydrophilic 

(ORACHydro) fractions, and total antioxidant capacity (ORACHydro + ORACLipo), in micromoles 

of trolox equivalents per gram of dry matter (µmoles·TE·g−1 DM) of alfalfa irrigated with 

water of different electrical conductivities (EC). Plants were sampled on 17 April 2012 

(299 DAS). Data are means ± SE combined for the four cultivars with two replicated 

analyses per sample (n = 8). 

EC ORACLipo ORACHydro ORACTotal 

(dS·m−1) (μmoles·TE·g−1 DM) 

3.1 15.0 ± 2.4 239.5 ± 12.8 254.5 ± 13.6 
7.2 11.2 ± 1.5 252.1 ± 11.6 263.3 ± 11.0 

12.7 13.4 ± 2.5 273.6 ± 14.3 286.9 ± 14.2 
18.4 16.4 ± 1.7 268.4 ± 14.0 284.8 ± 15.5 
24.0 15.3 ± 1.0 228.8 ± 18.3 244.1 ± 18.2 

There was no effect of salinity (expressed as EC), cultivar, or the salt × cultivar interaction. 

 

Figure 2. Total phenolics (TP) and hydrophilic shoot oxygen radical absorbance capacity 

(ORAC) of four salinity-tolerant alfalfa cultivars irrigated with saline water with different 

electrical conductivity levels. ORAC was measured in micromoles of trolox equivalents 

per gram of dry matter (μmoles·TE·g−1 DM). TP was measured as mg of gallic acid 

equivalents per gram of dry matter (mg·GAE·g−1 DM). Bars represent means (±SD), where 

n = 4. Plants were sampled at 84 and 299 days after sowing. For the harvest at 84 DAS, the 

lack of data at 24 dS·m−1 was due to growth limitations. 
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4. Discussion 

4.1. Forage Quality 

Forage quality was based on laboratory analyses of shoot biomass and evaluated in relation to 

recommended forage standards for livestock production output (e.g., milk, body weight gain) for animals 

consuming alfalfa of similar nutritional value and energy content [3,29]. Lower NDF translates into 

both increased DMI and milk yield within a forage family [3]. Regarding alfalfa protein, approximately 

80% is degraded in the rumen of polygastric animals, but addition of tannins to alfalfa feed decreases 

rumen protein degradability and increases protein absorption [30]. 

Plant maturity is the main factor affecting forage quality [31], but the interaction between environmental 

and agronomic factors with maturity will influence the quality of alfalfa, even if harvested at the same 

stage of development [32]. Similarly, approaching harvest time, any stress that delays or accelerates 

alfalfa maturation affects the leaf-to-stem ratio and consequently, forage quality. The stems contain 

mostly structural components and are low in N, while the leaves contain mainly photosynthetic 

components and are richer in N than the stems. As a result, leaves have two to three times more CP than 

stems [33]. Increased leaf N leads to increased leaf area, thus increasing the leaf/stem ratio [34,35], but 

this could also be accounted for by the reduced stem height caused by salinity. The leaf-to-stem ratio 

increase leads to decreases in both ADF and NDF. Decreased ADF and NDF and increased shoot N lead 

to higher shoot CP levels in alfalfa irrigated with saline water. As reported in a previous study [19], 

plant height was significantly reduced by salinity only at 84 DAS, with the average difference in plant 

height between the control and EC = 18.4 dS·m−1 being 23 cm. Thus, we hypothesize that the decrease 

in height (shorter internodes) in salt-affected plants may have increased the leaf-to-stem ratio, shoot N, 

and CP by 61 g·kg−1 DM (6%). This decreased height of salt-affected plants also led to decreases in 

ADF and NDF of 107 and 122 g·kg−1 DM (10.7% and 12.2%) at 84 DAS and of 2.5% and 4% at  

299 DAS, respectively, improving forage potential quality (Figure 1). This is in agreement with a 

previous report that salinity increased alfalfa leaf-to-stem ratio, slightly improving forage quality [36]. 

Al-Khatib and collaborators [7] reported that the leaf-to-stem ratio of alfalfa increased while forage 

mass decreased in response to increasing NaCl until 20 dS·m−1 (200 mM NaCl). At 299 DAS, there 

was also a significant increase in CP of 42.1 g·kg−1 DM (4.2%) between the control plants and those 

under 24 dS·m−1 (reflecting the increased accumulation of leaf N with increased salinity). This 

increase in CP was observed at both 84 and 299 DAS because N accumulation in shoots increased by 

23% and 33%, respectively, in response to increased salinity (Table 2, Figure 1). Although plants had a 
fairly constant supply of N from NO −

3  in all irrigation treatments (Table 1), shoots significantly 

accumulated NO−
3-N, leading to higher CP. This could be due to morphological changes (e.g., increased 

leaf-to-stem ratio) under salinity stress or because the roots in the sand tanks were found to be 

associated with rhizobia. Despite the differences in developmental stages between the second and 

seventh harvest, there was a tendency for CP to increase with salinity levels up to 18.4 dS·m−1. Although 

plants irrigated with salinity levels higher than the control had different stages of maturity, plant height 

has been used to predict forage parameters under field conditions [33,37]. 

Differences in forage parameters changed more sharply at 84 DAS (late summer) with salinity than 

at 299 DAS (early spring). These changes were likely caused by differences in climatic conditions combined 
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with salinity [19]. Both climate and intervals between harvests (24 days before the second and 54 days 

before the seventh harvest) have a direct impact on maturity [33,38]. The RFV of alfalfa shoots in this 

experiment were similar to the values reported for alfalfa cultivars grown under field conditions with 

EC values ranging from 4–16 dS·m−1, although RFV did not change with salinity [39]. 

According to the classification of alfalfa hay [40], and judging from the parameters evaluated in this 

study, alfalfa herbage grown at the highest tolerated salinity fell within the “supreme” category. In 

comparison, forage grown at control salinity levels would be classified as “good” and “premium”. 

Hence, our results indicated that forage quality improved with increasing salinity (despite some variation), 

independently of the changes between harvest seasons. Similar increases in CP and decreases in ADF 

in the salinity-tolerant cultivars Salado and SW9720 under salinity stress have been reported [9,11]. 

An increase in CP of alfalfa cultivars less tolerant to salinity was also reported when salinity increased 

from 2.1 to 7.8 dS·m−1 [41] or when salinity ranged from 0.3–4.5 dS·m−1 in one out of three years of 

cultivation [42]. Both drought and salinity restrict the growth of alfalfa, and mild drought also 

improves the forage quality of alfalfa [43]. These authors explained that the increase in quality with 

drought was due to a delay in plant maturation and an increase in the leaf-to-stem ratio; the latter is 

related to a reduction in stem length. However, the results of a 90-day pot experiment indicated that 

there were no differences in CP or N concentrations in alfalfa shoots when an EC of 15 dS·m−1 was 

applied using only NaCl [44]. 

The NEL values of alfalfa irrigated with increasing salinity, and ranging from 1.38–1.58 Mcal·kg−1 

for the second harvest (84 DAS) and from 1.3 to 1.37 Mcal·kg−1 for the seventh harvest (299 DAS), 

were within the average (1.47 Mcal·kg−1) required for lactating cows [29], although some supplementation 

may be required to maintain the required energy levels. 

4.2. Mineral Nutrient Composition 

When irrigated with non-saline water, the predominant macronutrients in alfalfa are N, K, Ca, Mg, 

P, and S [45]. In our plants, which were fertilized to achieve the desired macro and micronutrients 

concentrations for ideal crop growth, and irrigated with saline water, the three main shoot 

macronutrients were also N, K, and Ca, followed by Cl and Na (data presented in [19]) and S, as these 

were added to the irrigation water to achieve high salinity, then followed by Mg and P at similar 

concentrations (Table 2). This suggests that alfalfa plants were provided adequate nutrients for growth, 

and our results express mostly the effects of salinity in a properly fertilized crop. The discussion on  

macro- and micronutrient requirements is based on the specifications for lactating dairy cattle provided 

by the Nutrient Requirements of Dairy Cattle [29]. The NRC requirement level for animals producing 

35 kg milk·day−1 (Holstein or Jersey) was used, based on the average milk production for 2012 in 

California [46]. 

Macronutrients and sodium—Although adequate mineral nutrition alone will not prevent animal 

diseases, susceptibility to infectious diseases in response to malnourishment has been recognized for 

several centuries [47]. Thus, it is important to know if crop stress induced by salinity alters the nutrient 

composition of alfalfa. 

The lowest Ca concentration in shoots in response to salinity (11 g·kg−1) was still above the daily 

dietary requirement (6.1 g·kg−1) for dairy cattle [29], while the highest Ca concentrations (18 g·kg−1) 
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were observed at ECs of 3.1 and 7.2 dS·m−1 at 299 DAS (Table 2). While dietary Ca concentrations 

above 10 g·kg−1 have been associated with reduced dry matter intake (Miller, 1983, in [29]), diets as 

high as 18 g·kg−1 have been fed to non-lactating dairy cows without problems (Beede et al., 1991,  

in [29]). Feeding Ca in excess of daily dietary requirements is suggested to improve performance, 

mainly when cows are fed corn silage diets [29]. Potassium is the third most abundant element in 

mammals and is important for cellular osmotic balance. The cellular homeostasis of Na and K is 

maintained by Na+/K+ pumps located inside the cell membrane. These two cations play an important 

role in electrical activity of nerve and muscle cells, in the acid-base balance, and in water retention. 

Potassium is a cofactor for the activation of enzymes, including those involved in protein synthesis and 

carbohydrate metabolism [48]. Because of increasing levels of Cl− in irrigation water, shoot absorption 

of potassium decreased significantly (p ≤ 0.01) for both harvests (by 26%–33%). Sodium significantly 

increased (by 60%), both with salinity and harvest date (presented elsewhere [19]), which was 

expected due to its elevated concentration in the saline treatment water. The levels of K across harvests 

and salinity (2.6%–4.6%) were well above the required levels (1.04%) for average lactating cows [29]. 

However, diets supplemented with potassium carbonate increased K from 1.6% to 4.6% (w/w) and 

decreased milk yield and feed intake [49]. Thus, K levels in alfalfa shoots irrigated with saline water 

containing 6 to 6.5 mmolc·L−1 could be of concern, depending on forage intake. 

A continuous supply of Mg from feed is desirable because a high K level in forage decreases Mg 

absorption from the rumen and can lead to tetany [50]. The frequency of tetany in cows, triggered by 

low Mg and/or Ca, and high K in forage, increases when the ratio of K: (Ca + Mg) exceeds 2.2 [51]. In 

our results, the ratio of K: (Ca + Mg) was higher than 2.2 at 84 DAS, but lower than 2.2 at 299 DAS, 

suggesting that Mg levels should be monitored in alfalfa irrigated with saline water. Thus, although our 

results indicate that salinity can lead to a small, but significant accumulation of Mg by alfalfa shoots, 

Mg supplementation is still a must due to its poor absorption (13% to 16% from ration) by cows [52]. 

Sulfur (S) is an important component of cysteine and methionine, of many enzymes, and of antioxidants 

such as glutathione and thioredoxin, but elevated concentrations of S in alfalfa shoots can be detrimental 

to animal feed intake and function. Although we discuss the concentrations of S in shoots of different 

ages, the saline water used here was sulfate-dominant to mimic the drainage waters of California’s 

Central Valley. Thus, levels of S might not be of concern where waters are Cl− dominant. However, 

the S levels in our experiment remained similar at 299 DAS across salinity treatments. The lack of 

significant S uptake at 299 DAS may be explained by cooler temperatures and lower 

evapotranspiration before that harvest. The S concentration in shoots ranged from 0.38%, at the lowest 

EC, to 0.54% at the highest EC observed at 299 DAS. Regardless of season, a decrease in S in a later 

harvest (as seen here) was reported previously for alfalfa irrigated with sulfate-dominant water at both 

15 and 25 dS·m−1 [53]. The authors reported an S range in alfalfa of 0.5%–0.9% at 25 dS·m−1. In the S 

range recorded at 299 DAS for this study, and considering that the average consumption of alfalfa is  

4.26 kg·cow−1 [3], the S consumption would be 16.2 to 23.0 g·day−1, well below the 32 g S·day−1 

upper limit recommended for a mature grazing beef cow [54], but 1.9 to 2.7 times above the  

8.52 g S·day−1 (0.2% S/day) required for dairy cows [29]. Although no S toxicity has been  

reported [29], it is important to balance the diet in order to maintain S intake at a safe level (below 

0.4% of DM daily), as levels of S of 0.4% in bailed alfalfa can lead to molybdenosis and reduced 

uptake of Cu and Se in beef cattle if alfalfa is the only source of feed [45]. 
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The P requirement in the daily diet of average-producing dairy cows is 0.35% [29], but P levels 

regarded as adequate in alfalfa shoots are 0.08% to 0.15% [45]. P deficiency will lead to osteomalacia 

(softening of the bones) and fragile bones. The average levels of P in our alfalfa shoots at 299 DAS 

(0.28% to 0.44% DW) are considered to be high for shoot levels, relative to alfalfa grown in soils of 

the Mediterranean and desert zones [45]. In addition, according to nutrient tables presented by these 

authors, our Mg levels (0.25%–0.37%) were adequate, while shoot K and S were high. 

Salinity significantly increased Na and Cl levels for both harvest dates by 40%–60%, as presented in 

a companion paper [19], resulting in shoot Na levels two to five times higher than the level required 

(0.23%) for average-producing lactating dairy cows [29]. Our data showed that alfalfa accumulates 

more Na and Cl− over time, even at the same irrigation salinity level. As previously reported [19], shoot 

Na ranged from 3.5–10 g·kg−1, and Cl from 7–14 g·kg−1, across salinity levels and harvest times. We 

found no reference reporting Na toxicity to livestock, but increasing Na in the diet from 5.5–8.8 g·kg−1 

caused no reduction of feed intake, milk yield, or toxicity (Schneider et al. 1986, in [29]). NaCl, often 

added to feed mixes, can be tolerated up to 3% (lactating cows) or 4.5% (growing animals) of dietary 

dry matter. Thus, Na and Cl levels in alfalfa irrigated with saline water present no safety concern. 

Micronutrients—Micronutrients and some vitamins are essential for animals to achieve optimal 

immune function, growth, and reproduction. Cattle can have sufficient amounts of these minerals for growth 

and reproduction, but not have enough for optimal immune function [47]. Examples are Cu and Zn, which 

are required for the activity of the antioxidant enzymes Cu-Zn superoxide dismutase (SOD) [55]. 

The average iron concentration was not affected by salinity and ranged from 83.5–116 mg·kg−1 

across harvests, regardless of salinity treatment. Concentrations of 50 to 100 mg·kg−1 of Fe in a basal 

ration are within the requirements for the growth of grazing cattle [47,56] and concentrations of  

15 mg·kg−1 in daily feed are recommended for average lactating cows [29]. Iron is essential for the 

formation of new red blood cells and only levels ≥4000 mg·kg−1 affect weight gain and cause diarrhea 

in young calves [47]. 

Copper (Cu) and zinc (Zn) are important micronutrients for immune function, and levels of  

20 mg·kg−1 Cu and 40–60 mg·kg−1 Zn were suggested as optimal for feeding in the total diet of dairy 

cattle [57], while levels of 11 mg·kg−1 Cu and 48 mg·kg−1 Zn are recommended for average lactating dairy 

cows [29]. The Cu levels found in shoots for both harvests were below 7.0 mg·kg−1, indicating the 

need for supplementation. In addition, the ratio of Cu to Mo in shoots was always approximately 1:1, 

well below the ratio of 10:1 that is considered a threshold for potential Cu toxicity [58]. 

Salinity significantly increased the Zn concentration in young plants (84 DAS) but not in 

established alfalfa plants (299 DAS), with concentrations ranging from 90–106 mg·kg−1. Considering that 

a minimum Zn concentration of 48 mg·kg−1 is required for average lactating cows [29], our plants 

contained levels more than adequate to support a healthy immune function in livestock [57]. Manganese 

levels in alfalfa shoots were the third highest, after Fe and Zn. Manganese is important for its role in 

enzymatic systems but it is poorly absorbed (14%–18%) and if deficient, can reduce fertility and delay 

estrous [56]. This author mentions that Mn deficiency can lead to abortion and deformed calves at 

birth, but elevated Mn in the diet is generally not toxic. Levels of Mn in our alfalfa cultivars were at least  

14 mg·kg−1, as recommended for average lactating cows (NRC 2001). However, considering the poor 

absorption of Mn, mineral supplementation would be recommended. 
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4.3. Antioxidant Capacity of Alfalfa 

Antioxidant flavonoids in the diet are believed to have health-promoting benefits to both humans 

and animals. In addition to protein, alfalfa is a rich source of flavonoid antioxidants and phytoestrogens 

including luteolin, coumestrol, and apigenin [59]. Phenolic compounds (including flavonoids) protect 

plants against the damaging effects of excessive reactive oxygen species (ROS) triggered by abiotic 

stresses, including salinity [60,61]. Although oxygen radical absorbance capacity (ORAC) has been 

widely accepted by industry to gauge the total antioxidant capacity of fruits, vegetables, spices, and other 

items consumed by humans, ORAC has only recently been used to estimate the antioxidant capacity of 

plants destined for livestock consumption [62–64]. The total antioxidant capacity is the sum of the lipophilic 

(ORACLipo) and hydrophilic (ORACHydro) fractions extracted from plants by hexane (lipophilic) and 70:30 

acetone:aqueous buffer (hydrophilic). Our ORAC data (Table 4) confirmed those of others [63,64] who 

reported that the hydrophilic fractions of plant extracts contain most (68%–99%) of the total antioxidant 

capacity of shoots. Alfalfa shoots grown with saline water had 94%–96% of the total antioxidant 

capacity in the hydrophilic fraction with only 4%–6% in the lipophilic fraction, indicating that alfalfa 

shoots are low in lipophilic antioxidants such as tocopherols, carotenes, and fatty acids. The oven-dried 

alfalfa plants in our study had ORACHydro values that ranged from 229–274 μmoles·TE·g−1 DM  

(Table 4, Figure 2). Although these values may seem small compared with those of other leguminous 

forages, such as Lespedeza cuneata (ORACHydro = 530 μmoles·TE·g−1 DM), previously reported [63] 

alfalfa flavonoids and isoflavonoids present in hydrophilic (aqueous) extracts reduced oxidative stress 

and exerted hepatoprotective activity in rats treated with the liver-damaging compound carbon 

tetrachloride [65]. These results indicate that when animals consume alfalfa on a regular basis, it can 

provide benefits other than nutritional value. 

The values for both ORAC and total phenolics (TP) remained unaltered by increased salinity, 

without differences for either ORAC or TP among cultivars (Figure 2). Our results agree with a 

previous report where there were no differences in antioxidant compounds among different cultivars of 

alfalfa in the absence of salt stress [15]. These authors also reported that the major antioxidants in 

alfalfa shoots, determined by HPLC, were tricin and apigenin glycosides (each approximately 40% of 

the total HPLC peaks), and luteolin and chrysoeriol glycosides (10% or less of the total HPLC peaks). 

Our results suggest that the salinity levels tested did not highly stress these salt-tolerant alfalfa cultivars. 

Previously, mostly the aglycons (flavonoids stripped of sugar moieties by acidic or enzymatic 

hydrolysis) have been determined, but the determination of full glycosidic forms (flavonoid plus sugar 

moieties) has also been conducted [59]. Flavonoids from alfalfa have the typical structure of several 

other flavonoids reported as beneficial to human diets and found in fruits and vegetables. Although sun 

drying (used to produce alfalfa hay) drastically decreased the antioxidant capacity of the antioxidant 

herb Artemisia annua, oven drying at 45 °C only slightly reduced the antioxidant capacity compared 

with freeze drying [66]. Thus, we consider that our oven-dried alfalfa shoots had an antioxidant 

capacity close to that of freeze-dried (or fresh) shoots. We could not find any published work on the 

antioxidant capacity of alfalfa shoots determined by ORAC or TP, except that the total ORAC 

(ORACHydro+Lipo) of alfalfa hay was 171 µmoles·TE·g−1, and the ORACLipo was only 3% of the total 

ORAC [63]. The antioxidant capacity of all cultivars used here was not affected by salinity, thus 

expanding the value of alfalfa beyond its contents of CP and minerals. 
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Although the value of antioxidants in animal and human nutrition is still debated by some, several 

benefits (e.g., anti-cancer, anti-inflammatory, etc.) of antioxidant-rich diets have been proposed. Dairy 

cows supplemented daily with 500 g of oregano (2082 μmoles·TE·g−1 DM) increased their milk fat 

concentration, feed and milk NEL efficiencies, and fat-corrected milk yield by 3.5% [67]. Although 

oregano has an ORAC value 8–9 fold higher than our oven-dried alfalfa shoots (225 to 256 μmoles·TE·g−1), 

the average consumption of alfalfa shoots by cows is 5.4 kg·day−1, which is 10-fold higher than the  

500 g·day−1 oregano supplement from the above-mentioned study. Thus, daily alfalfa consumption can 

provide as much antioxidant flavonoid intake as oregano, thus adding to the forage value of alfalfa. 

5. Conclusions 

The effect of salinity in irrigation water on the suitability of alfalfa as a forage was based on shoot 

levels of macro- and micronutrients, and the forage quality estimated from ADF, NDF, and CP. 

Additional forage value was based on the antioxidant capacity and total phenolics in response to salinity. 

The nutrient composition of alfalfa can vary with salinity. Although our saline irrigation waters 

provided 27%–87% more SO4 than Cl and 60%–94% more Na than Cl, alfalfa shoots contained  

20%–190% more Cl than total S and 20%–120% more Cl than Na. Although Na and Cl in shoots 

increased with salinity, reducing the K concentration by 26%–32% and Ca by 15%–32% in shoots, 

shoot K and Ca were considered high and adequate [1,45], respectively, at all salinity levels. Increased 

salinity also increased shoot N (23%–33%), P (21%–46%), Mg (20%–84%), and total S (100%–110%) 

for both harvests. In general, the levels of macro- and micronutrients were adequate or high for alfalfa 

forage [1,29,45] regardless of salinity. However, when irrigation water was sulfate-dominant, the S 

concentrations in alfalfa were close to the upper limits recommended for safe animal consumption and 

require monitoring for water EC higher than 12.7 dS·m−1. Regarding forage potential quality, shoots 

from plants irrigated with salinity levels higher than the control remained unaltered, or slightly 

improved compared with the salinity control levels, with NDF and CP at levels recommended for 

various classes of milking cows, but below the NDF values required for bulls and dry cows [39]. The 

antioxidant capacity was 15–23 fold higher for hydrophilic than for lipophilic fractions, but remained 

mostly unaltered by salinity, indicating that total antioxidant compounds, including phenolics and 

flavonoids (postulated to neutralize reactive oxygen species triggered by salinity stress), may remain 

fairly constant in alfalfa cultivars that are tolerant to salinity. These constant antioxidant levels, 

regardless of salinity stress, may play an extra beneficial role in helping to maintain animal health, as 

accepted for antioxidants in humans. Except for numeric values (such as reduced K and increased S), 

salinity levels up to 24 dS·m−1 did not alter the potential nutritional value and antioxidant capacity of 

alfalfa for livestock. The nutrient composition and antioxidant capacity of alfalfa are expected to play a 

dual role in the maintenance of health, body index, and milk production in dairy cows. This is the first 

report we are aware of, which has determined the total antioxidant capacity of alfalfa in response to 

salinity. Further studies involving animal performance are required to confirm the potential feed value 

of salt-stressed alfalfa under field conditions. 
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