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ABSTRACT 

By introducing heterogeneity indices, an empirical equation is proposed for characterizing the het- 
erogeneity of non-isotropic fields. The formula is an extension of Fairfield Smith's (1938) empirical 
law describing heterogeneity in isotropic fields. Based on these indices, criteria are provided for choosing 
optimum plot shapes in terms of minimizing the sample variance and cost. Sample plots having their 
largest dimension in the direction with the largest index will give more accurate results (less variable) 
than plots with other shapes. Relations between the optimum plot size and relative cost versus vario- 
gram parameters are given for several variogram models. These relations indicate that variograms 
with small effective ranges have a very profound effect on the optimum plot sizes. 

INTRODUCTION 

In the past several decades it has been clearly established that agricultural 
experiments carried out under field conditions are subject to an appreciable 
error, chiefly because of soil heterogeneity. In order to secure greater uniform- 
ity in soil conditions, the sample size and the shape of  plots should be consid- 
ered during the design and the sampling stages. 

Many workers have studied the effect of  plot shapes in controlling hetero- 
geneity with various crops. However, the conclusions are contradictory. 
Working on their Mangold experiments, Mercer and Hall ( 1911 ) concluded 
that little could be deduced as to any superiority of  long and narrow plots over 
square ones. On the other hand, Day (1920) pointed out that more accurate 
results were obtained from single plots which were long and narrow and which 
extended in the direction of  greatest variation, than from those of other shapes. 
Kiesselbach ( 1923 ) demonstrated that the variability associated with oblong 
plots was smaller than with square ones. In a detailed study, Christidis ( 1931 ) 
concluded that the shape of  the plots constituted an important means for con- 
trolling soil heterogeneity and that in no case could square plots be more uni- 
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form than long and narrow ones. More extensive studies of crop yields were 
carried out by various other researchers (e.g. Koch and Rigney, 1951; Whit- 
tle, 1956; Weber and Homer, 1957; Kuehl and Kittock, 1969). Meanwhile, 
sample volume problems were also related to soil properties. Ball and Wil- 
liams ( 1968 ) considered the relationship between sample volumes and vari- 
ance in the measurement of soil chemical properties. The bulk (larger) sam- 
ples gave much smaller variability. Additional spatial variability was found 
at two scales, among samples at a particular location and between locations 
within the two sites. Anderson and Bouma (1973 ) investigated the effect of 
different core heights on measured K~at values. Larger pores tend to become 
discontinuous throughout taller cores, which would result in a considerable 
decrease in the hydraulic conductivity and produce more consistent Ksat val- 
ues. Hawley et al. ( 1982 ) showed that the minimum desirable sampling vol- 
ume depended on the homogeneity of a sampling area. Hassan et al. ( 1983 ) 
investigated the relationship between the chloride distribution and sample 
volume with depth. They suggested that using a larger volume sampler should 
allow for more consistent results, and as large a sample as possible should be 
taken to insure that a representative element on volume (REV) is sampled. 
Studying soil fertility, Gomez and Gomez (1984) concluded that long and 
narrow plots should be used for areas with a distinct fertility gradient, with 
the length of the plot parallel to the gradient of the field. 

An alternative approach to the quantification of heterogeneity is through 
geostatistics. Heterogeneity was related to variograms, and variance was eval- 
uated as a function of sample support within a finite domain. Results along 
these lines are given by Starks ( 1986 ) and Zhang et al. (1990). Crop hetero- 
geneity has also been studied using geostatistical techniques by Bhatti et al. 
(1991). 

The objective of this study is to derive a general empirical equation for 
characterizing the heterogeneity of non-isotropic fields. This equation will be 
tested with various sets of experimental data. Then the effects of various plot 
shapes are discussed, and criteria are given for choosing optimum plot shapes 
in order to reduce sampling variability and cost. Finally, optimum plot size 
and the relative sample cost are related to variogram parameters, based on 
the relationship between the indices of heterogeneity and the geostatistical 
models. 

HETEROGENEITY 

Fairfield Smith ( 1938 ) presented an empirical law relating the variance of 
crop yields per unit area to plot size by: 

V ~ = V I / n  b (1) 

where V. is the variance among plots with an area of n units and VI is the 



HETEROGENEITY, PLOT SHAPE EFFECT AND OPTIMUM PLOT SIZE 18 5 

variance among plots of unit size. The factor b is an index of heterogeneity. If 
the plots are spatially uncorrelated, then b will be 1. It could approach a lim- 
iting value of zero if no heterogeneity exists. If n corresponds to an area W 
and the support size of the basic plot is w, eq. ( 1 ) is equivalent to: 

V w = V w ( W / W )  b (2) 

with Vw and Vw corresponding to the two variances. 
To take anisotropy into account, a general variance relationship similar to 

eq. ( 1 ) may be written as follows: 

V,,.,= Vl /  (n~ln2 ~) (3) 

where n~, rt2 are the numbers of basic plots taken along the X, Y directions, 
respectively; V1 is the variance of the basic plots, V,.~ the variance of plots 
each of which has n = nln2 basic plots, b~ and b2 are indices which characterize 
the medium heterogeneity in the X, Y directions of a 2-D field, respectively. 

For an isotropic medium, b~ = b2, eq. (3) becomes: 

V, , , s=Vl/ (nln2)  b' (4) 

which is essentially the same form as eq. ( 1 ). For a completely uniform field, 
b~ = bE = 0; and for a field with no spatial correlation, bi = b2 = 1. 

Equation (3) can be written in a logarithmic form: 

log(Vn,s/Vl) = - b l  log(n1 ) -b2  log(n2) (5) 

which will be used to compute the indices of heterogeneity, i.e., bt and b2, 
from available data. V1 is calculated from the basic units (the original data), 
while Vn., is estimated from reconstructed plots each of which consists of n~n2 
basic units. During the reconstruction of the plots, if n2 is fixed (e.g. n2= 1 ) 
and n~ is varied, i.e. n~ = 1, 2, 3 , . ,  Vn,~ is a function ofn~ only. Therefore, the 
second term on the right-hand side in eq. (5) is a constant, and we can com- 
pute b~ from the log( V,,,s/V~ ) vs. log(n~ ) relationship. Similarly if n~ is fixed 
and n2 is varied, b2 can be computed from the relationship of log( V,,,J V~ ) vs. 
log (n2). If the same number of units are taken in the X and Y directions, or 
n~ = n2, we have: 

log( V,,,JV~ ) = - (b~ +b2) log(n~) = -b~ log(nl ) (6) 

Then bs can be obtained from the linear regression of log( V,,.sl V~ ) on log(nl ). 
If eq. (3) is a reasonable mathematical form to characterize heterogeneity, 
the sum of bl and b2 computed from eq. (5) should be close to bs indepen- 
dently computed from eq. (6). These equations will be verified by least- 
squares linear regressions using various data sets. 

The basic characteristics of the data sets used for this analysis are summa- 
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rized in Table 1, which gives the crop name, the authors and the year of  pub- 
lication, the total number of  data points (plots) and a brief description of 
each data set. 

One example of the analysis of  heterogeneity uses Mercer and Hall's ( 1911 ) 
wheat data. There are 25 columns in the X direction (west-east) and 20 rows 

TABLE 1 

Basic information of yield data sets 

Crop/Location Authors Number Description 

Wheat grain Mercer and Hall 500 
(Rothamsted) (1911 ) 

Wheat straw Mercer and Hall 500 
(Rothamsted) ( 1911 ) 

Wheat Kalamkar 1280 
(Rothamsted) ( 1932 ) 

Wheat (No. of ears ) Kalamkar 1280 
(Rothamsted) ( 1932 ) 

Wheat Wiebe 1500 
(Aberdeen, Idaho ) ( 1935 ) 

Grain Christidis 288 
(Cambridge Univ. ( 1931 ) 

Farm ) 
Rice (IR8) Gomez and Gomez 648 

(1984) 
Mangold leaf Mercer and Hall 200 

(Rothamsted) ( 1911 ) 
Marigold root Mercer and Hall 200 

(Rothamsted) ( 1911 ) 
Bean (Red Kidney) Smith 216 

( 1954, CA) (1958) 
Bean (Stand. Pink) Smith 216 

(1954, CA) (1958) 
Bean (Red Kidney) Smith 240 

( 1955, CA) (1958) 
Bean (Stand. Pink) Smith 240 

(1955, CA) (1958) 
Potato Kalamkar 576 

(Saskatchewan) ( 1932 ) 
Cotton Kuehl and Kittock 432 

(Phoenix) (1969) 
Navel orange Batchelor and Reed 1000 

( Riverside, CA ) ( 1918 ) 
Navel orange Batchelor and Reed 495 

(Naranjo, CA) (1918) 
Valencia orange Batchelor and Reed 240 

(Valla Park, CA) ( 1918 ) 
Eureka Lemon Batchelor and Reed 364 

(Upland, CA ) ( 1918 ) 

25 columns X 20 rows of 3.3 
X 3.3 m plots 

same as above 

16 columns × 80 rows 
of0.15 X0.5 m plots 

the same as above 

4.57 m of each row, 0.305 m apart, 
grouped in 12 series of 125 rows each 

12 columns × 24 rows 
of 0.203 X 2.286 m plots. 

18 columns X 36 rows 
of 1 × 1 m plots 

10 columns X 20 rows 
of4.5X4.5 m plots 

the same as above 

18 columns × 12 rows 
of 0.76× 4.57 m plots 

the same as above 

16 columns × 15 rows 
of 1.52 × 9.14 m plots 

the same as above 

6 columns X 96 rows 
of 6.7×0.91 m plots 

36 columns× 12 rows 
of 1.5X 1 m plots 

20 rows with 50 trees in a row, 
planted in a 6.71 × 6.71 m area 

15 rows with 33 trees in a row, 
planted in a 6.71 X6.71 m area 

12 rows with 20 trees in a row, 
planted in a 6.55X6.55 m area 

14 rows with 26 trees in a row, 
planted in a 7.32 X 7.32 m area 
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in the Y direction (north-south). Different numbers of units along row and 
column directions are used to construct larger plots with different plot shapes. 
For instance, n2 X n~ = 4 X 3 means that 4 units are taken along the Ydirection 
(4 rows) and 3 units along the X direction ( 3 columns) to construct a new 
plot. The averaged value of the 12 units represents the value of  the plot. We 
construct all new plots without overlapping. Then the variance is calculated 
by using the calculated mean for each specified plot shape. Table 2 shows the 
values of b~, b2 and bs calculated from the data. The index of  heterogeneity bl 
along the X direction is about twice that along the Y direction, b2, which in- 
dicates that the field is non-isotropic. The sum of bl (0.607) and b2 (0.359) 
is close to bs (0.960). It should be pointed out that the b value (0.46) listed 
in Smith's paper ( 1938 ) is an averaged index of the field which is close to bs/ 
2 = 0.48 of our analysis. 

Table 3 summarizes the b~, b2 and bs values for the various data sets consid- 
ered. These data might be considered as a sample in a meta-analysis to answer 
the question whether eq. (3) adequately corresponds to a decomposition of  
the exponent b~ reflecting anisotropies when present. Using these values we 
can test whether the sum of b~ and b2 differs significantly from b~, that is, 
whether b~ + b2-  b~ differs significantly from zero. Utilizing the 19 triples, the 

TABLE 3 

Summation of values of b~ and b2 computed with eq. ( 5 ), and bs computed with eq. (6) of different 
data sets 

Crops Authors b~ b2 bs 

Wheat grain Mercer and Hall ( 1911 ) 0.607 0.359 0.960 
Wheat straw Mercer and Hall ( 1911 ) 0.463 0.290 0.618 
Wheat Kalamkar ( 1932a, b) 0.558 0.835 1.418 
Wheat ( #  of  ears) Kalamkar (1932a, b) 0.585 0.781 1.288 
Wheat Wiebe ( 1935 ) 0.303 0.163 0.468 
Grain Christidis ( 1931 ) 0.794 0.265 1.110 
Rice (IR8) Gomez and Gomez (1984) 0.180 0.184 0.362 
Mangold leaf Mercer and Hall ( 1911 ) 0.858 0.273 1.340 
Mangold root Mercer and Hall ( 1911 ) 0.486 0.569 1.138 
Bean (Red Kidney) Smith ( 1958 ) 0.363 0.457 0.917 
Bean (Stand. Pink) Smith (1958) 0.635 0.497 0.954 
Bean (Red Kidney) Smith ( 1958 ) 0.403 0.467 0.917 
Bean (Stand. Pink) Smith (1958) 0.466 0.655 0.994 
Potato Kalamkar ( 1932a, b) 0.269 0.142 0.359 
Cotton Kuehl and Kittock (1969) 0.605 0.536 0.965 
Navel orange Batchelor and Reed ( 1918 ) 0.325 0.418 0.629 
Navel orange Batchelor and Reed ( 1918 ) 0.546 0.368 0.693 
Valencia orange Batcheior and Reed ( 1918 ) 0.470 0.678 1.082 
Eureka Lemon Batchelor and Reed ( 1918 ) 0.538 0.341 0.780 
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sum-difference is computed and then tested using a t-statistic with 18 degrees 
of freedom. The computed t-value is 1.313 compared with the tabled value of 
1.734 at the 0.05 level, hence the null hypothesis of a zero sum-difference 
would be accepted. 

Alternatively b~ + b2 c a n  be graphically compared with bs as shown in Fig. 
1. The regression line of bs on bl + bE has a slope of 0.971 and the r 2 value is 
0.854. These results indicate that eq. (3) is an appropriate tool to character- 
ize non-isotropic features of soils. 

EFFECT OF PLOT SHAPES 

Since the regression of variance on plot size is a function of the correlation 
of adjacent areas, plot shape has an effect on the regression as reflected by eq. 
(3). Based on the indices of heterogeneity, the shape effect, i.e., the change 
in the variance with different plot shapes, is shown in the following examples. 
Again Mercer and Hall's ( 1911 ) wheat data arc used. We change plot size 
from one basic unit to four units in 3 ways: (A) four basic units along the X 
direction, i.e., 1 row and 4 columns in each larger plot; (B) four units along 
the Y direction, i.e., 4 rows and 1 column; (C) square plots with 2 rows and 
2 columns. For shape A the variance changes from 0.210 for the basic units 
tO: 

V1/(nbl'n~) =0.210/(40"6071°'359) =0.0904 (7) 

• for the larger plots. For shape B, the variance is: 

Vl (n~ ~ n2 b2) =0 .210/ (  1°-6°74 °'359) =0.125 (8) 

The variance for the square plots is given by: 

Vl (nbl ~ n2 b2) =0.210/(20'60720359) =0.107 (9) 

1.5 -- 1:1 Line o 

.... Best fitted line o ~d~,;oo,, 

1.0 " ~ ~ r  ~i.924 

m o 
o 0.5 

0.0 '0 0.0 015 1 . 1.5 

b, + b2 

Fig. 1. Comparison between sum of bi and b2 computed with cq. (5) and b~ computed with eq. 
(6). 
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or" 

~/n~=0.210/2°.96=0.108 (lO) 

In terms of  variance reduction, plot shape A is 38% more efficient than B and 
19% than C, and C is 17% more efficient than B. 

The second example shows soil heterogeneity based on the wheat yield data 
reported by Christidis (1931 ). From the regression line slopes for log( V,,s/ 
1/'1) vs. log(nl)  or log(VnJV~) vs. log(n2) in Fig. 2A, B, and C, we obtain 
the indices of  heterogeneity, b~, b2 and b~, as 0.794, 0.265 and I. 110, respec- 
tively. Table 4 presents the relationships between the variances, coefficients 
of  variation (CV), the units, and ratio of  width and length (W/L)  of  the 
reconstructed plots. This table illustrates that plots with the same area have 
different coefficients of  variation or variance for different shapes. For in- 
stance, for plots with 9 units, the variance for plots with n~ = l, n2 = 9 (IV~ 
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TABLE 4 

The relationships between the variance, coefficient of variation (CV), basic units and the ratio of 
width and length (W/L) in reconstructed plots for the yield data (Christidis, 1931 ) 

Units W/L CV (%) Var. (g2) 

1 1/11.25 19.81 192 
2 1/22.5 15.73 121 

1/5.63 17.46 149 
3 1/33.75 13.07 84 

1/3.75 16.12 127 
4 1/45 11.39 64 

1/11.25 13.67 92 
1/2.81 15.95 125 

5 1/56.25 11.06 60 
1/2.25 15.42 117 

6 1/67.5 10.93 58 
1/16.85 11.18 61 
1/7.5 12.48 76 
1/1.88 14.65 105 

7 1/78.75 7.74 29 
1/1.61 14.46 102 

8 1/90 8.89 39 
1/22.5 9.18 41 
1/5.63 12.51 77 
1/1.41 14.87 108 

9 1/101.3 8.17 33 
1/11.25 10.00 49 
1/1.25 15.20 113 

10 1/112.5 7.89 30 
1/28.13 9.17 41 
1/4.5 11.64 66 
1/1.13 14.56 104 

11 1/123.8 8.06 32 
1/1.023 13.95 95 

12 1/135 7.87 30 
1/33.75 9.22 42 
1/3.75 11.37 63 
1/0.94 13.59 90 

L =  1/1.25) is about 4 times as that for plots with nl = 9  and n2= 1 ( W / L =  
1/101.3).  These results support Christidis' (1931 ) conclusion, that is, for 
plots with the same area, the smaller the value of  W/L the more uniform the 
experimental plots. Note that "uniform" used here does not mean that the 
plots are internally homogeneous, but that the variance between them is small. 
In this case, because the dimension of  the units along the X direction (the 
length) is more than 11 times larger than that along the Ydirection (the width) 
and b~ is about 3 times as large as b2, plots close to square ( W/L close to 1 ) 
have larger variance than long plots. 

An index RV for relative differences of variances is defined by: 
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Fig. 3. Relative difference of variances, RV, as a function of plot units and shapes, i.e., the 
numbers of units along Xand Y, nl and n2. 

R V =  100 (  Vn,s - V n ) l V n  (11 ) 

where V,,,s is computed using eq. (3) and: 

V n = V l l ( n  1 n2)  0"5(bl+b2) (12) 

which represents the variance assuming that the field is isotropic. The effect 
of plot shapes on the variance is shown in Fig. 3 taking the heterogeneity 
indices along X and Y as bt = 0.3 and b2 = 0.6, respectively. If the plot dimen- 
sion is increased along Y, the relative difference of variances is negative and 
its absolute value increases. That is, the efficiency of reducing variance in- 
creases as the dimension of plot in the Y direction or n 2 increases because the 
heterogeneity index along Y is larger than that along X. On the other hand, 
RV increases, i.e., the efficiency decreases as the units along X (n~) increase. 

As illustrated by the above examples, plot shapes affect sample variance. In 
a non-isotropic field, the relationship between sample variance and plot shapes 
is determined by the heterogeneity indices. Sample plots having their greatest 
dimension in the direction with the greatest index will give more accurate 
results (less variation) than plots with other shapes. 

OPTIMUM PLOT SIZE 

From the previous discussion it is clear that variability decreases as plot 
size increases. Nevertheless, the rate of decrease in variability becomes less 
as the plot size increases. Meanwhile higher sampling costs are involved when 
larger plots are used. Therefore, the plot size that a researcher should aim for 
is one which balances precision and cost. This is commonly referred to as the 
optimum plot size. 

If the cost per plot is given by a linear relation (Smith, 1938; Weber and 
Homer, 1957): 
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K~ +K2n (13) 

an objective function accounting for both cost and variance in an isotropic 
field can be expressed by: 

C =  (Kt +K2n)  V1/n b (14) 

where no is the number of the units in a chosen plot, K~ is the cost propor- 
tional to the number of plots per treatment, and K2 is the cost proportional to 
the area per treatment. The objective function is minimized when: 

no=K,b / [K2(1-b)  ] (15) 

where no is the optimum plot size in terms of number of basic units. Let 
K=K1/K2, we have: 

noK=b/ (1-b)  (16) 

The objective function can be rewritten as: 

C=KI[1  + ~ - b  zlV~/nb (17) 

where z is the ratio of the plot size used with n units to the most efficient size 
with no units, i.e., n/no. Using Smith's (1938) definition, the relative cost is: 

y= C/ Cmin =bzt~-b) + ( 1 - b  )z -b (18) 

where C is the cost related to variance for a specified plot size, Cmi  n is the cost 
related to variance for the optimum plot size. 

Zhang et al. (1990) have studied variance as a function of sample support 
size using geostatistics. They related the index of heterogeneity, b, to the area 
of basic units (w) and the range of a variogram (a).  The common variograms 
used include exponential, spherical, Gaussian and Michaelis-Menton models 
(e.g., table 1 in Zhang et al., 1990). The range o fa  variogram is a character- 
istic length and can be used to define an effective range. The effective range 
is defined as a distance where a variogram reaches 95 percentage of its sill 
value. By eq. (16) and the relationships between b and w/a z (Zhang et al., 
1990 ), we can relate no/Kto w/a 2. The relationship presented in Fig. 4 shows 
that no/K increases as w/a 2 increases. This means that the optimum plot size 
is larger in a relatively random field (i.e., with a small range) than in a spa- 
tially correlated field. The relationships between log (w/a  2) vs. log (no/K) for 
spherical, exponential and Gaussian models are approximately linear. For the 
Michaelis-Menton model, as w/a 2 increases to infinite, no/K seems to ap- 
proach 1. For variograms with shorter effective ranges, such as a spherical 
model, no/ K changes faster vs. w/a 2 than one with larger effective range, such 
as a Michaelis-Menton model. 
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Fig. 4. Relationship between optimum plot size and w/a 2 for spherical, exponential, Gaussian 
and Michaelis-Menton models, where w is the area of basic units and a is the range ofa variogram. 

Combining the relationships between b and w/a 2 and eq. (18), the rela- 
tionships between w/a 2 vs. relative cost for spherical, exponential, Gaussian 
and Michaelis-Menton models are shown in Figs. 5A, B, C and D, respec- 
tively. For each specified z, there is a peak in each of the curves, which is 
determined by setting the first derivative o fy  with respect to b to zero result- 
ing in: 

b= 1/log(z) - 1 / ( z -  1 ) (19) 

The positions of the peaks are related to the effective ranges of the vario- 
grams. The peak goes to the far right for a variogram with a large effective 
range. The peak of the curves is the maximum relative cost. For a specified z, 
the maximum relative cost is the same for the different models; however, the 
shapes of the relative cost curves are different. The curves spread out for var- 
iograms with large effective ranges. In other words, w/a 2 affects relative cost 
in a relatively short range for a model with short effective range. If a value of 
z is farther away from 1, the relative cost is higher, or the efficiency decreases 
more. The effect o f z  on efficiency may extend to a larger range of w/a 2 for a 
variogram with larger effective range. The curves of log(w/a 2) vs. relative 
cost for zl and z2 have the same maximum value if z2 = 1/zl. This is because 
from eq. (19): 

1 1 zl log(z1 ) - -  ( z l  - 1 ) 
b * -  - - 1 - b  (20) 

log(z2) (zz - 1 ) (z~ - 1 ) log(z1 ) 

resulting in: 

Y*ax =b*z~ l-b*) + (1 --b*)z~b*= (1 - b ) z {  -b +bz~ l-b) -----Ymax (21) 

However, the position of the maximum for z2 is shifted compared to that for 
z~. Figure 5C shows one example with zl =20 and z2= 1/20. 
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Fig. 5. Relationships between the relative cost and w / a  2 for (A) spherical, (B) exponential, 
(C) Gaussian and (D) Michaelis-Menton models, where w is the area of basic units and a is 
the range of a variogram. The parameter z is the ratio of the plot size used with N units to the 
most efficient size with no units, i.e., n/no. 

In non-isotropic fields, the cost per plot may be given by: 

K~ +K2n, n2 (22 )  

then the objective function accounting for both cost and variance is: 

(K, +KEn, n2) V,/n~' n~ 2 (23 )  

where n,n2 is the number o f  basic units in a chosen plot. When bl ~<0.5 and 
b2~<0.5, eq. (23 )  is a monotone  increasing function of  n~ and n2. When bl 
or/and b2 are greater than 0.5, the m i n i m u m  value of  eq. (23 )  depends on 
the larger value o f  the heterogeneity indices. If b~ > b2, eq. (23 )  has a mini- 
m u m  value when: 

n, =K~ bl/[K2( 1 - b ,  ) ] (24)  
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and n2 = 1. On the other hand, eq. (23) has a minimum value when: 

n2 =Kl b2/[Kz( 1 -b2)  ] (25) 

and nl = 1. Using Christidis' ( 1931 ) wheat data as an example, we have: 

n~ = 0.794K~/[K2( 1 -0 .794)  ] = 3.85K~/K2 (26) 

and n2 = l for the optimum plot size. 

CONCLUSIONS 

In general, real fields are anisotropic, so the effects of plot shapes should be 
taken into account in the sampling strategy. The plot shape that minimizes 
the sampling variance and cost depends on the indices of heterogeneity, i.e., 
b~ and b2 in the X and Y directions, respectively. If b~ > b2, plots having their 
greatest dimensions in the X direction will give more accurate results (less 
variable) than plots with other shapes. Plots having the same number of units 
in either direction will give more accurate results than plots having their 
greatest dimensions in the Y direction. If b2 > bl, plots having their greatest 
dimensions in the Y direction will be more uniform than square plots. Square 
plots will be more uniform than plots having their greatest dimension in the 
Xdirection. If bl = b2, the field is isotropic and squares are more uniform than 
other shapes. This kind of shape effect is discussed in detail by Zhang et al. 
(1990) and is not considered in the anisotropic fields. If an investigator can- 
not ascertain in which direction the field is most variable, he would probably 
use square plots. 

Optimum plot sizes are related to heterogeneity indices and variograms. A 
variogram with a smaller effective range has more profound effect on the op- 
t imum plot size. Compared with the optimum plot size, the relative cost of 
different plot sizes is shown to be a function of the ratio of a basic plot area 
and a variogram range. For a non-isotropic field, the optimum plot size de- 
pends on the largest heterogeneity index in the X or Y directions, that is, it 
depends on the direction of the greatest heterogeneity in properties of the 
field. By considering the spatial variability of heterogeneous soils these rela- 
tions may provide guidelines for sampling efficiency in terms of cost and 
precision. 
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