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Use of Pseudo-Crossvariograms and Cokriging to Improve Estimates
of Soil Solute Concentrations

R. Zhang,* P. Shouse, and S. Yates

ABSTRACT

Estimating mass and distributions of chemicals in soils is one of
the key steps to study chemical transport in the vadose zone and
groundwater systems. In this study, solute mass and distributions were
computed in an 800 by 800 by 1.8 m soil volume using kriging and
cokriging with nonsymmetric pseudo-crossvariograms. Among the
measured chemicals of Cl-, SO}, Cal*, Mg**, Na*, P,O;, K*, and
NOy in the three-dimensional system, ClI- was used as the model to
show the estimation process and results. Using pseudo-crossvario-
grams maximized the use of available information at different soil
depths and improved solute estimation. All sample pseudo-crossvario-
grams between depths were modeled successfully with common vario-
gram functions such as spherical and linear. Therefore, it was relatively
easier to test the positive definiteness of the cokriging coefficient
matrix adapted to pseudo-crossvariograms. Cokriging allows easily
obtained information at shallower depths to be used to improve solute
estimations at deeper depths. Compared with kriging, cokriging re-
duced the mean squared errors of estimations between 30 and 60%
at different depths, and reduced the mean kriging variances between
35 and 58%. In the total mass estimation of Cl~ in the soil, cokriging
with nonsymmetric pseudo-crossvariograms used less than half the
data; potentially it could reduce more than half the sampling cost of
kriging estimation. Meanwhile, cokriging reduced the estimation error
by about 18%, when compared with kriging estimates using all obser-
vations. Using the same data at each layer, cokriging would reduce the
estimation error 40% more than kriging because cokriging efficiently
incorporated information at upper layers without increasing the sam-
ple requirement. Cokriging with nonsymmetric pseundo-crossvario-
grams is an accurate and economical way to calculate solute distribu-
tions and total mass in a large field.

CCURATELY ESTIMATING SOLUTE MASS and distributions
in the vadose zone and groundwater systems is critical
in many environmental studies, such as characterizing
hazardous waste fields, designing best management
practices of irrigation systems, and modeling chemical
movement and fate in soils. Field soil sampling and
analysis for chemicals is a direct way to measure solute
distributions; however, it is often too expensive to carry
out detailed sampling in a large field. With limited data,
geostatistical analyses provide an alternative means to
characterize the spatial distribution of soil properties
(Warrick et al., 1986), and therefore offer an economic
way to estimate solute mass and distributions in soils.

Geostatistics can use interrelationships between two
or more spatially dependent variables to improve the
estimation of the variables. The interrelationships can
be among different variables or among different depths
for the same variable. Cokriging is an extension of the
kriging method and incorporates both spatial and inter-
variable correlations into the estimation process. Co-
kriging has been applied to study various spatial vari-
ables. For example, Yates and Warrick (1987) estimated
soil water content using a cokriging procedure in which
the bare soil surface temperature and the sand content
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were used to supply additional information. Stein et al.
(1988) used cokriging to increase computation precision
in moisture deficit maps. Zhang et al. (1992b) improved
the estimates of soil texture by including associated
spectral properties in a cokriging procedure. Zhang et
al. (1995) estimated concentrations of trace elements in
soils and plants using kriging and cokriging.

An essential part of any geostatistical investigation
using cokriging is the characterization of spatially de-
pendent variables or the formulation of crossvariograms
among the variables. A major disadvantage of standard
approaches for modeling crossvariograms is that only
values for the properties of interest having common
sample locations can be used to estimate the cross-corre-
lation functions. Therefore, estimating crossvariograms
requires a large number of locations where data are
collected for each variable, a condition that is frequently
not satisfied in practice. To alleviate this difficulty, Clark
et al. (1989) described a variation of cokriging that does
not require measurements of variables at the same lo-
cations. The approach involves the development of
pseudo-crossvariograms and their use in a cokriging pro-
cedure. Zhang et al. (1992a) have successfully used
cokriging with symmetric pseudo-crossvariograms to es-
timate the spatial distribution of soil chemical concen-
trations.

In this study, our first objective was to study relation-
ships between nonsymmetric sample pseudo-crossvario-
grams and valid models of pseudo-crossvariograms to
estimate solute concentrations at different soil depths.
The second objective was to compare the accuracy and
advantages of using pseudo-crossvariograms and cokrig-
ing to estimate solute distributions and mass in the soil
with kriging when limited data is available at deeper lo-
cations.

THEORY

Cokriging is a method for estimating one or more variables
of interest using data from several variables by incorporating
not only spatial correlations but also intervariable correlations.
Let Z(x), ..., Z,(x) denote the values of the variables Z|, ...,
Z,, at location x, and Z(x) = [Z(x), ..., Z,.(x)]- If x4, ..., x, are
sample locations with data Z(x,), ..., Z(x, ), then the cokriging
estimator can be written in the form

Z*(x) = E Z(x,‘) F,'

i=1

(1]

where I's are weight matrices.

To determine the weight matrices, the variables Z; (j = 1,
2, ..., m) at x, Z(x), are considered to be random functions
and statistical conditions are imposed on the cokriging estima-
tor. The estimator is required to be unbiased and the sum of
the estimation variances is minimized. As shown in Myers
(1982) this leads to a linear system of matrix equations. Vario-
grams and crossvariograms are used to quantify the spatial
correlation of each variable and also the intervariable correla-
tion. These statistical techniques are utilized to compute the
variances of the estimation errors.
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To maximize the use of available data, a pseudo-crossvario-
gram of Z; and Z, is defined as (Myers, 1991)

giu(h) = 05E[Z(x) ~ Zi(x + h)]? [2]

It is assumed that this function depends only on the separation
h. Note that it is not required that Z; and Z, are sampled at the
same locations. The pseudo-crossvariogram is not necessarily
symmetric, may not be zero at £ = 0, and is not a variogram
or a covariance. A more general definition of the pseudo-
crossvariogram is given by Myers (1991) as

gi(h) = g(—h) = 0.5Var[Z(x) — Zi(x + h)] [3]

Since the translation of a second-order stationary random
function is also second-order stationary, Eq. [3] is the variance
of a random function and depends only on 4.

The sample pseudo-crossvariograms for Variable 1 (Z;) and
Variable 2 (Z,) are computed by means of

i) = 51 2 [20) = i+ WP 4

and
(0 = 5 2 [40) = 2+ WP 13

where N is the number of sample pairs for lag A. If gf(h) and
gfi(h) are symmetrical, we may obtain a crossvariogram vy,
from the pseudo-crossvariogram g, (Myers, 1991; Zhang et
al., 1992a). If gi(h) and gf(h) are nonsymmetrical, we as-
sumed in this study that they can be modeled by combining the
common variogram functions, such as exponential, Gaussian,
spherical, and linear models. Parameters of the pseudo-cross-
variogram are determined by cross validation. The cross-vali-
dation procedure produces estimates corresponding to mea-
sured locations using the cokriging technique to be discussed
below. In this procedure, every known point is estimated by
using a neighborhood around it, but not itself. Based on the
statistical analysis of the estimates and measurements, an ap-
propriate pseudo-crossvariogram can be chosen. Similar to the
selections of variograms and crossvariograms through cross
validation (Yost et al., 1982a,b), the choice of a pseudo-crossv-
ariogram should result in a near-zero value of mean error,
and near unity for the reduced kriging variance.

The cokriging equations are normally obtained and ex-
pressed in terms of the variograms and crossvariograms. The
general cokriging equations adapted to the pseudo-crossvario-
grams are given in Myers (1991) as

2 G(x,» - x]') F, + [p‘la eeey le]T =
=1

[vi(xo = X5), -..s &im (X0 — X7)]7 [6]
for i = 1, ..., n. In the cokriging equation,
n
> i = [10,..0]" [7]
i=1
where T indicates a transpose, and w,, ..., i, are Lagrange

multipliers. The cokriging coefficient matrix G is in terms of
pseudo-crossvariograms in a form of

W) . gin(h)
Gkh)=| - [8]
gm(h) . vm(h)
in which <y is the variogram and g is the pseudo-crossvariogram.

Unlike the cokriging coefficient matrix used in Myers (1982,
1984), G(h) does not need to be a symmetric matrix.

For the following discussion consider two random variables
Z\(x) and Z,(x), which are the physical variables collected at
two depths. The cokriging coefficient matrix then takes the
form

vith)  gu(h)
gn(h)  va(h) O]

It should be verified that the variograms and pseudo-crossvari-
ograms in the matrix satisfied the Schwarz’s inequality given
by (Myers, 1982)

Yi(h)y.(h) > gu(h)gzl(h) [10]

This condition guarantees the cokriging coefficient matrix to
be positive definite and guarantees that the variance of the
estimated variables is positive.

G(h) =

MATERIALS AND METHODS

To study spatial distributions of several important chemi-
cals, a field experiment was conducted at an irrigation farm
in the western part of Fresno County near the town of Men-
dota, CA, in the fall of 1991. Soil samples were collected in
an 800 by 800 m field at depths of 0.15, 0.30, 0.45, 0.60, 0.90,
1.20, 1.50, and 1.80 m. The number of samples varied at differ-
ent depths, ranging from 114 data points at 0.15 m to 82 data
points at 1.80 m as shown in Fig. 1. The field site is a commer-
cial farm that has a varying cropping history. Furrow irrigation
using California Aqueduct water and well water was the pri-
mary irrigation practice. The soil type on the site is the Pa-
noche silty clay loam (fine-loamy, mixed (calcareous), thermic
Typic Torriorthent). Soil samples were collected at the speci-
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Fig. 1. Horizontal spacing of the sampling scheme at (top) 0.15 and
(bottom) 1.80 m.
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fied depths using a truck-mounted soil sampling machine. The
soil collected from each depth increment was mixed as a ho-
mogenous soil for chemical analyses. The soil samples were
extracted using a quantitative 1:1 soil/water extract procedure.
Concentrations were corrected to soil solution and soil salinity
was expressed as mass units (centimoles or milligrams) per
liter of extract. Chemical analyses were performed on an in-
ductively coupled plasma spectrometer and a flow injection
analyzer for Cl~ (cmol L"), SO;~ (cmol L), Ca®* (cmol
LY, Mg?* (cmol L), Na* (cmol L), P,O; (mg L), K*
(mg L™'), and NOj (mg L™'). Several other properties were
also measured including gravimetric water content, electrical
conductivity, and bulk density.

Geostatistical techniques, kriging and cokriging with
pseudo-crossvariograms, were applied to estimate spatial dis-
tributions of the chemicals at the depths. The following meth-
ods were used to compare results estimated with kriging and
cokriging. The mean squared error (MSE) is calculated with

MSE = % g [Z(x) ~ Z*)] [11]

where Z(x;) and Z*(x;) are the measured and estimated values
at x;, respectively. Relative improvement, or relative reduction
of MSE (RMSE), is defined by

RMSE = 100% (MSE, — MSE,)/MSE,  [12]

where MSE, and MSE,, are the mean squared errors for krig-
ing and cokriging, respectively. Relative reduction of the krig-
ing variance is defined in the same way by replacing MSE,
and MSE,, in Eq. [12] with kriging variances of kriging and
cokriging, respectively.

RESULTS AND DISCUSSIONS

In this study, we used the kriging and cokriging tech-
niques to compute solute distributions and total mass
in the three-dimensional field of 800 by 800 by 1.8 m.
The use of cokriging can maximize the estimation accu-
racy by using limited data and other available informa-
tion at different soil depths, which shows the potential
saving of sampling costs. In particular, we utilized non-
symmetric pseudo-crossvariograms, which were com-
puted using data sampled at the same or different loca-
tions and at different depths.

Considering the lower sampling cost at shallower
depths and correlations of the chemicals among the
depths, we chose the available 112 data points at 0.60 m
and the common 45 data points at each depth below
0.60 m as a reduced data set. Chloride was used as an
example to show the calculations. There is no correla-
tion between data at 0.15 cm and other depths (Table
1). As expected, higher correlation exists between data
collected at two closer soil layers. However, at a certain
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Fig. 2. Sample variograms (circles) and models (solid lines) of Cl~ at
the depths of (A) 0.60 and (B) 1.80 m.

depth, the concentration data have a higher correlation
with data sampled at a deeper layer than with data
collected at a shallower layer. For example, the concen-
tration at the depth 1.20 m has a correlation coefficient
of 0.815 with the concentration at the depth 1.80 m,
while having a correlation coefficient of 0.709 with the
concentration at the depth 0.60 m.

According to the correlation coefficients of the Cl™
concentration at different depths and the reduced data
set, variograms and pseudo-crossvariograms of C1~ were
computed and modeled in the following steps:

1. The 112 data points at 0.60 m and the 45 data
points at 0.90 m were used to compute sample
variograms and sample pseudo-crossvariograms.

Table 1. Correlations (r) of CI~ concentration at different depths (74 common locations).

Depth 0.15 0.30 0.45 0.90 1.20 1.50 1.80
m

0.15 1 0.052 -0.087 0.047 0.106 0.098 0.052 0.106
0.30 1 0.624 0.382 0.342 0.246 0.312 0.390
0.45 1 0.710 0.548 0.412 0.421 0.476
0.60 1 0.839 0.709 0.695 0.707
0.90 1 0.890 0.848 0.794
1.20 1 0.910 0.815
1.50 1 0.946
1.80 1
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Fig. 3. Pseudo-crossvariograms of Cl, gy, and g, between the depths
of 0.90 and 1.20 m. The circles and triangles represent the sample
pseudo-crossvariograms, g and g#, respectively, whereas the solid
and dashed lines represent the fitted pseudo-crossvariograms.

2. Model-specific variograms and pseudo-crossvario-
grams were chosen based on the sample vario-
grams and sample pseudo-crossvariograms calcu-
lated at Step 1 with cross-validation.

3. Cokriging and the data points at 0.60 and 0.90 m
were used to estimate Cl~ at 0.90 m at the same
112 horizontal locations as 0.60 m.

4. The 112 estimates at 0.90 m were used as “data”
with cross-validation to recalculate the variogram
for the depth (updated variogram model).

5. This procedure was repeated using the 112 esti-
mates at 0.90 m and 45 data at 1.20 m to obtain a
variogram at 1,20 m and pseudo-crossvariograms
of the two depths.

6. The same procedure was repeated to obtain vario-
grams and pseudo-crossvariograms for depths 1.50
and 1.80 m.

Note that the equations for computation of pseudo-
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Fig. 4. Psendo-crossvariograms of Cl-, g1, and gz, between the depths
of 1.20 and 1.50 m. The circles and triangles represent the sample

pseudo-crossvariograms, gi; and g#, respectively, whereas the solid
and dashed lines represent the fitted pseudo-crossvariograms.

Table 2. Variogram models for Cl~ concentrations at different
depths.

Depth Variogram

m (cmol L™1)?
0.60 y(h) = 4 + 0.01834
0.90 y(h) = 3 + 0.0175h ¥(k) = 1 + 0.015k (updated)
1.20 y(h) =2 + 0.0133h y(h) = 1.5 + 0.0167h (updated)
1.50 y(h) = 3 + 0.0108% y(h) = 1.8 + 0.014 (updated)
1.80 y(h) = 1.8 + 0.00667h

crossvariograms (Eq. [4] and [S}) originally are defined
for two variables (Z; and Z,) collected in the same field.
In our study, we used the equations to compute pseudo-
crossvariograms for the same variable collected at two
depths (Z; and Z;). Comparing the distance between
the depths (0.15-0.30 m) with the horizontal scale (800
m), the vertical variability of the solutes should be
smaller than the horizontal variability.

Figures 2A and 2B show the sample variograms and
models for the depths 0.60 and 1.80 m, respectively. The
pseudo-crossvariograms between the depths 0.90 and
1.20 m are presented in Fig. 3. Both g, and g, are linear
models; however, the slope of g, is about two times
that of gy,. As shown in Fig. 4, one of the pseudo-cross-
variograms between 1.20 and 1.50 m is a linear mode}
and another is a spherical model. Tables 2 and 3 list the
models of the variograms (including the updated ones)
and pseudo-crossvariograms, respectively. All vario-
grams are linear models and their slopes decrease with
depth from 0.018 to 0.0067. The use of common vario-
gram functions, linear and spherical models, to fit all of
the sample pseudo-crossvariograms enabled us to test
the positive definite condition of the cokriging coeffi-
cient matrix. The variograms and pseudo-crossvario-
grams in the tables satisfied Schwarz’s inequality given
in Eq. {10] within the interest domain between Depths
1 and 2. For example, between the depths 0.90 and 1.20
m, we have

yi(h) va(h) = (1 + 0.015k)(1.5 + 0.0167h)
ga(M)en(h) = (12 + 0.008k)(1.2 + 0.0163k)

Therefore,
Vi(h)va(h) = gu(h)gn(h) =
0.06 + 0.01k + 0.00012h> > 0
Using the variograms and pseudo-crossvariograms in

Table 3. Pseudo-cross-variogram models for Cl~ concentrations
between depths.

Depths Pseudo-cross-variogram
m (cmol L7Y)?
0.60 and 0.90 gu(h) =1 + 0.0142

gu(h) = 1 + 8[1.5(k/500) — 0.5(h/500)*]
(h =500) gu(h) =9 (h>500)

0,90 and 1.20 gu(k) = 1.2 + 0.008k
gn(h) = 1.2 + 0.0163h
1.20 and 1.50 gu(h) = 1 + 0.0108k
galh) = 1 + 4{1L5(hI500) — 0.5(h/S00)*)
(h=500) gn=5 (k> 500)
1.50 and 1.80 gu(h) = 1 + 0.00783A

gn(h) = 1 + 0.0108h
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Table 4. Summary statistics of concentration estimation using cokriging and kriging.

. Cokriging Kriging
Estimates at

Depth 1 Depth 2 Depth 2 MSE MKVt ri MSE MKV r RMSE

m no. — (cmol L7Y)> — — (cmol LY — %
0.60 0.90 103 1.76 3.37 0.901 3.76 517 0.774 53
0.90 1.20 90 1.62 2,22 0.867 2.22 3.61 0.814 27
1.20 1.50 85 1.31 246 0.893 211 4.66 0.811 38
1.50 1.80 82 0.58 1.14 0.940 1.4 2N 0.835 60

1 Mean kriging variance.
i Correlation coefficient between measurements and estimates.

Tables 2 and 3, we estimated Cl~ concentration at the
sample locations at depths of 0.90, 1.20, 1.50, and 1.80 m
using kriging and cokriging technigues. The reduced
data set was used for the estimation, i.e., the available
112 data at 0.60 m and the common 45 data points at
each depth below 0.60 m. At each of the data points, the
concentration was estimated by using a neighborhood
around it, but not itself. The results are summarized in
Table 4. Compared with kriging, cokriging reduced the
MSE between 30 and 60%, reduced the mean kriging
variances between 35 and 58%, and significantly in-
creased the correlation coefficients between the mea-
surements and estimates.

To estimate solute distributions and total mass in the
800 by 800 by 1.8 m soil volume, kriging and cokriging
were used to calculate 441 values of the solute concen-
tration on a grid of 40 by 40 m at each soil layer. For soil
layers above 0.90 m, all data and kriging were utilized
for the concentration estimation. Three methods were
applied to compute solute distributions below 0.60 m:
(A) kriging with all data at each layer; (B) kriging using
the 45 data points at each layer; and (C) cokriging with
the same 45 data at each layer and the 112 estimates at
the upper layer. In terms of sampling cost, the cokriging
with pseudo-crossvariograms (Method C) used less than
half the data of Method A. In terms of estimation accu-
racy, cokriging produced better results than kriging us-
ing all of the data. For the concentration estimates at
0.90 m, kriging variance values by kriging using all data
were higher than those by cokriging with less than half
the data at 0.90 m and incorporating the data at 0.60 m.
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Fig. 5. Comparison of kriging variances [(cmol L™)?] for C1~ concen-
tration estimation at 0.90 m between kriging using 45 data points
at 0.90 m and cokriging using the same data at 0.90 m and other
information at 0.60 m.

Cokriging produced much better results than kriging
using the same 45 data points at 0.90 m (Fig. 5). The
kriging variance values are more than two times the
cokriging variance at the estimated points. Figures 6A,

206

(m)

Fig. 6. Chloride concentration (cmol L) contour maps at 0.90 m
generated by (A) kriging with 103 data at 0.90 m; (B) kriging
using 45 data points at 0.90 m; (C) cokriging with the pseudo-
crossvariograms using the same 45 data points at 0.90 m as well
as 112 data points at 0.60 m.
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6B, and 6C show the concentration contour maps gener-
ated by Methods A, B, and C, respectively.

The total mass in the soil volume was calculated based
on the concentration distributions using a depth average
and the spatial distributions of the gravimetric water
content and bulk density. Since cokriging with the non-
symmetric pseudo-crossvariograms used less than half
of the data, this approach could reduce the sampling
costs considerably compared with kriging. In addition,
cokriging reduced the estimation error about 18%. If
the reduced data set was used, cokriging reduced the
estimation error up to 40% compared with kriging.

SUMMARY

It is critical to estimate solute distributions and total
mass in soils for many agricultural and environmental
problems. A large-scale field experiment was conducted
to measure Cl~, SO3~, Ca?*, Mg?*, Na*, P,O5, K*, and
NOj at depths of 0.15, 0.30, 0.45, 0.60, 0.90, 1.20, 1.50,
and 1.80 m in an area of 800 by 800 m. Assuming only
45 data points to be available at each layer below 0.60 m,
we computed pseudo-crossvariograms between depths
and carried out cokriging for studying sampling and
estimation strategies. Sample pseudo-crossvariograms,
gi(h) and gfi(h), were nonsymmetrical for all depths
and were modeled with the common variograms, such
as spherical and linear. The variograms and the pseudo-
crossvariograms used in the cokriging coefficient matrix
were shown to satisfy Schwarz’s inequality. This condi-
tion guaranteed the matrix to be positive definite, which
was a guarantee that the variance of the estimated vari-
ables was positive.

Cokriging with nonsymmetric pseudo-crossvario-
grams was successfully used to calculate solute distribu-
tions and the total mass of Cl~ in the soil. Kriging and
cokriging were utilized to estimate the solute concentra-
tion at the measured locations based on less than half
of the available data. It was shown that cokriging can
be used to increase estimation accuracy and reduce sam-
pling requirements. Through cokriging, much more eas-
ily sampled information at shallower depths was used
to improve estimations at deeper soil layers. Compared

with kriging, cokriging reduced the mean squared errors
between 30 and 60%, reduced the mean kriging vari-
ances between 35 and 58%, and significantly increased
the correlation coefficients between the measurements
and estimates. Cokriging with the nonsymmetric
pseudo-crossvariograms used less than half data for the
estimation of chemical distributions, thus it potentially
could reduce more than half the sampling cost compared
with kriging estimation. In addition, compared with
kriging using all data, cokriging reduced the estimation
error about 20%. If the same information was used for
kriging and cokriging estimations, cokriging reduced the
estimation error 40% more than kriging.
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