COMMENTS AND LETTERS TO THE EDITOR

Comments on “Boundary Conditions for Displacement
Experiments Through Short Laboratory Seil Col-
umns”

In a recent paper van Genuchten and Parker (1984) dis-
cussed various boundary conditions which have been used
in miscible displacement studies. Although we agree with
most of their points, we believe that they overemphasized
the shortcomings of Brenner’s solution (Brenner, 1962) which
was obtained following Danchwerts’ (1953) prescription for
boundary conditions. At the inlet boundary the condition is

—D(Cr/ax) + vCr = vCo, x = 0,t > 0. [1]

Except for limiting cases, Eq. [1] will normally yield Cr
# (o, leading to an apparent discontinuity in concentration
at the inlet, i.e., between the soil column and the inlet res-
ervoir. The authors use this as an argument to justify a pos-
sible discontinuity at the outlet. We shall show that it is
physically possible to have a discontinuity in concentration
at the inlet but not at the outlet of the column. Consider the
steady state flow

vdCr/dx = Dd*Cr/dx?, [2]
which applies within the column. Eq. [2] has the solution
Cr=A+ Bexp[—(L — x)v/D] [3]

where L is some distance and 4 and B are constants. The
exponential term is vanishingly small for x < L and in-
creasingly large for x > L, as long as the corresponding
Péclet numbers are large. An increasingly large term is not
physical, thus B = 0 for x > L. A rapid variation in Cr is
possible for x << L but not for x > L. Parlange and Starr
(1975) utilized such a boundary layer for x < L to accom-
modate the boundary condition (Danckwerts, 1953),

Cridx=0atx =1L [4]

where L then stands for the column length. In general, a
boundary layer is possible upstream from a given position
but not downstream. When a reservoir is in contact with the
column inlet (x = 0) a boundary layer will form for x < 0,
i.e., the concentration can vary rapidly for x < 0 in the
reservoir from Cr (x = 0) to Co. In that case D may stand
for the molecular diffusion, Do, with Do « D in the column,
as long as the flow in the reservoir is laminar, i.e., if it is
not well mixed. Thus when Do is considered negligible, the
thickness of the boundary layer is infinitely thin and an ap-
parent, or macroscopic; discontinuity between Co and Cr is
sustainable at x = 0.

In contrast, at the column outlet (x > 0) no boundary
layer can develop so there must be continuity in concentra-
tion at x = L. For nonsteady state conditions a growing
boundary layer must be considered but this does not affect
its existence, which is all that concerns us here (cf. Wehner
and Wilhelm, 1956). If there is continuity at the outlet then
Eq. [4] holds although van Genuchten and Parker (1984)
observe that there is often some uncertainty of the exact
physical processes at the outlet. The argument here is not
about this real difficulty but in pointing out that the analysis
of the boundary layers near the inlet and outlet show no
inconsistency between the derivations of Eq. [1] and [4].

van Genuchten and Parker (1984) conclude that the so-
lution of the transport equation using Eq. [1] and assuming
a semi-infinite column is fundamental to predict the profile
for all Péclet numbers because they “assume that solute dis-
tributions inside the finite column are unaffected by the
presence of an outflow boundary”. We believe that the ex-
perimental conditions necessary for the assumption to hold

1325

may be hard to implement. Rather for vLD >4 any outlet
condition, which will normally be given by Eq. [4], corrects
the profile upstream for a short distance only and the cor-
rection can usually be obtained readily using boundary layer
theory (Parlange and Starr, 1975, 1978). We have also shown
that when Eq. [1] and [4] hold, and for vL/D >4, an ap-
propriate breakthrough curve is often obtained by consid-
ering a semi-infinite column and taking Cr Co, at the
inlet (Parlange and Starr, 1975, 1978). Our point of depar-
ture with van Genuchten and Parker (1984) is that we be-
lieve that the simpler solutions can be used safely only for
Péclet numbers larger than four, which is the usual case for
most practical situations.

Finally physical uncertainties may affect not only the
boundary condition at the outlet, Eq. [4], but also at the
inlet, Eq. [1]. The latter presumes that the flow is perfectly
one-dimensional, which is not necessarily the case. For in-
stance Starr and Parlange (1976) considered a case when a
stagnant phase develops at the inlet and Eq. [1] does not
hold there. In that case and more generally when the solute
moves in two different phases, e.g., one rather mobile and
one rather stagnant, not only the boundary conditions may
be affected but also the transport equation. That is, it is
dangerous to assume a priori that a single transport equation
can be used to describe the flow if two phases are present.
Rather, an equation for each phase must then be considered.

Received 14 Mar. 1985.
Griffith University,

J.-Y. PARLANGE

Brisbane, Queensland, 4111 D. A. BARRY
Australia
USDA-ARS-BARC J.L. STARR

Beltsville, MD 20705

References

Brenner, H. 1962. The diffusion model of longitudinal mixing in
geds of finite lengths. Numerical values. Chem. Eng. Sci. 17:229-
43,
D:;nch“gtns, P.V. 1953. Continuous flow systems. Chem. Eng. Sci.
:1-13.

Parlange, J.-Y., and J.L. Starr. 1975. Linear dispersion in finite col-
umns. Soil Sci. Soc. Am. Proc. 39:817-819.

Parlange, J.-Y., and J.L. Starr. 1978. Dispersion in soil columns:
effect of boundary conditions and irreversible reactions. Soil Sci.
Soc. Am. Proc. 42:15-18.

Starr, J.L., and J.-Y. Parlange. 1976. Plate-induced tailing in mis-
cible displacement experiments. Soil Sci. 124:56-60.

van Genuchten, M.Th,, and J.C. Parker. 1984. Boundary conditions
for displacement experiments through short laboratory soil col-
umns. Soil Sci. Soc. Am. J. 48:703-708.

Wehner, J.F., and R.H. Wilhelm. 1956. Boundary conditions of flow
reactor. Chem. Eng. Sci. 6:89-93.

Reply to “Comments on Boundary Conditions for Dis-
placement Experiments Through Short Laboratory Soil
Columns”

Parlange et al. in essence comment on three issues: 1. our
overemphasis in their view of the shortcomings in Brenner’s
solution, 2. the need to restrict column displacement exper-
iments to Péclet numbers greater than about four, and 3.
the effects of physical disturbances due to imperfect inlet
and outlet boundaries. We wish to reply to their comments.
For convenience we use the same abbreviations for the 4
analytical solutions as in our paper (van Genuchten and
Parker, 1984): BR for the solution of Brenner (1962), CA
for the solution of Cleary and Adrian (1973), LA for the
solution of Lapidus and Amundson (1952), and LB for the
solution of Lindstrom et al. (1937).
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1. We indeed raised questions regarding the applicability
of Brenner’s solution BR to transport through a finite sys-
tem. Brenner’s solution imposes a third-type boundary con-
dition at x = 0 and a zero-gradient condition at the column
exit, x = L. The last condition is based on the intuitive
assumption (e.g., see Wehner and Wilhelm, 1956) that con-
centrations should be continuous across the exit boundary.
While this requirement certainly must be met at the micro-
scopic level, continuity of concentration does not necessarily
follow at the macroscopic level when discontinuities in me-
dium properties are imposed. The analysis by Parlange et
al. (like the more general discussion by Wehner and Wil-
helm, 1956) has not convinced us otherwise. In our opinion,
continuity cannot be deduced from the observation that no
physical boundary layer will develop in the exit reservoir x
> L. Even if a zero gradient is present outside the column,
it tells nothing about the mathematical boundary layer as-
sociated with a discontinuity in medium properties. Ma-
croscopically and from an analytical perspective, it is con-
venient to consider an infinitesimally thick boundary region
within which the dispersion coefficient and porosity change
from porous medium to bulk solution values. Imposing dis-
continuities in these parameters must yield a macroscopic
concentration discontinuity. The dilemma of flux vs. con-
centration discontinuity at porous media boundaries can be
avoided by not imposing the infinitesimal boundary region
assumption. As the window of an averaging volume glides
through the boundary region, hypothetical discontinuities in
medium properties will be smoothed and macroscopic con-
centrations as well as fluxes become continuous. Inasmuch
as boundaries are mathematical approximations of reality,
it is also important to consider the physical implications of
invoked simplifications. For example, combining diffusion
and hydrodynamic dispersion in a single coefficient can lead
to difficulties since diffusive transport may occur in both
upstream and downstream directions at boundaries that are
continuous with a fluid phase, while hydrodynamic disper-
sion will be constrained to the downstream direction. Fi-
nally, we note that Brenner’s solution specifies volume-av-
eraged concentrations C,. As we discussed in our paper and
elsewhere (Parker and van Genuchten, 1984), alternative so-
lutions can be obtained when the transport equation is ex-
pressed in terms of the flux-averaged concentration C; which
is related to C, by

C; = C, — (D/v) (C,/0x) . [1]

Using a first-type inlet boundary condition and again a zero-
gradient at x = L, solution CA results. As shown in our Fig.
2, this solution differs from the flux-concentration that can
derived indirectly from BR upon application of Eq. [1] above.
This inconsistency may reflect inherent weaknesses in the
either CA and/or BR, although we tend to believe that CA
is at fault because of its failure to preserve mass (see our
Fig. 4). Nevertheless, the discussion above shows some per-
ils in Brenner’s solutions that are not easily solved. As a
more plausible alternative to Brenner’s approach, we suggest
to regard concentrations inside the column to be unaffected
by the exit boundary; this allows us to use solutions for a
semi-infinite system, notably LA for flux-averaged and LB
for volume-averaged concentrations. Contrary to CA and
BR, these two solutions are properly related through trans-
formation [1] above. Thus, LA correctly preserves mass when
integrated vs. time at any point in the profile (or effluent),
while LB always preserves mass when integrated versus
depth.

2. From the discussion above and our Fig. 4, it follows
that both LA and BR correctly predict the retardation factor
R in the system, and hence that both solutions can be used
safely to derive adsorption or exchange coefficients from col-
umn displacement experiments (as opposed to batch equi-
libration). This conclusion is valid independently of the value
of P. However, we do acknowledge that application of BR

and LA will lead to different dispersion coefficients (or Péclet
numbers) when short laboratory columns are used (notably
when P is less than about 5; see our Fig. 3). Fortunately,
this last issue is mostly academic since dispersion coefhi-
cients measured from laboratory columns are generally non-
representative of the field scale anyway. The problem of mass
conservation nevertheless remains important. Column dis-
placement experiments are often used to study the transport
of heavy metals, radionuclides, or other strongly adsorbed
solutes. Because of large retardation factors, any practical
study must be limited to relatively small soil columns. Qur
study shows that LA and BR can be used safely to measure
R, irrespective of the P-value. Contrary to the suggestion by
Parlange et al., this conclusion holds also for P < 4 provided
the exact series solution of BR is used. Mass conservation
may become a problem when approximate solutions (Bren-
ner, 1962; Parlange and Starr, 1975) are used at relatively
small P-values. These approximations were derived because
available series solutions were found to diverge for large P-
values. Use of the approximate solutions hence should be
restricted to the larger P-values. Because the series solutions
converge rapidly for P-values less than about 20, and be-
cause computationally efficient algorithms are available (van
Genuchten and Alves, 1982), we also see no need to extrap-
olate the approximate solutions to P-values for which they
are known to be inaccurate.

3. Finally, we agree with Parlange et al. that physical dis-
turbances at or near the inlet and exit boundaries may affect
the value of the measured dispersion coefficient. However,
one should still be able to correctly measure the retardation
factor provided (i) the inlet or outlet screens/porous plates
are chemically inert and do not hold water, and (ii) retar-
dation factors are measured by fitting theoretical curves to
the entire effluent curve and not just to a limited portion of
the curve (notably the initial breakthrough part or to that
part of the curve where the relative concentration is ap-
proximately 0.5). In instances where severe tailing of break-
through curves is observed, the use of two-region (“mobile-
immobile” type) models may be required.
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