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Abstract. In our companion paper we described a regression-based statistical
methodology for predicting field scale salinity (EC,) patterns from rapidly acquired
electromagnetic induction (EC,) measurements. This technique used multiple linear
regression (MLR) models to construct both point and conditional probability estimates of
soil salinity from EC, survey data. In this paper we introduce a spatial site selection
algorithm designed to identify a minimal number of calibration sites for MLR model
estimation. The algorithm selects sites that are spatially representative of the entire survey
area and simultaneously facilitate the accurate estimation of model parameters.
Additionally, we introduce two statistical criteria that are useful for selecting optimal
MLR variable combinations, describe a technique for identifying faulty signal data, and
explore some of the differences between our recommended model-based sampling plan
are some more commonly used design-based sampling plans. Survey data from two of the
fields analyzed in the previous paper are used to demonstrate these techniques.

1. Introduction

In the companion paper [Lesch et al., this issue] we described
a regression-based statistical methodology suitable for predict-
ing field-scale spatial salinity (EC,) conditions from rapidly
acquired electromagnetic induction (EC,) data. This ap-
proach, suggested as an alternative to cokriging, was used to
produce both point and conditional probability estimates at
new EC, survey locations. While both regression and cokriging
have certain advantages and disadvantages, a very attractive
feature of the former approach is its cost-effectiveness: regres-
sion models can be fitted with significantly reduced calibration
sample sizes.

In this paper we describe a spatial site selection algorithm
specifically designed to identify calibration sites that are well
suited for multiple linear regression (MLR) models. As de-
scribed in the previous paper, we work with EC, data observed
at N survey sites. Our task is to choose a “good” subset of n
calibration sites at which to sample the soil salinity. Our pro-
posed algorithm selects a limited set of calibration sites (n I
20) with desirable spatial and statistical characteristics by com-
bining survey site location information with response surface
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design techniques. Our algorithm ensures that the selected set
of calibration sites is (1) spatially representative of the entire
survey region and (2) suitable from a statistical design view-
point, in that the EC, instrument data corresponding to these
calibration sites permit efficient estimation of the regression
parameters. We note that the proposed algorithm satisfies
these two conditions in a quantitative manner but does not find
a unique solution to any formal optimization problem.

The sampling algorithm requires that the EC, signal data
first be transformed and decorrelated. We show how this can
be accomplished using a principal components analysis, ex-
plain how such a transformation can be used in conjunction
with a response surface design to identify a statistically efficient
set of calibration sites, and discuss how the response surface
design can be modified in order to optimize the spatial loca-
tions of the final calibration sites. We also describe two vari-
able selection criteria that are useful for selecting optimal
combinations of regression variables in the MLR model and
show how the principal components analysis can be used to
detect faulty signal data. We demonstrate these different tech-
niques using the salinity survey and calibration data already
introduced in the previous paper.

The details concerning our analysis are, by necessity, specific
to the MLR salinity modeling approach already described.
However, the techniques we employ are quite general and
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Figure 1. Various types of two-parameter, central composite
response surface designs: (a) first-order design, (b) second-
order design, and (c) coded second-order design, depicting the
center point, four cube points, and four axial points. 1 pound
per square inch (lb/in*) equals 6895 Pa.

hence should be applicable to other types of similar environ-
mental calibration (regression) problems.

2. Statistical Methodology
This section is divided into four parts. In the first part we

briefly review response surface designs and describe how these
designs can be modified to handle spatial survey data. An

algorithm for constructing a spatial response surface sampling
design is discussed in the second part, along with techniques
for detecting faulty signal data. In the third part we derive the
general parametric form for a MLR salinity prediction model,
and in the fourth we discuss two variable selection criteria
useful for identifying optimal variable combinations within the
prediction model.

2.1. Site Selection Criteria

We begin our discussion by introducing a series of tech-
niques which are useful for the development of a spatial sam-
pling plan suitable for estimating a regression model. These
techniques include response surface designs, principal compo-
nents analysis, and an algebraic formula for measuring the
spatial uniformity of a set of points distributed within a two-
dimensional region. We introduce each of these techniques
using the hypothetical example outlined below.

Suppose we wish to predict the level of an attribute, y , given
knowledge of two correlated covariates, x1 and x2. Suppose
further that a MLR equation can be assumed a priori to rep-
resent a reasonable prediction model. If we can only afford to
collect a total of II samples, then at what (x1, x2) covariate
levels should these n samples be observed at in order to accu-
rately estimate the regression model parameters? To answer
this question, we must first specify whether or not thex, andx,
covariates are controllable; e.g., can we actively manipulate (or
set) the covariates to one or more prespecified levels before
observing y . Sampling strategies specifically designed for esti-
mating regression models under controlled, experimental con-
ditions are known as response surface designs. (An introduc-
tion to response surface designs can be found in the work by
Montgomery [1984]; a more thorough treatment of the subject
is given by Box and Draper [1987].)  In a response surface
design, the response attribute, y, is observed at a limited num-
ber of n predetermined covariate levels, where these covariate
levels (commonly referred to as the design levels) are chosen
using some type of optimality criterion. The usual criterion is
to minimize the mean square error (MSE) of the expected
regression model; however, other criteria can also be employed
[Box and Draper, 1987].

Assume for the moment that x1 is temperature, x2 is pres-
sure, and y is the reaction time in a hypothetical chemical
process. Two response surface designs commonly used for es-
timating a regression model relating y to x, and x2 are shown
in Figures la and lb. Both designs are known as central com-
posite (CC) designs. Figure la displays a “first-order CC de-
sign,” since it is used for estimating a first-order (linear) rela-
tionship:

9 = PO + PlXl + /32x2. (1)

Figure lb displays a “second-order CC design,” useful for
estimating a quadratic relationship with interaction between
the covariates:

j = PO + hxl+ PZx2 + P3xIx2 + btx; + khx:. (2)

The minimum sample size in the first-order design is n = 5,
while the second-order design requires at least nine samples.
In general, the minimum required sample size will increase as
either the expected order of the regression model or the total
number of covariates increases. Note also that both CC designs
are “orthogonal.” Orthogonality implies that the design levels
of x1 and x2 are statistically independent. This is achieved by
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choosing x1 and x2 design levels which, when multiplied to-
gether, sum to 0; i.e.,

n

C (X1r  - xI)(x2i-x21  = O

<=I

When employing a response surface design, it is common
practice to scale the independent regressor variables and work
instead with “coded” design levels. An example of this tech-
nique is shown in Figure lc, where we again display our hypo-
thetical second-order CC design using the corresponding
coded levels or and ra. Typically, all response surface designs
are shown in this coded manner. In Figure lc the coded design
level (0, 0) is referred to as the “center point,” while the
remaining design levels are referred to as either “cube points”
or “axial points.” In a two-parameter, second-order CC design,
the cube points are all the design levels which appear as ( t a,
?a), while the axial points are those levels which appear as
either (tb, 0) or (0, +-b),  where b > a. (In our example,
a = 1 and b = 2.) In a k-parameter, second-order CC design,
there will be one center point, 2k cube points, written as ( t a,
*a, -** ,‘_‘a),and2kaxialpoints,writtenas(tb,O;*.,O),
(0, ?b, e**, 0), *em, (0, 0, ***,  ?b). Henceak-parameter,
second-order CC design will require at least 2k + 2k + 1
sample observations.

In an experimental setting, where all the design variables are
controllable, response surface designs represent an effective
(model based) sampling strategy for estimating regression
models. However, response surface designs have received lit-
tle, if any, attention in the sampling literature. This is probably
due to two reasons: (1) in a typical survey the potential covari-
ates (x1, x2, -0.  , xk) will rarely be controllable or indepen-
dent and (2) aside from a few types of geostatistical sampling
strategies [Russo, 1984], “design-based” sampling plans are
usually employed to select the samples. The reader should
recognize the two different uses of the term “design” being
used here. A design-based sampling strategy describes a type of
sampling plan which makes no parametric assumptions regard-
ing the relationship of the response attribute, y, to the xi,
X7.>  *** f xk covariates [de Gruijter and ter Braak, 1990; Brus and
de Gruijter,  1993], whereas a model-based sampling strategy
can be used when a specific parametric model is assumed to
describe the response/covariate relationship [Thompson, 1992].
Examples of design-based sampling strategies include simple
random sampling, stratified random sampling, and cluster sam-
pling. Response surface designs represent one example of
model-based sampling strategies.

A model-based sampling strategy will be quite advantageous
under the right circumstances. For example, an approximate
response surface design can be used to greatly reduce the
number of sample sites needed to ensure efficient parameter
estimates in our salinity regression model. We use the term
“approximate” because obviously the EC, covariate readings
are not controllable. Hence we first need to observe all of the
EC, signal readings before selecting the sample sites. Then,
after collecting all of the signal data, we can search through
these data and select a subset of survey sites with signal levels
that most closely match some theoretical set of response sur-
face design levels. In this paper we will refer to this type of
sampling technique as a “pseudo response surface” (PRS)
design.

One immediate problem arising from this type of design has
already been mentioned; the covariates will likely be corre-

lated. In our case the EC, covariate information often tends to
be highly correlated, making it impossible to choose approxi-
mately orthogonal PRS design points using the raw signal data.
However, this problem can be circumvented by performing a
principal components transformation on the signal data [John-
son and Wichern, 1988]. The EC, instrument readings should
first be centered and scaled before applying the principal com-
ponents transformation (i.e., subtract off the observed mean
signal level from each reading and then divide this quantity by
the observed signal standard deviation). The transformation
procedure can then be performed on these normalized data to
produce orthogonal (uncorrelated) principal component data,
where each vector of transformed signal observations will have
0 mean and unit variance (after dividing each vector of obser-
vations by the square root of the corresponding eigenvalue).
Hence these centered and scaled principal component scores
can then be directly compared to a set of preselected, coded
response surface design levels.

Figure 2a displays a second-order coded CC design (similar
to the design shown in Figure lc), with a set of centered and
scaled principal component data (K, and K~) overlaid on the
design plot. In Figure 2a the (T,, rJ cube and axial design
levels have been chosen by superimposing an ellipsoid defined
as < + 4 = 3.84 onto the graph. We have used a value of 3.84
in order to generate axial design levels equal to (t 1.96, 0) and
(0, 21.96). (Note that the interval of (-1.96, 1.96) will define
the marginal 95% probability interval for K~ or K~ when K, and
K~ are assumed to be normally distributed with mean 0 and unit
variance.) The nine (K1, K~) bivariate observations circled in
Figure 2a generate the “optimal” PRS design, in that these
principal component scores most closely match the (r,, TJ
design levels. In this example, our optimality criterion is to
minimize

DLSj = (K,r  - 71,)’ f (KzI - 72j)’ (3)
where ( 7ii, rZj) is the jth CC design level, ( K,~,  Key) repre-
sents the ith bivariate principal component score, and DLS is
an abbreviation for “design level similarity.”

A PRS sampling approach like the one outlined above can
be used to select a set of calibration sites which should allow
for accurate regression model parameter estimates. The prin-
cipal component scores associated with these sites will also be
well “balanced” in a statistical sense; e.g., the observed mean
levels of the nine K, and K?; observations should be approxi-
mately equal to the K~ and K~ population means. (In Figure 2a
the sample K1 and K~ means are -0.057 and -0.040, while both
population means are identically equal to 0.) However, if we
were to use such a sampling design to collect spatial data, it is
clear that a set of sample sites with very undesirable spatial
characteristics could be selected. Figure 2b displays a hypo-
thetical plot of the nine physical sample locations which could
have been generated by our PRS design; note that the majority
of the sites are clustered in one corner of the field. Intuitively,
we should strive to select sample locations in a fairly uniform
manner across the entire field, because a uniform (systematic)
sampling strategy will result in data which are more represen-
tative of the entire survey area. (The analyst should keep in
mind that the regression model will only be as representative as
the data it is based on.) Additionally, spatially well balanced
samples will facilitate the efficient estimation of trend surface
parameters in the regression model, if such parameters prove
to be necessary. Figure 2c displays a much more uniform dis-
tribution of sample site locations. Ideally, we would like to be
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Figure 2. (a) Plot of principal component data overlaid on a second-order central composite design, with
optimal PRS sites circled. (b) Plot of hypothetical sample site locations displaying poor spatial uniformity. (c)
Plot of hypothetical sample site locations displaying good spatial uniformity.

able to adjust a PRS design to produce a distribution of sample the survey grid. Hence the following two “uniformity criteria”
sites which looks something like Figure 2c, rather than Figure can be used for assessing the degree of spatial uniformity
2b. inherent in a set of calibration sites:

In order to develop a criterion for measuring the spatial
uniformity of a set of sample site locations, we can use a
well-known result from geostatistics. Optimal sampling strate-
gies, with respect to minimizing the maximum kriging error,
are discussed by McBratney et al. [1981] and Webster and Oliver
[1990].  They show that the maximum kriging error within a
rectangular region will be minimized when an equilateral tri-
angular survey grid that “fills” the region is employed. Actu-
ally, for any given sampling design of size N, this type of survey
grid will minimize both the maximum and average distance
between a prediction (interpolation) point and the nearest
survey point.

1. Let $1 and Q2 represent two subsets of calibration sites,
both of size n. If AD($l)  < AD($2),  then the sample site
locations in $1 exhibit a more representative distribution
within R.

2. Let Ql represent a subset of calibration sites of size 12,
and let A represent the remaining survey sites in Y which are
not included within $1. Suppose we wish to add exactly one site
from A into $1 such that the new set of rz + 1 sites in $1 results
in the most representative distribution within n. Then the
“optimal” site to add into $1 is the site in A which results in the
minimum AD(+l)  score, out of all possible N - IZ scores.

This result can be used to develop a measurement of spatial
uniformity. Define R to be a two-dimensional rectangular re-
gion and Y to be a dense, centric systematic grid of survey sites
of size N within 0. Define JI to be a subset of survey sites from
Y of size II, n < N. For example, $ could represent the set of
calibration sites chosen by a PRS design. Define di, i = 1, N,
to be the physical distance from the i th survey site in Y to the
nearest calibration site in $. (Note that exactly rz of these di
values will be 0, since II of the survey sites must also be cali-
bration sites.) Then the average distance from a survey site in
Y to the nearest calibration site in $ is

The above criteria, together with (4), perform two useful
functions: (1) to differentiate, with respect to spatial unifor-
mity, between two potential subsets of calibration sites, and (2)
to decide on the best location for an additional calibration site,
subject to the existing spatial distribution of calibration sites
already selected.

We are now in a position to describe how these two unifor-
mity criteria can be combined with the previously discussed
techniques for selecting a PRS design, in order to generate a
spatial sampling plan with desirable spatial and statistical prop-
erties.

AD($) = (l/N) 5 di
i = l

(4)
2.2. Development of a Spatial Response Surface
Sampling Design

where AD is an abbreviation for “average distance.”
Equation (4) represents a convenient algebraic formula for

measuring the spatial uniformity of a set of calibration sites
scattered across IZ points of a centric, systematic survey grid.
From McBratney  et al. [1981]  we know that (4) is minimized
when the calibration sites are distributed systematically across

Our site selection algorithm identifies an efficient subset of
calibration sites for estimating a regression model by incorpo-
rating spatial uniformity criteria into a PRS design. The spe-
cific assumptions employed in the selection algorithm are out-
lined below.

We assume that the EC, instrument data have been col-
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lected on a centric, systematic grid at N sites (N 2 100) across
the entire survey area. For this discussion we will also assume
that these EC, data consist of either three or four different
signal readings at each site; for example, two EM-38 signal
readings (horizontal and vertical mode) and one or two addi-
tional signal readings from some other electrical conductivity
device (such as an insertion four probe or surface array).
(Mention of trademark or proprietary products in this paper
does not constitute a guarantee or warranty of the product by
the U.S. Department of Agriculture and does not imply its
approval to the exclusion of other products that may also be
suitable.) Let K1, K2, and Kg represent the first three centered
and scaled principal component scores, computed from the
natural log-transformed signal data. (When there are four
instrument readings, we assume that the fourth principal com-
ponent score can be discarded without any significant loss in
prediction accuracy, due to the high correlation between signal
readings.) Let CC, represent a three-parameter central com-
posite response surface design without a center point, and
where the eight cube and six axial design levels of CC,, shown
in Table 1, satisfy the following relationship: 6 + 6 + < =
3.84. Let $1 represent the 14 survey sites selected by this CC,
design; i.e., $1 represents the optimal PRS design, where the
optimality criterion employed at each design level is to mini-
m i z e  DLSj  =  (Kli  - Tlj)*  +  (KZi - Tzj)’ +  (Kgi  - Tyj)*.

Additionally, let $2 and $3 represent the second and third best
PRS designs, such that the principal component scores associ-
ated with each survey site in $2 produce the second smallest
DLSj  values, and each site in $3 produces the third smallest
values. Let Y represent a potential combination of 14 survey
sites, where these 14 sites are subsampled only from $1, $2,
and/or $3, and such that each site in q is associated with one
and only one of the 14 distinct design levels in CC,. Finally, let
AD(W) represent the average distance value associated with
w.

Given the above definitions the following algorithm+can be
used to select a subset of calibration sites:

1. Compute the first three principal component scores,
compare these scores to the 14 CC, design levels, and identify
the three subsets of survey sites for inclusion into the $1, @2,
and $3 PRS designs. Do not allow any survey site to be con-
tained in more than one PRS design or to be associated with
more than one CC, design level.

2. Assign W = @l and compute AD(p).
3. Forj = 1 to 14, temporarily interchange (swap) the site

in q associated with the jth CC, design level with the site from
$2 (associated with the same design level). After each swap,
recompute AD(q).  If AD(V) decreases, permanently inter-
change these two sites.

4. Repeat step 3, now comparing each site in 1v with the
corresponding site from $3.

5. Iterate by repeating steps 3 and 4 until no further swap-
ping of sites occurs; i.e., until AD(W) no longer decreases.

Once step 5 is completed, V will contain 14 calibration sites
which are spatially distributed across the survey area in a rea-
sonably uniform manner. A limited number of additional sites
can then be added to q, one at a time, using our second
uniformity criterion. (In steps 6 and 7, 9 is now allowed to
contain more than 14 sites, and it equals the total number of
calibration sites contained within V after each iteration.)

6. For i = 1 to N - n, (14 5 n 5 20), temporarily add
the ith survey site to ?, recompute AD(q),  and then remove
this site. After computing the AD(*)  scores associated with all

Table 1. Fourteen Response Surface Levels of the Three-
Parameter, Second-Order CC Design (Without a Center
Point) Used in the Site Selection Algorithm

Design Levels

71 72 73

1.96 0.00 0.00
-1.96 0.00 0.00

0.00 1.96 0.00
0.00 -1.96 0.00
0.00 0.00 1.96
0.00 0.00 -1.96
1.13 1.13 1.13
1.13 1.13 -1.13
1.13 -1.13 1.13
1.13 -1.13 -1.13

-1.13 1.13 1.13
-1.13 1.13 -1.13
-1.13 -1.13 1.13
-1.13 -1.13 -1.13

potential N - II new ? subsets, identify the survey site which
produced the minimum average distance score, add this site to
V,andsetn =n + 1.

7. Repeat step 6 until the prespecified calibration sample
size, n = n,, is reached.

A flowchart outlining steps l-7 in this algorithm is shown in
Figure 3.

The algorithm outlined above essentially selects a set of
calibration sites by sequentially minimizing two optimality cri-
teria. First, three sets of potential calibration sites ($1, $2, and
$3) are identified by selecting survey sites which minimize the
DLS scores. An iterative swapping procedure is then used to
select the subset of calibration sites (V) from $1, $2, and $3
with the minimal AD(V) score. A few additional calibration
sites are then added to q, one at a time, again by minimizing
the new AD(q)  score after each iteration. The end result is a
set of calibration sites which are both statistically and spatially
well balanced.

Four points concerning this algorithm are worth highlight-
ing. First, with regard to the actual optimality criteria, the
ultimate goal is to identify a set of survey sites associated with
principal component scores which closely match a set of the-
oretical response surface design levels, while simultaneously
trying to make sure that these sites are distributed as uniformly
as possible throughout the survey area. Thus the algorithm
selects a “good” subset of sites which will facilitate the accurate
estimation of a MLR regression model (which may or may not
include all three principal component scores and/or additional
trend surface terms). It does not formally minimize the ex-
pected MSE of any specific regression equation, nor does it
guarantee that the final selected calibration sites will represent
the absolute “best” (i.e., optimal) subset of sites, with respect
to any residual error and/or model variance criteria.

Second, the algorithm clearly selects sites in a deterministic
(i.e., nonrandom) manner. It represents a model-based sam-
pling strategy where the calibration sites are specifically se-
lected to reduce the potential bias and improve the ultimate
prediction accuracy of the regression model, assuming that a
regression model can indeed explain the response/covariate
relationship. This is a very important point. Unlike a design-
based sampling strategy, the information gathered from this set
of calibration sites cannot, by itself, be used to construct any
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Figure 3. Flowchart depicting the various stages of our sam-
ple site selection algorithm (the statistical symbols and terms
are explained in the text).

unbiased salinity estimates (such as the field mean salinity
level, range intervals, etc.). It is through the fitted regression
model that all our salinity estimates arise, and the regression
model ultimately dictates the final prediction accuracy and/or
inherent bias in each of these estimates. We will expand on this
topic in the discussion section; however, for now we simply
note that this site selection algorithm should only be used in
conjunction with a regression modeling approach, and only
when one can be reasonably certain a priori that a regression
model will be appropriate.

Third, this algorithm can be used for generating a small set
of additional survey sites which will represent the full range of
salinity variability present within the survey area and, like the
calibration sites, tend to be spread throughout the survey area
in a uniform manner. These additional sites can be used in two
ways: (1) they can serve as a representative set of monitoring
sites, where soil samples could be acquired at some future
point in time and then used to test for a change in the field
average salinity level, or (2) they can serve as validation sites.
In the latter case, soil samples at these sites would be acquired
during the initial sampling phase, but not included in the cal-
ibration data set. The estimated MLR equation could then be
used to predict the EC, levels at these sites, the goal being to
assess the prediction accuracy and/or bias using observed sa-
linity data (hence the term “validation” sites). Regardless of
their ultimate use, these additional sites can be selected by

simply reapplying the site selection algorithm on the N - 12”
remaining survey points, using a restricted set of design levels.
For example, after identifying the calibration sites, our algo-
rithm will choose eight additional validation/monitoring sites
by first selecting three new PRS designs from the remaining
survey data using only the cube design levels of the three-
parameter, second-order CC design, and then repeating steps
2-5 to identify the final eight sites.

Fourth, the algorithm can be easily modified to incorporate
a different type of response surface design. For example, the
algorithm could employ a four-parameter, first- or second-
order CC design if we wished to systematically sample across
all four principal component scores. Likewise, if we only ac-
quired two signal readings (for example, just EM-38 data), the
algorithm could rely on a two-parameter CC design. When
necessary, the “target” design levels can also be adjusted (by
using a suitably chosen constant, different from 3.84). The
ability to easily employ different response surface designs
makes this type of sampling approach very versatile; one can
easily customize the algorithm for different surveying scenar-
ios.

One other important advantage of this algorithm, specifi-
cally with regard to the principal components transformation,
is that faulty and/or unusual EC, signal data become very easy
to detect. As already stated, the centered and scaled principal
component scores have means equal to 0, variances equal to 1,
and are jointly uncorrelated. From multivariate normality the-
ory [Johnson and Wichem, 1988] it can be shown that if X is a
p X N vector of multivariate normal observations, then the
solid ellipsoid of x values satisfying

(x - u)‘Z~‘(x - u) 5 &a) (5)

has a coverage probability of 1 - (Y. In (5) x represents ap X 1
vector of observations from X, u represents the mean of X, 2
represents thep X p variance-covariance matrix, and xz rep-
resents a chi-square distribution with p degrees of freedom. If
we assume that the principal component scores are approxi-
mately normally distributed, then (5) reduces to K: + ~2 +

K: 5 &a). For example, if we set 01 = 0.001, then an ellipsoid
defined as Kf + ~2 f Kz 5 16.27 should contain 99.9% of the
principal component data. Note also that the “statistical” dis-
tance from the ith trivariate set of principal component obser-
vations (Kit, K2, Key)  to the known distribution mean of (0, 0, 0)
iS Simply  ( KTi + KZ~  + K&) “‘. Hence, 99.9% Of the trivariate

principal component observations should not occur more than
(16.27)“’ E= 4.03 units away from (0, 0,O). In the results section
we will show some examples of bivariate principal component
plots which immediately reveal unusual EC, signal data, based
on the above derivations.

2.3. Identification of Potential MLR
Model Variables

The calibration site selection algorithm ensures that linear,
quadratic, and interaction terms associated with the first three
principal components can be estimated in the MLR model.
However, most of these parameters are not needed for typical
salinity survey data. For example, the relationship between
log-transformed soil salinity and the log-transformed EC, sig-
nal data is almost always linear. Therefore by applying natural
log transformations to the EC, readings (before constructing
the principal component scores), we eliminate the need for
quadratic terms in the model. Additionally, the multiple-EC,
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readings tend to be highly correlated; the first two principal
component scores usually account for more than 95% of the
total signal variability. We have consistently found that only
the interaction between the first and second principal compo-
nents need be considered. This implies the following MLR
salinity model:

ln (EC,) = PII  + Plki + i3zK2 + h1K2 + P4K3 + & (6)

where E - N(0,  ~‘1).
Strictly speaking, the spatially homogeneous equation (6) is

only appropriate when both the soil texture and soil water
content levels can be assumed to be approximately constant
across the field. Additional trend surface variables can be in-
cluded in the MLR model, when gradual fluctuations in either
the soil texture and/or water content occur across the survey
area. Generally, a second-order trend surface model, when
used in conjunction with the principal component variables
shown in (6), is adequate for most practical situations. This
model would be written as

ln (EC,) = PO + Pikl + h2 + PJKIKZ  + /34K3  + PsX

+ P6Y + P7XY + Psx2 + PsY2 + E (7)

where the variables x and y are now used to represent the
physical (x, y) locations of the sample data and the remaining
variables are the same as before.

Different terms in (7) can be systematically removed in order
to form simpler MLR prediction models. A listing of possible
principal component and trend surface variable subsets is
shown in Table 2. There are five different combinations of
principal component variables that can be used in a prediction
model, assuming that the ith principal component is restricted
from entering the model unless the first i - 1 components are
also included. Likewise, there are 10 different sets of possible
trend surface variables. Any of these 10 sets of trend surface
variables can be combined with the five different subsets of
principal component scores, yielding a total of 50 possible
parameter combinations in the MLR model.

2.4. Decision Rules for Selecting the Final
MLR Model Variables

Variable selection is a critical part of MLR model estima-
tion. A model missing important variables will produce biased
predictions, while the inclusion of unnecessary parameters can
inflate the mean square error estimate and degrade prediction
accuracy. Since the ultimate goal of our MLR model is accu-
rate salinity estimation, rather than parameter inference, vari-
able selection should be based on predictive criteria. Two pre-
diction criteria that are useful for variable selection are
sequential cross validation, based on the prediction sum of
squares (PRESS) residuals, and the average prediction vari-
ance estimate (APVE) associated with the N - n prediction
sites.

The ith PRESS residual is generated by removing the ith
observation from the calibration data set, refitting the MLR
model, estimating the deleted observation, and then comput-
ing the corresponding prediction error, e _-i [Myers, 1986; Weis-
berg, 1985]. This process is performed for each observation and
the PRESS statistic is defined as:

PRESS = i (e-J2
i=l

(8)

Table 2. Hierarchical Listing of Five Possible
Combinations of Principal Component Variables and 10
Possible Combinations of Trend Surface Components

Abbreviation Variables

Valid Combinations of Principal Component Variables
S3i- Klr  K2, KIZ, K3
S2i- KI> K2r K12
s3- KIT Kz>  K3
s2- Klr  ‘G
Sl- Kl

Valid Combinations of Trend Surface Variables
Tquad x, Y, xy, x2, Y2
Tx2y2 x, Y> x2, Y2
Tx2yl x, Y, x2
Txly2 x, Y> Y2
TX2 x, x2
TY2 Y> Y2
Txlyl x, Y
Txl X

Ty1 Y
TO none

The PRESS statistic is a model validation measurement; a
small PRESS statistic implies small prediction errors, and
hence a better model.

In practice, it is not necessary to estimate the MLR model n
times to compute the PRESS residuals. The PRESS residuals
can be computed from the ordinary residuals with the follow-
ing relationship [Myers, 1986]:

e_, = ei/(l  - h,), (9)

where hi = xi(X’X))‘x,. Hence, PRESS statistics for each
parameter combination can be computed after the model is
estimated, and the model (parameter combination) with the
smallest PRESS can be identified.

Recall that the prediction variance for thejth survey site was
[Myers, 1986]

7); = ?[l + x;(x’x)-‘x,] = s2(1  + h,) (10)

We define the average prediction variance estimate (APVE)
for the N - n survey sites as

N-II

A P V E  = l/(N - n) c ~‘(1 + h,) = ~‘(1 + H)
j=l

N-n

H = l/(N - n) 2 hj (11)
j=l

The APVE represents an estimate of what the average predic-
tion variance should be, assuming that the model parameter-
ization is correct. MLR models with small average prediction
variance estimates are preferable, since they will theoretically
be the most accurate.

The APVE can be computed for each model and used in
conjunction with the PRESS statistics to identify the final
“best” combination of model variables. Sometimes both statis-
tics will clearly identify one model as superior. However, some-
times these two statistics may not agree, and/or may not con-
sistently select the same model parameterization  across
multiple depths. We have found these two criteria to be most
effective when they are used as a guideline for identifying a few
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Figure 4. Various plots of EC, signal data from field S2A:
(a) In Wenner data recorded at l- and 2-m spacings, where
sites 69 and 173 appear unusual; (b) plot of KJK~,  with no
outliers present; (c) plot of KJK~,  with two significant outliers
(sites 69 and 173); and (d) plot of KJK~,  with two significant
outliers (sites 69 and 173).

good “candidate” models. More comprehensive statistical cri-
teria can then be used to select the final MLR parameteriza-
tion.

3. Application Examples
Examples of EC, signal verification, calibration site selec-

tion, and MLR variable identification techniques are discussed
below using field survey data introduced in the previous paper.
Survey data from field WWD-1 are used to demonstrate both
the detection of faulty signal data and the calibration site
selection algorithm. An example of MLR variable selection
and model identification is demonstrated with the data from
field S2A.

The original survey data in field WWD-1 were collected on
a systematic grid consisting of 14 rows with 13 survey sites per
row. The row spacing was 50 m, while sites within a row were
spaced 55 m apart. The total number of survey sites was 14 X
13 = 182. However, no survey data was collected at the last site
in row 1 because an evaporation pond had been installed in the
northeast corner of the field. Additionally, the Wenner instru-
ment data from the first site in row three had to be discarded
because one of the probes failed to make contact with the soil
(the furrow at this site had a noticeable tractor tire rut). Hence
usable survey data were acquired at 180 sites only.

All bivariate plots of the four EC, signal readings (horizon-
tal and vertical mode EM-38 data and l- and 2-m spacing
Wenner array data) appeared quite correlated. Additionally,
the bivariate plot of the Wenner data appeared to contain at
least two unusual observations: sites 69 and 173. A plot of this
log-transformed data is shown in Figure 4a. At both sites it
appeared that the Wenner readings from the 2-m spacing were

considerably lower than they should have been, given the l-m
readings.

A principal component transformation was applied to both
the EM-38 and Wenner survey data, and bivariate plots of the
first three scaled and centered principal component scores
were constructed. As previously discussed, if the principal com-
ponent scores are assumed to be distributed as independent
N( 0, 1) random variables, no data should lie more than about
4 units from the mean. In Figures 4b, 4c, and 4d, the three
bivariate plots are shown with circles of radius 4 overlaid on
the principal component data. Sites 69 and 173 clearly ap-
peared to be outliers in both the KJK~  and KJK~  plots; note
that each fell more than 6.4 units (standard deviations) away
from the means of each bivariate distribution. Hence the Wen-
ner data were judged to be unreliable, and both of these sites
were removed from the survey data.

A second principal component transformation was applied
to the log survey data from the remaining 178 sites, after
removing sites 69 and 173. Only one site (site 99) appeared to
lie more than 4 units away from the bivariate means in any of
the plots. Since the bivariate principal component data for site
99 just marginally exceeded the 4-unit threshold in both the
KJK~  and KJK~  plots, we chose not to delete this site from the
survey data. However, we did remove this site from possible
consideration before running the sample site selection algo-
rithm, so that this marginal outlier would not inadvertently be
chosen as one of the calibration sites.

Principal component transformation statistics (correlation
matrices, eigenvalues, and eigenvectors) for both the full (N =
180) and reduced (N = 178) survey data sets are shown in
Table 3. Deletion of sites 69 and 173 resulted in only minimal
changes in the eigenvalues and eigenvectors. Note also that the
estimated coefficients in the final eigenvectors were physically
meaningful. The first eigenvector, which explained the domi-
nant proportion of the log EC, variability, was basically a
simple average of the four individual signal readings. The sec-
ond eigenvector represented a contrast between the EM-38

Table 3a. Principal Component Transformation Statistics
on Log-Transformed WWD-1 Survey Data (Correlation
Matrix, Eigenvalues, and Eigenvectors) for Full Data Set
(N = 180)

Correlation

ln (EM,)
ln (EM,)
ln Wc.i)
ln (w&

Eigenvalues

3.79676
0.18494
0.01503
0.00327

Variable

ln (EM,)
ln (EM,)
ln (wO.,)
ln WO.,)

ln (FM,) ln (EM,) ln (wO.,) ln (w,.,)

1.0000 0.9927 0.8565 0.9209
1.0000 0.8990 0.9492

1.0000 0.9741
1.0000

Percent Total Percent
Variability Variability

0.94919 0.94919
0.04624 0.99543
0.00377 0.99920
0.00080 1 .ooooo

First Second Third
Eigenvector Eigenvector Eigenvector

0.4966 -0.5794 -0.0850
0.5059 -0.3738 -0.1859
0.4910 0.6572 -0.5543
0.5063 0.3044 0.8068
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and Wenner data, which is essentially a contrast between deep
(O-l.2 m) and shallow (O-O.6 m) signal information. The third
eigenvector seemed to be primarily a contrast between the two
Wenner readings, which represents a contrast between two
shallow readings: O-O.6 m versus O-O.3 m.

After validating the survey data from field WWD-1,178 sites
were left in the data set, of which 177 represented potential
calibration site locations. The site selection algorithm was then
used to select 16 calibration sites and eight additional valida-
tion sites; these computations were carried out in the field with
a portable 386 personal computer and customized site selec-
tion software developed at the U.S. Salinity Laboratory.

Figures 5a-5d show various stages of the calibration and
prediction site selection process. Figure 5a shows the 42 sites
selected to be in the three initial PRS designs ($1, $2, and $3).
While these sites appeared to be spread approximately
throughout the field, note that they tended to be distributed in
clusters. Figure 5b shows the final 14 sites contained in Y
which most closely matched the design levels, after adjusting
for spatial location. Note that the final 14 sites were distributed
almost systematically throughout the field. The two sites shown
as double circles were added after the 14 design sites had been
selected, in order to bring the sample size up to 16. The
algorithm based the selection of these last two sites solely on
their spatial locations. Figure 5c shows the original locations of
eight additional validation sites. These sites were selected to
correspond to the eight CC, “cube” design levels, [K~, K~,  KJ =

(k1.13, k-1.13,  21.13)  again after adjusting for spatial loca-
tion. These design levels were used so that the validation data
set would represent the full range of soil salinity levels through-
out the field. We manually decided to move one of the sites (as
shown in Figure 5c)  to achieve a more uniform spatial pattern.
Figure 5d displays the final locations of the 16 calibration and
eight prediction sites. The five calibration sites shown as dou-
ble squares represent the five calibration locations where du-
plicate soil core samples were extracted.

After the calibration sites within a field have been selected,
soil samples from each site can be extracted and returned to
the laboratory for analysis. Upon determining the soil EC,
levels, the MLR model-building stage begins. The first step to
successful model estimation is the identification of an optimal
combination of MLR variables. MLR variable combinations
that resulted in the five lowest PRESS and APVE statistics for
field S2A  are shown in Table 4. Note that four models were
common to both lists: S2-Tx2y1,  S3-Tx2y1,  S3-Tyl,  and S3-Ty2.

Some pertinent summary statistics for these four MLR mod-
els are shown in Table 5. These include the number of param-
eters, R2, adjusted R2, the model mean square error (MSE), a
jackknifed estimate of the MSE (computed from the PRESS
statistics), and the APVE statistic. On the basis of both these
statistics and the residual diagnostic plots (not shown), we
decided to use the S3-Tx2yl  parameterization for prediction
purposes. Although this model contained the highest number
of variables (6) it had the lowest MSE and jackknifed MSE
estimates, the highest adjusted R2, and nearly the lowest
APVE statistic. The final parameter estimates for this model
are given in the footnote to Table 5.

For comparative purposes we computed prediction summary
statistics using all four model parameterizations; these results
are shown in Table 6. The predicted field average In (EC,)
levels were all within 0.023 units of each other, and all four
confidence intervals contained the observed In (EC,) level.
The range interval estimates produced by each model were

Table 3b. Principal Component Transformation Statistics
on Log-Transformed WWD-1 Survey Data (Correlation
Matrix, Eigenvalues, and Eigenvectors) for Data Set After
Removal of Two Unusual Sites (N = 178)

Correlation

In (EM,)
ln (EM,)
In (w,.,)
In W,,.z)

Eigenvalues

3.78090
0.18549
0.03017
0.00344

Variable

In (EM,)
In (EM,)
In WO.,)
In (w,.,)

In (EM,) In (EM,) In WOml) In (wO.,)

1.0000 0.9924 0.8573 0.9114
1.0000 0.8997 0.9373

1.0000 0.9627
1.0000

Percent Total Percent
Variability Variability

0.94522 0.94522
0.04637 0.99159
0.00754 0.99913
0.00087 1.00000

First Second Third
Eigenvector Eigenvector Eigenvector

0.4976 -0.5806 -0.0430
0.5065 -0.3800 -0.1981
0.4917 0.6395 -0.5692
0.5040 0.3311 0.7968

also nearly equivalent. The prediction correlation matrix
shown in Table 6b confirmed that even the individual predic-
tions tended to be quite similar. Although we chose to use the
S3-Tx2yl  model, the results in Table 6 confirm that any one of
the other three MLR model parameterizations could have
been employed without seriously altering the prediction statis-
tics and/or the estimated spatial salinity map.

4. Discussion
The initial field EC, data should always be validated before

the calibration site locations are chosen. During rapid field
survey operations, “bad” instrument data can occur. For ex-
ample, the probes in the automated Wenner array system
(mounted underneath a mobile assessment vehicle) may occa-
sionally fail to make good contact with the soil. One or more
probes can get inadvertently inserted into large soil cracks and
hence fail to transmit or receive a conductance signal, or a
physical obstruction (such as a stone) can block a probe from
reaching its penetration depth, thus resulting in faulty data.
Likewise, EM-38 readings can be seriously distorted if small
metallic objects are buried near the sample site. Plotting the
bivariate principal component data is an easy and effective way
to identify questionable survey readings. Faulty readings can
then be removed immediately after the survey data have been
collected, before the soil sampling begins.

The calibration site selection algorithm described in this
paper has some very definite advantages and disadvantages in
comparison with other types of sampling plans. As we have
pointed out, it employs a model-based, nonrandom identifica-
tion strategy to select a set of calibration sites with desirable
spatial and statistical properties. Furthermore, it has been spe-
cifically created for estimating a regression model, as opposed
to directly estimating any field salinity statistics. Hence it has
been designed for use with (and only with) the MLR modeling
approach described by Lesch  et al. [this issue].

Brus and de Gruijter  [1993]  and de Gruijter and ter Braak
[1990]  offer some convincing arguments in favor of using a
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Figure 5. Various stages of the calibration and validation site selection process in WWD-1: (a) initial 42 sites
chose by the response surface design; (b) final 14 calibration sites, with two additional sites added to improve
spatial uniformity; (c) location of the eight validation sites, with one site manually relocated to improve spatial
uniformity; and (d) locations of final 16 calibration and eight validation sites.

design-based approach (which includes design-based sampling
plans) for spatial inference. They point out that model-based
approaches, such as geostatistical techniques like kriging, make
a number of parametric assumptions (i.e., model assumptions)
which may or may not be satisfied in practice. Furthermore, the
concept of unbiasedness, with respect to some population es-
timate (or prediction) has a different meaning under the two
approaches.

Design-based sampling plans and methods of inference have
some advantages in that they can be more objective (i.e., they
require no subjective estimation of parametric model param-
eters) and hence may be more appropriate for some types of
contamination and/or assessment studies. However, design-
based methods of inferences cannot produce point estimates of
a response variable at any nonsampled locations, nor can they
incorporate covariate information in any direct, efficient man-
ner. On the other hand, model-based sample inference meth-
ods are specifically designed for point prediction. Both cokrig-
ing and MLR models effectively incorporate covariate
information which can be used to increase the prediction ac-
curacy at nonsampled locations throughout the survey area.

Nonetheless, while both cokriging and regression are model-
based approaches, the analyst must keep in mind that some of
their parametric assumptions are quite different. In a cokriging
approach a fundamental assumption is made that approxi-
mately unbiased estimates of the variogram functions are ob-

tainable and, additionally, that all the variables are stochastic.
Theoretically, one cannot choose sampling locations which in
any way depend on the expected level of the response variable,
since such a sampling design would induce unintended bias
into the shapes of the variograms. However, in a regression
model the covariates are considered to be deterministic; only
the residual error term is considered stochastic. Additionally,
no variogram estimates are required, nor will the MLR model
predictions depend in any direct way on the physical locations
of the calibration sample sites. Hence it is not only permissible,
but often preferable, to select the calibration sites in a non-
random manner, provided the selection procedure is designed
to minimize the error associated with the parameter estimates.

In a regression model, prediction accuracy will be degraded
and/or bias may be induced when either (1) the model is
misspecified or (2) the parameters are poorly estimated. Model
misspecification can occur either because one or more impor-
tant parameters are missing from the model or when the re-
sidual error assumptions are grossly violated. Likewise, param-
eters can be poorly estimated because (1) one or more
independent regressor variables are highly correlated, (2) the
range between the highest and lowest response levels for one
or more regressors is too narrow, and hence deterministic
effects caused by changing the regressor response level(s) are
drowned out by random noise, and/or (3) the sampling design
is poorly balanced with respect to the regressor levels on which
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Table 4. Five Best Models (MLR Variable Combinations) Table 6a. Prediction Summary Statistics for Final MLR
for Field S2A, as Determined by PRESS and APVE Parameter Combinations: Field Average In (EC,) and
Statistics Range Interval Estimates (Observed Values Also Shown)

PRESS Statistics APVE Statistics MLR Prediction Models

Rank Model Value Rank Model Value

1 S3-Tx2yl 2.06 1 S2-Tx2yl 0.106
2 S3-Tyl 2.09 2 S3-Tx2yl 0.107
3 S3-Tx2y2 2.12 3 Sl-Tx2yl 0.111
4 S3-Ty2 2.12 4 S3-Tyl 0.112
5 S2-Tx2yl 2.31 5 S3-Ty2 0.116

Observed
Data S2-Tx2yl S3-Tx2yl S3-Ty1 S3-Ty2

G 1.017 0.967 0.957 0.951 0.944
(0.84, 1.10) (0.83, 1.08) (0.82, 1.08) (0.81, 1.08)

the predictions will be based (i.e., the sample regressor levels
are not representative of the population levels, and hence the
estimated regression model is not based on data which are
representative of the population to be predicted.)

@[O, 21 0.425 0.427 0.430 0.422 0.419
@[2,  41 0.231 0.236 0.247 0.275 0.270
@[4, 81 0.161 0.190 0.179 0.161 0.168
0[8, 161  0.134 0.100 0.092 0.087 0.089
0[>16] 0.049 0.047 0.052 0.055 0.054

G denotes field average In (EC,); @[a, b] denotes range interval
estimate. Values in parentheses denote 95% confidence intervals.

In our companion paper we dealt with one aspect of poten-
tial model misspecification, i.e., the independent error assump-
tion. We stressed the use of the Moran residual test, and more
importantly, sampling designs which facilitate the construction
of a lack-of-fit test. Intuitively, if one or more covariates are
being corrupted by some secondary (unknown) spatial effect,
then the regression model will be biased, and the residuals
associated with duplicate samples should be highly correlated.
On the other hand, an unbiased regression model should pro-
duce a MSE estimate which is approximately equivalent to the
pure error estimate, which in a spatial setting is equivalent to
the observed “nugget” variance of the response variable. This
is why we stress constructing a lack-of-fit test; it supplies the
analyst with a direct means of testing for model bias.

In this paper we have dealt with the remaining issue of
model misspecification, i.e., regression parameter identifica-
tion techniques. We have proposed two statistical criteria for
identifying important parameters, the PRESS and APVE sta-
tistics. These statistics can be used in conjunction with other
statistical (and often nonstatistical) criteria to help identify a
worthwhile set of regressor covariates for prediction purposes,
provided the underlying assumptions regarding the applicabil-
ity of a regression relationship are approximately satisfied.

ploying a suitable underlying response surface design, it
effectively maximizes the range between the sampled response
levels of each regressor variable (principal component score)
associated with the signal data. Third, by employing these same
response surface design techniques in conjunction with spatial
uniformity criteria, it significantly increases the probability of
choosing calibration sites which are well balanced in both a
spatial and statistical sense (i.e., both the independent regres-
sor levels and calibration sample locations are representative
of the survey population). Hence our algorithm effectively
deals with the three main issues which determine the precision
of the parameter estimates and thus, in turn, serves to maxi-
mize the prediction accuracy and minimize the bias inherent in
the fitted model.

We have also described in detail how a sampling plan can be
designed to ensure efficient parameter estimates. Note that our
algorithm effectively performs three functions. First, it decor-
relates the signal data, hence removing the problems associ-
ated with multicollinear regressor variables. Second, by em-

Table 5. Model Summary Statistics for Final MLR
Variable Combinations: p (Number of Parameters), R2, Adj
R2 (Adjusted R’), MSE, JMSE (Jackknifed MSE), and
APVE

Two other points deserve some discussion. First, some au-
thors in the nonspatial sampling literature have been rather
critical of applying regression models to survey data. For ex-
ample, Hansen et al. [1983]  suggested that a regression mod-
eling approach can lead to substantial bias in the predicted
population mean within a sampling survey. However, their
conclusion was refuted by Cumberland and Royal1 [ 1988], who
showed that the reason for the bias in their study was due
primarily to their reliance on a (design based) simple random
sampling scheme for choosing the calibration data. Cumber-
land and Royal1 showed that a model-based estimation tech-
nique requires a sampling scheme which is well balanced (i.e.,
the sample and population means of the regressor variables
must be approximately equal) and that simple random sam-
pling does not ensure this, regardless of the sample size. Ad-
ditional comments concerning the need for adequate balance
in model-based estimation techniques are given by Thompson
[1992],  who discusses the pros and cons of design- and model-
based sampling inferences in a more general setting.

Model p* R2 Adj R’t MSE JMSE$ APVE
Second, in the spatial sampling literature, Brus and de Gruijter

S2-Tx2yl 5 0.920 0.892 0.0787 0.1155 0.106
S3-Tx2yl 6 0.933 0.903 0.0708 0.1030 0.107
S3-Tyl 4 0.907 0.883 0.0852 0.1045 0.112
S3-Ty2 5 0.916 0.886 0.0829 0.1060 0.116

Parameter estimates for S3-Tx2yl are as follows: standard deviations
are shown in parentheses: E[ln (EC,)] = [0.730 ? (0.12)]  +
[0.982 f (0.08)]~,  - [0.088 + (0.07)]~,  - [0.155 _t (0.09)]~,
- [0.024 5 (0.06)]x  +  [0.159 2 (O.O7)]y  + [0.219 t (0.10)1x2

*Not including intercept.
TAdj R* = 1 - [(n - l)/(n - p - 1)](1 - R*).
$.JMSE  = PRESS/n.

Table 6b. Prediction Summary Statistics for Final MLR
Parameter Combinations: Correlation Matrix for the Four
Sets of Prediction Data

s2-Tx2yl S3-Tx2yl S3-Tyl S3-Ty2

S2-Tx2yl 1.000 0.986 0.928 0.923
S3-Tx2yl 1.000 0.975 0.970
S3-Tyl 1.000 0.996
S3-Ty2 1.000
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[ 1993] refer to Borgman and Quimby [ 1988], who state that one of
the greatest shortcomings of the geostatistical (i.e., model based)
approach is the inherent difficulty in validating the model assump-
tions. While this is, to a certain extent, a valid point, we feel that
in this particular example our regression modeling approach is
less subject to such a criticism. There is a battery of residual
diagnostic techniques available to the analyst when fitting a re-
gression model. These techniques, when used in conjunction with
duplicate sampling (for constructing residual lack-of-fit tests) and
the acquisition of independent validation sites (to test for correct
parameter specification and/or model prediction bias), should
prove to be more than adequate for assessing the inherent re-
gression model assumptions.

In conclusion, our suggested sampling algorithm will prove
to be worthwhile when a strong correlation exists between the
target response level and one or more covariates and the co-
variates themselves are not corrupted by additional, unknown
spatially dependent attributes. Provided the fitted MLR model
can be validated using the assessment techniques described
above, the predictions should prove to be approximately unbi-
ased and considerably more accurate than any predictions
and/or estimates produced by other types of model based
(geostatistical) or design-based inference methods employing
the same, limited calibration sample size. Furthermore, the
highly nonrandom sampling plan we employ serves to signifi-
cantly reduce, rather than inflate, the prediction bias. On the
other hand, if the modeling assumptions are grossly violated,
then the resulting regression equation will more than likely be
biased and produce unreliable predictions. Furthermore, the
samples themselves cannot be used to construct unbiased es-
timates of the salinity population parameters, because these
samples have not been collected in a random manner. In this
latter scenario we suggest that the regression approach be
discarded and replaced with some other appropriate model- or
design-based inference technique and sampling plan.

The site selection software used for these surveys is available
from the authors on request. It is designed for use on IBM
compatible personal computers (386 microprocessor or higher
strongly recommended) and can be used in conjunction with the
salinity estimation software described in the companion paper.

5. Conclusion
A deterministic, model-based spatial site selection algorithm

incorporating both classical and geostatistical selection crite-
rion has been described. This algorithm uses a response sur-
face design to select three subsets of appropriate sites for soil
sampling and then iteratively selects sites from these subsets to
produce a final calibration set with a spatially uniform sam-
pling pattern. The algorithm can also add additional sites to
increase the sample size and/or uniformity of the sampling
pattern and generate a second set of site locations suitable for
sampling at some later date. We have discussed the differences
between this algorithm and other types of sampling plans and
demonstrated why such a deterministic scheme should be pre-
ferred, provided the underlying regression modeling assump-
tions are appropriate.

Two statistical criteria useful for MLR variable selection
have also been discussed: the PRESS and APVE statistics.
Both of these statistics can help identify the final model pa-
rameters that will minimize the MLR prediction errors and
maximize the prediction accuracy. Additionally, a technique
for detecting faulty or questionable survey data has been de-

scribed, based on the magnitude of the principal component
scores. This screening technique will help prevent corrupted
survey data from inadvertently influencing either the sampling
plan and/or final regression model predictions.

The site selection algorithm, signal validation techniques,
and variable selection criteria have been designed to be used in
conjunction with the MLR modeling and prediction techniques
described by Lesch et al. [this issue]. Together these techniques
represent a comprehensive salinity monitoring and assessment
methodology. The number of soil samples can be minimized
while still retaining the prediction accuracy inherent in statis-
tical calibration techniques, hence facilitating an assessment
methodology that can be applied in a rapid, practical, and
cost-effective manner.
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