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ABSTRACT
Estimating the size of the ponded surface area is a major source

of error in modeling water movement under trickle irrigation. After
reviewing available approaches and models for simulating water flow
under trickle irrigation, we present a new numerical solution of the
governing partial differential equations that improves the prediction
of the size of the ponded area at the soil surface. A common for-
mulation could be used for both Cartesian and axicylindrical flow
geometries. The spatial operator was approximated using finite dif-
ferences, and time integration was performed with an implicit
method. Nonlinearity was treated by means of a fixed point iterative
algorithm. The proposed model is applicable to saturated-unsatu-
rated flow in layered soils having anisotropic hydraulic properties.
Accuracy and stability of the solution are checked and comparisons
made with previous numerical solutions for several trickle irrigation
and other unsaturated flow problems.

INCREASED IRRIGATION EFFICIENCY, reduced water
stress, ease of automation, the ability to apply fer-

tilizers and other chemicals with irrigation water, and
low economic cost are some of the factors that have
contributed to the increased popularity of trickle ir-
rigation over the last few decades (Bucks et al., 1982).
Trickle irrigation is now applied to a wide variety of
crops grown on soils with a broad range in soil texture,
soil structure, and hydraulic properties. Notwith-
standing its popularity, surprisingly little attention has
been paid to estimating soil water distributions during
trickle irrigation under realistic field conditions. Lack
of understanding of how soil water content distribu-
tions are affected by the unsaturated soil hydraulic
properties has sometimes resulted in suboptimal man-
agement and low water-use efficiency (Hillel, 1985).
The shape and total volume of the wetted soil region
below a trickle emitter varies widely with irrigation
and soil hydraulic parameters. Using the number of
drippers, the discharge rate, and the irrigation fre-
quency as adjustable parameters, a trickle irrigation
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system should be designed such that the wetted soil
volume matches as closely as possible the crop rooting
pattern.

Soil hydraulic properties usually exhibit consider-
able spatial variability at the field scale. An important
task in the design of a drip irrigation network is to
evaluate how spatial variability affects water content
distributions in the field. Particularly useful would be
a sensitivity analysis which shows how deterministic
soil water contents are affected by variations in rele-
vant model parameters. One application of modeling
is to find an optimal combination of irrigation and
hydraulic parameters that minimizes variability prob-
lems and results in field-scale water content distribu-
tions which are as homogeneous as possible.

While much has been learned about saturated-un-
saturated flow in soils under drip irrigation, a number
of areas in need of further investigation remain. As
pointed out by Hillel (1985), these include developing
realistic methods for predicting temporal and spatial
variations of soil water under drip irrigation for dif-
ferent crop, weather, and soil conditions (including
vertically and horizontally heterogeneous soil); deter-
mining the minimal and optimal fraction of soil vol-
ume needed for various crops; assessing and control-
ling downward seepage and leaching rates from the
root zone under drip irrigation; and adjusting water
discharge rates to the soil's infiltration capacity so as
to aid the infiltration of water under the drippers in
fine-textured or crusted soils, particularly on sloping
fields. While field experiments are important for un-
derstanding the physics of flow during trickle irriga-
tion, the above research problems cannot be solved
by experimentation only. Simulation models can help
greatly in the design and analysis of field experiments,
and in determining the most important processes and
properties affecting the performance of a trickle irri-
gation system.

Mathematically, water flow under drip irrigation is
essentially a three-dimensional saturated-unsaturated
flow problem with a moving boundary separating the
ponded and unsaturated areas of the soil surface. De-
termination of this transient boundary condition is a
major difficulty in accurately modeling drip irrigation.
Hence, the main objective of this paper is to present
a numerical solution of the flow equations with a rig-



LAFOLIE ET AL.: ANALYSIS OF WATER FLOW UNDER TRICKLE IRRIGATION. I. 1311

orous formulation and solution of the soil surface
boundary problem.

REVIEW OF PREVIOUS WORK
As compared with a relatively large number of published

one-dimensional unsaturated flow models, few studies thus
far have focused on trickle irrigation. Most models have
been analytical or quasi-analytical, with a lesser number of
numerical models. Analytical models generally involve
steady-state or transient line-source or point-source infiltra-
tion problems (Philip, 1971; Raats, 1971, 1972; Warrick,
1974; Lomen and Warrick, 1974; Warrick and Lomen, 1976;
Ben-Asheret al., 1978; Warrick, 1985). Wooding (1968) also
gave a solution for steady-state flow from a pond, while
Lockington et al. (1984) proposed a solution for point-source
infiltration with ponding, but without gravity. Most analyt-
ical solutions have only limited applicability because of var-
ious assumptions, including uniform initial water contents,
simplified boundary conditions, nonponding surface con-
ditions, soil homogeneity, steady-state flow, and/or expo-
nential relationships between the pressure head and the hy-
draulic conductivity to enable linearization of the Kirchhoff
equation.

The first and perhaps most quoted numerical solution to
the three-dimensional trickle irrigation problem was given
by Brandt et al. (1971). Their finite difference model has
been widely used to simulate various laboratory and field
experiments. For example, Bresler et al. (1971) found good
agreement between results obtained with this model and ex-
perimental data for two soils, although some discrepancies
were observed at relatively high trickle application rates.
Levin et al. (1979) and Mostaghimi and Mitchell (1983) used
the same model to study the effects of pulsed trickle irri-
gations on water content distributions in two different soils.
Finite difference (CSMP) solutions were used by van der
Ploeg and Benecke (1974), Ragab et al. (1984) and Fletcher
Armstrong and Wilson (1983). These solutions did not sig-
nificantly improve the initial work of Brandt et al. (1971);
treatment of the surface boundary condition was in partic-
ular less accurate. Ababou (1981) later published a finite
difference model similar to the one by Brandt et al., but
allowing also for root water uptake. He obtained relatively
good agreement with experimental data for a sand, but less-
accurate results for a loamy soil.

Brandt et al. (1971), Ababou (1981) and Ragab et al.
(1984) applied Kirchhoff transformations to linearize the
nonlinear Richards' equation. While Brandt et al. used tab-
ulated hydraulic functions after smoothing with a spline
function, Ababou and Ragab et al. assumed exponential re-
lationships between the water content and the hydraulic con-
ductivity so that an explicit relationship between the Kir-
chhoff variable and the pressure head could be obtained. The
models of van der Ploeg and Benecke (1974) and Fletcher
Armstrong and Wilson (1983) used Richards' pressure-head-
based flow equation. We note that the Kirchhoff transfor-
mation is not easily applied to layered soil profiles because
of the discontinuities at the interfaces.

One major problem with most numerical solutions pub-
lished thus far is an inaccurate treatment of the boundary
condition imposed at the soil surface. This problem may
explain at least some of the discrepancies which have been
observed between predictions based on previous models and
experimental data for soil water contents and saturated areas
at the soil surface. In this paper, we present a more rigorous
solution of the soil surface boundary wetting problem.

THEORETICAL
Governing Flow Equations

In our analysis, we assume that Darcy's law applies to
saturated-unsaturated flow in layered soils, that the soil is

nonswelling, and that hysteresis in the soil hydraulic prop-
erties can be neglected. We allow the conductivity tensor to
be anisotropic in the vertical (z) and horizontal (x,y) coor-
dinates. However, the conductivity tensor is assumed to be
isotropic horizontally. Combining Darcy's law and the con-
tinuity equation leads, then, to

[1]

in which \p is the soil-water pressure head (L); H = $ — z
is the total head (L); C is the soil-water capacity (L-1), ap-
proximated by the slope of the soil-water retention curve,
0(^); 6 is the volumetric water content; Kh and Ky are the
horizontal and vertical components of the conductivity ten-
sor (LT~}), respectively; t is time (T); z is distance (L), con-
sidered to be positive downwards; and x and y are coordi-
nates in the horizontal plane (L). Rather than using the
pressure head, \l/, we found it more convenient to work with
the total head, H. Using H = \j/ - z and noting that d\p/dt
= dH/dt, Eq. [1] becomes

[2]

Trickle irrigation may lead to two possible flow geome-
tries: plane symmetry for a line-source system, and axicy-
lindrical symmetry for an isolated point source. Axicylindr-
ical symmetry holds as long as there is no interaction
between neighboring point sources, while plane symmetry
may always be invoked between two neighboring line
sources. The flow equation for plane symmetry reduces to

with (x,z) f fi
to

[0,X] X [0,Z], and for cylindrical symmetry

, h ,
r dr [4]

with (r,z) < [0,R] X [0,Z] in which r is the radial coordinate
(Fig. 1). Notice that Eq. [3] and [4] are defined on only half
of the real domain. Equation [4] can be simplified by the
substitutions

c(t,z,r) = rC(t,z) M</<,z,r) = rK^,z) . [5a,b]

Which leads to the following equation for cylindrical sym-
metry

Equation [3] and [6] are now both of the type

and differ only because of the different forms of the "effec-
tive" soil water capacity and hydraulic conductivity coeffi-
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cients C and K. Hence, the same numerical algorithm and
discretization can be used for both geometries.

Initial and Boundary Conditions
The general initial condition is

H(r,z,t)\t=0 = ifo - z . [7]
Because of symmetry (Fig. 1) we have a no-flow condition
on boundary r,, i.e.,

A no-flow condition also applies to boundary F2

m
While Eq. [9] is valid without restriction for plane sym-
metry, the condition may not hold for cylindrical geometry
if changes occur along that boundary during the calculations.
The problem becomes then fully three-dimensional and the
assumption of having axicylindrical symmetry can no longer
be invoked to reduce the three-dimensional problem to the
set of equations given above.

Three different conditions may be imposed along the bot-
tom boundary (F3) of the soil profile. If a water table is
present at a depth Z, then a Dirichlet type boundary con-
dition applies

H(r,Z,t) = -Z
A free-draining profile results when the condition

= 0 r—Iz °r r3z'2 = : -1

[10]

[11]

is imposed. Finally the presence of an impervious layer at
Z is simulated with a no-flow boundary condition

dT [12]

At the soil surface, we must account for interactions be-
tween the applied trickle rate, evaporation, and infiltration

Trickle Source

t
UJ
Q

HORIZONTAL DISTANCE, r

Rsot(t) T4,2 r=R

Grid point

Internodal Conductivity

-r,

/r»

z = Z
Fig. 1. Schematic cross section of the flow domain and the imposed

finite difference grid system for simulating trickle irrigation.

into the soil. The following condition holds when the soil
surface remains unsaturated (no ponding)

Q = -Kv(t,r,z]
dzz [13]

where Q — Q0/S — E, Q0 is the trickle discharge rate, E is
the evaporation rate from the ponded area, and S is a small
area over which Q is evenly distributed. However, when the
applied flow rate exceeds the soil's infiltration capacity, a
saturated area develops on the soil surface below the emitter.
This ponded area is assumed to be circular for axicylindrical
symmetry and an infinite strip for plane symmetry. We as-
sume that there is no storage of water on the soil surface
during ponding. The following Dirichlet condition then ap-
plies to the saturated zone

H(r,0,t) = 0 re[0,Rs(t)] [14]
where /?,(?) is the radius of the ponded circular area (point
source) or the half-width of the strip (line source). Evapo-
ration from the remaining part of the soil surface is de-
scribed with a Neuman-type boundary condition of the form

air ~EP
0 [15]

where ^Um is some arbitrary lower limit of \f>, and Ep is the
potential evaporation rate. The main, and significant, prob-
lem remaining is to quantify Rs(t). This is discussed next.

Determination of the Ponded Area
Let q(r,t) denote the distribution of vertical fluxes across

the saturated zone at the soil surface. We define for both
symmetries Qi«(0 as tne total amount of water crossing the
saturated zone per unit time, i.e.,

{
= 2ir

Jo
rq(r,t) dr (cylindrical) [16a]

(•R,
(Lt(0 = 2 q(r,t) dr (Cartesian) . [16b]

Jo
Evaporation from the saturated area is assumed to occur at
its potential rate, Ep, so that we can write

QJt) + TrRl(f)EP = Qo (cylindrical) [17a]

QJit) + 2Rs(t)Ep = Q0 (Cartesian) . [17b]

For notational convenience below, we drop the explicit time
dependence of Q^ and Rs. Combining Eq. [16] and [17]
gives

2ir P rq(r,f) dr = Q0 - irR2
sEp (cylindrical) [18a]

Jo

2 p q(r,t) dr=Q0- 2RSEP (Cartesian) [18b]
Jo

where q(r,f) is given by Darcy's law as
aff

q(r,t) = -Kv, [19]

The time derivatives of Eq. [18a,b] are
.dRs = r;dR*.

dt dt
CR* da+ 2ir r^(r,t)dr (cylindrical) [20a]

Jo dt
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dR,
~ rJo

(rt)dr (Cartesian)JQ dr
which leads to the differential equations

r—(r,t)dr (cylindrical)ot

[20b]

rJo
[21a]

dt [Ep + q(Rs,t)]

-/'Jo
^(r,t)dr (Cartesian). [21 b]

Equation [21a,b] shows that a decrease in the flux through
the saturated zone (dq/dt < 0) results in an increase of the
saturated area at the surface (dRJdt > 0). The initial con-
dition for Eq. [21a,b] is the radius R,# of the saturated area
corresponding to the impact of a single drop. This area is
numerically approximated by the area S corresponding to
the first node of the finite difference grid. If we denote tp as
the time at which ponding occurs, the initial condition be-
comes

p it \ — i> mi•KsUp.) ~~ •'Ho • l"J

Thus, we obtain a set of equations describing saturated-
unsaturated flow in the soil, and a differential equation pre-
dicting the evolution of Rs as a function of time. The re-
sulting Stefan-type problem can be solved using an iterative
algorithm (Mitchell and Griffith, 1980) involving alternate
solutions of the flow equation, Eq. [6], and Eq. [21a,b] for
R, until convergence is reached. Two problems remain.
First, accurate imposition of a Dirichlet boundary condition
on [0,.RS(0] requires modification of the finite difference grid
system each time a new estimate for Rs(t) is obtained. This
implies a need to interpolate the potential field each time a
new grid is defined, with the likelihood of introducing ad-
ditional errors. Also, a good approximation of the function
q(r,t) over the interval [0,Rs(t)\ is crucial for accurately solv-
ing Eq. [21]. The standard method for estimating water
fluxes through the saturated zone is to use Eq. [19] in which
the gradient (dH/dz) is approximated with a two- or three-
point uncentered scheme (Bresler et al., 1971; van der Ploeg
and Benecke, 1974; Ababou, 1981; Ragab et al., 1984) ac-
cording to

" " 123]Az Az
A7/= -3//t + 47/2 -
Az 2Az [24]

where Hlt H2, and H3 are the total head values at the first
three finite difference nodes along a vertical starting from
the soil surface.

Numerical experiments using two types of soils were car-
ried out to investigate the accuracy of Eq. [24a,b] in ap-
proximating q(r,t). Unacceptable errors appeared, especially
with relatively large step sizes, Az, and/or low initial water
contents. These results may explain why, for coarse-textured
soils where small ponded areas and very small gradients
near the surface prevail, most models give relatively good
results, and why, for fine-textured soils, they fail to accu-
rately predict the ponded area on the soil surface. Hence,
previous models often led to inaccurate water-content dis-
tributions in the profile, and also exhibited relatively large
mass balance errors when used on fine-textured soils. A

more accurate procedure for estimating Rs(t) is described
below.

An Alternative Method for Estimating Rs(t)
For any part of o> of the wetted domain (Fig. 2), we can

write the mass conservation equation

f ̂  da = - f div(f)fi?o>Judt }„ [25]

where f = [K]Grad(W), and [K] is the conductivity tensor.
The divergence theorem states that

fdiv(f) du = I f -n dj [26]
J <a J d<a

where n is the outward direction normal to 3<o. Equation
[26] can be expanded to give the following equation relating
water content variations in &> to the various boundary fluxes

cde , r 7 -\-rdw = - f -ndyJadt Jdu

- - f f-nrfy + f f-krfy + f f-Trfy [27]
JdF JH Jv

where k and i are unit vectors for the z and r coordinates,
respectively; H = [Q,RS], V=[Q,Z{] and dF is an arbitrary
curve inside n joining the points (Rs,0) and 0,Zf). The last
integral of Eq. [27] is zero because of a no-flow boundary
condition on r\. Rearranging Eq. [27] gives then

' k dx= -T'f-
Jo

I 1 -n dy .
JHF

[28]

Hence, the discharge rate through the saturated zone (left-
hand side of Eq. [28]) can be calculated from the rate of
change in total water content in w, and the flux through some
internal boundary 8F. For cylindrical symmetry, this bound-
ary is generated by rotating 8F around the axis (0,ik), and
for plane symmetry by translating 8F along a direction or-
thogonal to the plane (0,i,k). Note that when 6 in o> does
not change with time (steady flow in a), the discharge rates
through the saturated zone and dF must be equal.

We required dF to be such that the integration of 6 over
to, as well as the estimation of the fluxes through dF, would
be as accurate as possible. For convenience, dF was denned

Trickle
Source

Grid point

Fig._2. Approximation of the smooth curve, dF, by a broken line,
df, along the finite difference grid system.
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such that the pressure head in w was greater than some preset
limit cltise to saturation (e.g., a few centimeters pressure
head), thus guaranteeing a smoothly changing potential field.
Numerical implementation of this algorithm was facilitated
by approximating the original smooth boundary, dF, with a
broken line, dF, that follows the grid system as shown in
Fig. 2. This approximation does not lead to additional errors
since the divergence theorem holds for any piecewise con-
tinuous bdundary. Our numerical algorithm automatically
constructs the curve dF, calculates the required fluxes, and
evaluates the total moisture change in w.

The computer algorithm to implement the above scheme
is described schematically in Table 1. In this table, /„, in-
dicates the set of nodes belonging to w, while the expression
"calculate the horizontal flux through (ip jj)" means to cal-
culate the flux from node (if,.//) to node (/} + 1,y}). Similarly,
"calculate the vertical flux through (if,j$ means to calculate
the flux from node (if,jj) to node O/, y/ + 1). Two-point cen-
tered finite difference equations were used to calculate all
fluxes through dF.

The accuracy of the method for both symmetries was ver-
ified by simulating two-dimensional infiltration through a
fixed wetted zone using several application rates. The ac-
curacy during each time step (A/) was expressed by the rel-
ative mass balance variable

[29]v,
where V, is the amount of water applied to the soil surface
during A?, and

80 = I dd(x,y) dxdy Vr = I Q-n dy
Jv> JiF

in which d0 is the local water content change during A/, and
Q is the flux through dF as given by Darcy's law. The var-
iables SO and VT represent the change in water storage in to
and the flux through the boundary OF, respectively. For sev-
eral soils and application rates, we always found the ratio
Rm to be between 0.995 and 1.005. Cumulative mass bal-
ances errors during the simulations generally also remained
less than 0.5%.

Discharge rates through the saturated zone calculated in
this fashion take advantage of the accuracy of space-centered
approximations in a region where the pressure head always
varies smoothly. Also, the saturated hydraulic conductivity
(Ks) is not needed to calculate hydraulic fluxes through the
ponded area on the soil surface. Actually, fluxes are calcu-
lated using conductivities, which often are one to three or-
ders of magnitude smaller than Ks, thus further reducing
errors when gradients are approximated by discrete equa-
tions.

Some authors (e.g., Bresler et al., 1971; Ragab et al., 1984)
have pointed out that poor estimates of Ks could have

Table 1. Algorithm for calculating the curve dfand the flux through
the unsaturated zone at the soil surface._____________

Algorithm ________________________________
a. Initialize (if,jf) = (4,1) where (4) is the first unsaturated node at the top

of the soil (see Fig. 2).
b. Calculate the horizontal flux between the nodes (if — \Jf) and (ifjf).
c. Let (ifjf) = (irjf + I),

1. If (ifjf) t /,„ then
a) iel(if,jf) = ( i f - IJf)
p) l f ( i f < 0)stop.
7) If(i>7»«/Mthen

—calculate the vertical flux through (if + ljf — I),
—calculate the horizontal flux through (ifjf),
—go to c.

5) If (ifjf) tf /„, or if (if = 0) then
—calculate the vertical flux through (if + \Jf — I),
—let (ifjf) = (ifjf — 1),
—go to c.

caused their deviations between calculated and experimental
data. The As is known to be a highly variable parameter in
the field, with variations of two orders of magnitude or more
not being uncommon in the same field (e.g., Russo and Bres-
ler, 1980). Hence, if one is interested in evaluating the effects
of spatial variability in Ks on soil water distributions, then
a model should be used in which numerical errors are not
very sensitive to this parameter. Previous models may well
have induced large errors in this respect. Because the hy-
draulic conductivity at small negative values of ty is often
an order of magnitude less than at saturation, and usually
also exhibits less variability at the field scale, our approach
should be more reliable than previous models.

Finally, we note that it is not necessary to obtain Rs(t) as
a continuous function of t. It is much simpler and more
economical to use a step function Rs'(t) which approaches
Rs(t) such that Rs'(t) always coincides with a finite difference
nodal point at the soil surface. For cylindrical geometry,
Rs(t) is then given by

where Rs'(t) is the current estimate ofRs(t), and Qs(t) is the
flux through the saturated area corresponding to Rs(t). If we
apply boundary condition Eq. [14] to the saturated area
[0,Rs'(t)] rather than to [0,R,(t)], a difference, D(t), between
the amount of water applied and the amount entering the
soil profile will result. This difference is given by D(i) = Q0
— Qs(0- To account for D(t) in the model, a flux boundary
condition is imposed on the first unsaturated node, /'„ of the
grid system (Fig. 2). This gives

[31]

which ensures a correct mass balance. In Eq. [31], QT(t) is
the residual flux applied at surface node is, and given by
QT(t) = D(t)/Si?, where S^ is the soil surface area between
nodes *s_, and is of the finite difference grid. As the infiltra-
tion rate through the saturated zone decreases, the residual
flux, Qr(t), increases until saturation is reached, at which
time Rs'(f) jumps from node i, — 1 to node /,.

NUMERICAL APPROXIMATION OF THE
FLOW EQUATION

The flow domain (Fig. 1) is divided into an une-
qually spaced, rectangular finite difference grid fih =
(r,, ... ,rnx) X (zi, ... ,znz) with arbitrary node (ij)
located at (r,,z,). Another set of points in Q is denned
by

X
such that

2,nx
2,nz.

[32a]

[32b]
[32c]

To more easily include no-flow boundary condi-
tions, we choose r{ and rnx such that r{ = 0 and
rnx+\ = R- F°r the horizontal boundaries, T3 and T4,
we have z, = 0 and znz = Z so that z{ = — z2 and
znz+i = 2znz — znz. The continuous function H (r,z,t)
is approximated on the finite difference grid by the
time-dependent vector [Ht>J].

Approximation of Spatial Derivatives
At any point (ij), spatial derivatives are approxi-

mated with three-point centered finite difference equa-
tions as follows
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d z v d z
- Hu

— Zi

zi ~
[33]

which yield a spatial approximation of quadratic order
(Godounov, 1973). Internodal conductivities, kh and
fcv, are calculated by geometric means (Vauclin et al.,
1979), to give

Neuman-type boundary conditions were readily in-
cluded by two-point centered approximations, while
Dirichlet-type nodes were directly eliminated from the
final matrix equations. Flux conditions on T3 and T4
required virtual nodes outside the domain; these
nodes give contributions that cancel with approxi-
mations from inside the domain. Combining the dif-
ferent spatial approximations ultimately leads to the
following set of nonlinear differential equations

(C(H)] = ~[K(H)] [H] + {S(H)} [34]

in which [C] is the diagonal matrix of nodal soil water
capacities, [K(H)] is a multidiagonal matrix associated
with the spatial derivatives, {S(H)} is a constraint vec-
tor accounting for Neuman-type boundary conditions,
and [dH/dt] is the vector of temporal pressure deriv-
atives at the grid nodes.

Integration in Time
Equation [34] was integrated by means of a one-

step A(a)-stable method (Richtmeyer and Morton,
1967). For a differential equation of the form y'(t) =

f(y,t) this results in the following scheme
yM = yj + &(af(yj+l,tj+l) + (1 - ctffytj)] [35]

where the indices j and 7+1 refer to the old and new
time levels, respectively. For a equal to 1/2 and 1, the
well-known Crank-Nicholson and fully implicit
schemes result. Applying Eq. [35] to Eq. [34] leads to

+ [[7] - (1 - a)A/[C-i]/[AK) [H}>
[36]

where [/] is the identity matrix. The nonlinearity of
this set of equations is treated by means of a fixed-
point algorithm. The iterative process continues until
the following criterion is satisfied

IIWi - WIU < « [37]
where k is the fixed-point iteration index and t. an
error limit. Numerical tests showed that a value of 0.1
cm for « was adequate; results generally changed little
for e-values ranging from 0.1 to 0.001. The above al-

gorithm was also used to control the time step A? dur-
ing the calculations. The A? was increased if the num-
ber of iterations during the preceding step was less
than three, remained the same if the number of iter-
ations was three, four or five, and was reduced for
more than five iterations. The final set of linear equa-
tions is of relatively large size, and direct inversion
methods can be quite time consuming. Because of the
block-diagonal properties of the matrix [K\, the system
is well suited for iterative equation solvers such as the
Gauss-Seidel or SOR algorithms. We used the Gauss-
Seidel method with a relative stopping criterion ofio-5.

NUMERICAL VERIFICATION
Convergence and stability of the numerical solution

were first studied by using increasingly smaller time
(A?) and spatial (Ar,Az) increments and assuming a
fully implicit integration in time (a = 1). By letting
Az and Ar go to zero, simulations showed that con-
vergence to the exact solution was quadratic every-
where in the domain, provided that Az and Ar near
the wetting front were relatively small. As expected,
the fully implicit scheme showed a linear rate of con-
vergence with A;. We successfully used a Richardson-
type extrapolation to the limit (Fairweather, 1978)
with a geometric series of time increments: Af/2', / =
0, 1 ... Thus, we concluded that the numerical scheme
was stable and convergent in space and time.

Partial verification of the numerical scheme could
have also been carried out against available analytical
solutions for point sources (Warrick, 1974; Lomen
and Warrick, 1 974), or strip and disc sources (Warrick
and Lomen, 1976). Unfortunately, these solutions are
for the quasi-linear Kirchhoff equation

dt dz

in which U is the matric flux potential, and k and 0
are constants such that K=KS exp (/%<) and dK/dB =
k. Because linearized solutions do not provide a con-
vincing numerical check of the complete nonlinear
model, we decided to compare our results with pre-
viously published solutions on problems involving
both Dirichlet (Example 1) and flux-type (Example 2)
boundary conditions. Several trickle irrigation prob-
lems are discussed under Example 3.

Example 1. To verify the model for Dirichlet-type
conditions, we simulated the problem of infiltration
from an equally spaced furrow irrigation system. The
flow domain and boundary conditions are shown in
Fig. 3. The problem was solved previously by Zyvo-
loski et al. (1976) using a finite element method, by
Caussade et al. (1973) using an iterative linear/non-
linear finite difference approximation after application
of Kirchhoffs transformation, and by Selim and Kirk-
ham (1973) and Firdaouss and Ta-Phuc-Loc (1983)
using alternating-direction implicit (ADI) methods
with and without iteration, respectively. We refer to
the studies of Zyvoloski et al. (1976) or Caussade et
al. (1979) for detailed descriptions of the hydraulic
properties. In our calculations, we used a regular finite
difference grid with vertical and horizontal nodal
spacings of 2 cm. Figure 4 compares our calculated
water content distribution after 50 min of infiltration
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Fig. 3. Schematic cross section and boundary conditions for the
furrow irrigation example.
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Fig. 4. Comparison of calculated water content distributions for the
furrow irrigation problem.

with the results of Zyvoloski et al. (1976) and Selim
and Kirkham (1973). Clearly, our results agree closely
with those of Zyvoloski et al., but differ from the ADI
solution of Selim and Kirkham.

Example 2. The time dependent behavior of the
global mass balance often gives a good estimate of the
overall accuracy of a numerical solution. Figure 5 and
6 show calculated mass balances for trickle irrigation
from a line source using the same rectangular geom-
etry as in Fig. 1. Results in Fig. 5 are for two irrigation
rates involving a sandy soil, and assuming a regular
grid system with constant nodal spacings of 2 cm. Fig-
ure 6 gives similar results for a loess soil, assuming
grid spacings of 1 and 2 cm. These examples were
previously considered by Ababou (1981), who also
gave a detailed description of the unsaturated hy-
draulic properties of the two soils. No surface ponding
occurred for both soil types. Figure 5 shows that mass
balance errors for the DEK sand of Ababou became
less than about 0.5% after only a few minutes of in-
filtration. Much larger errors occurred with the MC4
loess soil (Fig. 6), which had a very low saturated hy-
draulic conductivity; errors in this case remained
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Fig. 5. Calculated mass balance errors during line-source trickle
irrigation on DEK sand for two irrigation rates.
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Fig. 6. Calculated mass balance errors during line-source trickle
irrigation on a loess soil for two finite difference nodal spacings.

about 2% during the simulation. Improved accuracy
in this case was only possible by decreasing the nodal
spacing. The errors shown in Fig. 5 and 6 were only
about one-fourth of those obtained by Ababou (1981).

Example 3. We briefly present two other cases for
trickle irrigation. The first case was carried out for the
same loess soil as in Example 2. We again compared
our results with those obtained by Ababou (1981) us-
ing an ADI-based model. The following experiments
were simulated: a line source with discharge rates of
0.5, 1.5, and 3.0 L h"1 nr1, and a point source with
irrigation rates of 0.5, 1.5, and 3.0 L h"1. An irregular
finite difference grid was now used for the calculations;
the vertical nodal spacing increased from 2 cm at the
soil surface to 4 cm at the lower boundary, while a
constant spacing of 2 cm was used in the horizontal
direction. The calculated mass balance errors and sat-
urated soil surface areas are summarized in Table 2.
Note the large differences in mass balance between our
scheme and the ADI scheme of Ababou (1981). Figure
7 shows a typical example of the type of water content
distributions obtained for a line source. As for the
ponded infiltration case (Example 1), the moisture
front calculated with the ADI model is located at a
shallower depth than those obtained with our finite
difference solution.

Model results were also compared with those ob-
tained by Brandt et al. (1971) for the more fine-tex-
tured Gilat loam, which was expected to show much
larger discrepancies compared with their Nahal Sinai
sand. Simulations were carried out for two trickle dis-
charge rates (0.495 and 0.983 cm3 crrr1 min-') as used
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Table 2. Calculated mass balances and saturated soil surface areas
for three trickle irrigation rates involving a line source and a point
source. Results of this study are compared with those obtained
by Ababou (1981) using an ADI scheme.

HORIZONTAL DISTANCE (cm)
10 20 30 40

Line source
discharge rate
Go (L h-' m-)

Mass balance %
this study
Mass balance %
Ababou (1981)
K,
this study, cm
R,
Ababou (1981), cm

0.5
<1.0

-3.5

2.0

1.5

1.5
<1.0

-5.6

23.0

20.0

3.0
<1.0

-9.8

47.5

46.0

Point source
discharge rate

Co (L h-)
0.5

<1.0

-3.0

18.0

16.0

1.5
<1.0

-6.2

39.0

36.0

3.0
<1.0

-8.6

58.0

53.0

HORIZONTAL DISTANCE, r(cm)
O 10 20 _ 30_ 40

Fig. 7. Calculated water content distributions resulting from line-
source trickle irrigation on a loess soil.

by Brandt et al., and assuming plane symmetry. The
same irregular finite difference grid as before was ap-
plied. We obtained much smaller saturated zones at
the soil surface, especially for the higher trickle irri-
gation rate (Fig. 8). After applying 3 L of water, the
model of Brandt et al. yielded saturated areas corre-
sponding to Rs values of 11 and 24 cm for the two
discharge rates, while we obtained R^ values of 3 and
9.5 cm, respectively. Water content distributions in
the profile were also different, with our calculations
showing deeper infiltration of water. Similar but
smaller differences between the ADI and finite differ-
ence/finite element solutions were already noted in
Example 1, as well as in the preceding case involving
trickle irrigation.

SUMMARY AND CONCLUSIONS
An improved numerical model for simulating sat-

urated-unsaturated water flow in general and trickle
irrigation in particular has been described. The time-
dependent nature of the interface between the satu-
rated and unsaturated zones at the soil surface was
simulated by means of a moving boundary-type dif-

Fig. 8. Calculated water content distributions obtained in this study
(solid lines) and by Brandt et al., 1971 (dashed lines) for line-
source trickle irrigation on Gilat loam.

ferential equation. This equation was coupled with the
unsaturated flow equation through the water flux
across the saturated zone at the soil surface. A new
and computationally efficient algorithm was used to
avoid the calculation of fluxes across the saturated
surface area by uncentered finite difference equations.
The numerical solution was successfully tested against
two other numerical finite difference/finite element so-
lutions for furrow irrigation subject to Dirichlet
boundary conditions, and for trickle irrigation involv-
ing Neuman-type conditions at the soil surface.

We also compared our results with those obtained
by Ababou (1981) and Brandt et al. (1971). Compar-
isons for trickle irrigation involving surface ponding
were carried out using various soil hydraulic data sets.
Our algorithm for calculating the saturated area at the
soil surface produced excellent mass balances as com-
pared with these previous solutions. The algorithm
also resulted in improved estimates of the saturated
surface area, and in improved predictions of the soil
water content in the profile. The numerical solution
will be used in Part 2 of this study (Lafolie et al., 1989)
to analyze a set of field experiments involving trickle
irrigation.
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