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Convective-Dispersive Stream Tube Model for Field-Scale Solute Transport:
I. Moment Analysis

Nobuo Toride and Feike J. Lei j*

ABSTRACT
Field-scale solute transport is typically difficult to model due to the

complexity and heterogeneity of flow and transport in natural soils.
The stream tube model attempts to stochastically describe transport
across the field for relatively short travel distances by viewing the
field as a series of independent vertical soil columns. This study
investigates the stream tube model with the chemical equilibrium and
nonequilibrium convection-dispersion equation (CDE) for local-scale
transport. A bivariate (joint) lognormal probability density function
was used for three pairs of random transport parameters: (i) the
dispersion coefficient, D, and the pore-water velocity, v; (ii) the distri-
bution coefficient for linear adsorption, &, and v; and (iii) the first-
order rate coefficent for nonequilibrium adsorption, a, and v. Expres-
sions for travel time moments as a rsult of a Dirac input were derived
to characterize field-scale transport according to the stream tube
model. The mean breakthrough time for the field-scale flux-averaged
concentration, 21, was found to be identical to that for the deterministic
CDE. Variability in D has generally a minor effect on solute spreading
compared with variability in v .  Spreading of reactive solutes increased
for negatively correlated v  and Kd,  even if the variability in K,, was
relatively small, while nonequilibrium adsorption further increased
spreading. If a was variable, a negative correlation between v  and a
enhanced the skewness of the breakthrough curve for&while spreading
was independent of the correlation between (I and v.

F I E L D-SCALE SOLUTE TRANSPORT has been the topic
of considerable experimental and theoretical research

because of concerns for the quality of the subsurface
environment, which is especially threatened by down-
ward movement of contaminants. Traditional determinis-
tic modeling approaches, based upon the CDE for chemi-
cal transport and the Richards equation for water flow,
work relatively well for homogeneous field soils and
packed laboratory columns. Experimental investigations,
however, have shown that flow and transport processes
in most fields are heterogeneous (Biggar and Nielsen,
1976; Sudicky, 1986).

Three approaches may be employed to describe field-
scale transport (Jury and Fltihler, 1992): (i) the traditional
convective-dispersive model; (ii) a stochastic-continuum
model that uses covariance functions for random local-
scale transport parameters (e.g., Dagan, 1984; Kabala
and Sposito, 1991; Sposito and Barry, 1987); and (iii)
a stochastic-convective stream tube model that views
the field as a series of independent vertical soil columns
(Dagan, 1993; Jury and Roth, 1990). These models are
distinguished by the degree of lateral solute mixing (Jury
and Fltihler, 1992). The stream tube model does not
allow horizontal mixing, and the concentration for each
tube represents a discrete value in the horizontal plane.
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On the other hand, the CDE assumes perfect mixing,
and the concentration across the horizontal plane is uni-
form for one-dimensional, vertical transport. During
field-scale transport, it is likely that a transition occurs
from a stochastic-convective to a convective-dispersive
process.

Dagan and Bresler (1979) and Bresler and Dagan
(1979) first described downward movement of nonreac-
tive solutes at the field scale with the stream tube model.
They assumed a lognormal distibution for the saturated
hydraulic conductivity. Amoozegar-Fard et al. (1982)
demonstrated the effect of a random pore-water velocity,
v, and dispersion coefficient, D, on field-scale concentra-
tions with Monte Carlo simulation. Jury (1982) proposed
a CLT, which neglects local-scale dispersion. Van der
Zee and van Riemsdijk (1986, 1987) applied the stream
tube model to reactive solutes, while Destouni and Cvet-
kovic (1991) introduced physical and chemical non-
equilibrium in the local-scale transport model. Jury and
Scotter (1994) discussed the application of the stochastic-
convective model to boundary and initial value problems.
They pointed out that stochastic stream tube models have
not been used as widely as convective-dispersive and
stochastic-continuum models due to the limited discus-
sion of its theoretical foundation and a lack of procedures
for its application.

The purpose of this study is to further investigate
field-scale transport with the stream tube model for reac-
tive and nonreactive solutes. The effect of the variability
in local-scale transport parameters on field-scale solute
transport is demonstrated by obtaining field-scale mean
concentrations with the chemical nonequilibrium or equi-
librium formulation of the CDE for local-scale transport.
Three pairs of random transport parameters are used,
which are described with a bivariate lognormal pdf: the
pore water velocity, v (cm d-‘), in combination with
either the dispersion coefficient, D (cm2  d-l),  the distribu-
tion coefficient for linear adsorption, Kd (cm3 g-l), or
the first-order rate coefficient for nonequilibrium adsorp-
tion, a (d-l). The volumetric water content, 8 (cm3
cme3),  and the soil bulk density, pb (g cmm3), are always
assumed to be deterministic. Since we use a linear CDE
for local-scale transport, the resulting stream tube model
for field transport is also linear. Hence, we can derive
moments of the travel time pdf to characterize field-scale
solute distributions. Several typical examples of resident
concentration profiles and field-scale BTC will be dis-
cussed with time moments. In the second part of this
study (Toride and Leij, 1996), the stream tube model
is applied to various types of boundary and initial value
problems that may occur in the field.

Abbreviations: BTC, breakthrough curve; CDE, convection-dispersion
equation; CLT, convective lognormal transer function model; CV, coeffi-
cient of variation; pdf, probability density function.
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MODEL r , 1

Local-Scale Transport

Solute transport in a local-scale stream tube is described
with the one-dimensional CDE. For steady downward flow
and first-order kinetic linear adsorption, the CDE is given by

,j,ajp”“,mr)r/  j=O,l [10]

with 4 as the modified Bessel function of order j. These
solutions can be simplified for equilibrium adsorption according
to

as- = a(Kdc, - s)
at [2]

where c, is the volume-averaged (resident) concentration (g
cmm3), s is the concentration of the adsorbed phase (g g-r),
x is depth (cm), and t is time (d). The nonequilibrium CDE
reduces to the conventional CDE for instantaneous adsorption
(a+oo):

where the retardation factor R is given by

For instantaneous solute application to a soil that is initially
solute free, the initial and boundary conditions for both the
equilibrium and nonequilibrium CDE may be written as

c&O) = S(X,O) = 0 [5]
ac,(o,t)

vcr(O,t)  - D-ax = m&(t)

g(q) = 0 [7]

where s(t) is the Dirac delta function (d-l), and mB is the
amount of mass added to a unit area of soil solution (g cm-*).
The following analytical solution for Eq. [1] and [2] subject
to Eq. [5] through [7] can be derived with the help of Laplace
transforms (Lindstrom and Narasimhan, 1973; Jury and Roth,
1990; Toride et al., 1993):

cr(x,t)  = y r(x,t; R’ = 1) exp

l)&(r)dT 1 [8a]

s(x,t) = !!Z!!f ’ T(x,r;R’ = l)H,,(z)dT
sv 0

where

ap&dr
~ - a(t - r)8 1

WY

[91

C&t> = mBr(x,t;R = R),
V

s(W) = &G(&t) [1 WI
The above solutions are for volume-averaged (resident) concen-
trations. Flux-averaged or flowing concentrations, cr, should
be used if a solute flux across some observation plane is
determined (e.g., effluent curves obtained from finite soil col-
umns). Flux-averaged and resident concentrations are related
through the transformation (Kreft and Zuber, 1978):

JS D ac,QZ-Z(-----
JW v ax u21

where .I, is the solute flux density (g cm-*  d-‘), and .I, is the
water flux density (cm3 cm-*  d-l).  Substituting the solutions
for cr into Eq. [12]  results in a mathematically identical set
of equations for cf, i.e., Eq. [8a] and [8b] for the nonequilibrium
CDE and Eq. [1 la] and [llb] for the equilibrium CDE, but
&c,t;R’)  is now given by (Toride et al., 1993):

(Rk - vr)*

4DR’2 1 1131

The solutions for a Dirac input with mBlv = 1 are often
referred to as the travel time pdf or the residence time distribu-
tion, f&t). The solution for an arbitrary input function, g(t),
can be readily obtained from this special case with the convolu-
tion

cr(x,t>  = ‘g(t - r)f(x,z)dr
s0

v41

Once the independent variables, t and x, are specified, the
solutions of the local-scale transport equation can be viewed
to solely depend on the values of transport parameters such
as v, D, and Kd. As an example, Fig. la shows the solution
for the equilibrium CDE, err for a pulse input of 2 d, as a
function of v and Kd at n = 100 cm and t = 5 d with D =
20 cm* d-’ and pb/O  = 4 g cm-3.  As Kd increases, the solute
moves slower through the medium because of increased adsorp-
tion; a higher v is required for the solute to reach the same
position (X = 100 cm) after 5 d. Figure lb and lc will be
discussed further in the text. In the following, we will always
use normalized concentrations. For a Dirac input, mBlv  is
assumed to be equal to unity; the dimensional and normalized
concentrations are identical and any consistent set of units can
be used for c.

Field-Scale Transport

Bivariate Lognormal Distribution

A bivariate lognormal pdf will be used for the two random
parameters in the deterministic model for transport in each
stream tube. The lognormal distribution is often used to de-
scribe skewed as well as symmetrical pdf. We assume t3 and
pb to be the same for all stream tubes since the CV for these
two parameters is generally much lower than the CV for the
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Fig. 1. The stochastic convective-dispersive stream-tube model for a
variable pore-water velocity, Y, and distribution coefficient, IL: (a)
local-scale resident concentration, cr, for a pulse input of 2 d as a
function of v and Ka at depth, x = 100 cm, and time, 1 = 5 d; (b)
a bivariate lognormal probability density function (pdf) for the
correlation coefficient, py& = -0.5; and (c) expected cI at x =
100 cm and t = 5 d as obtained by multiplying cr in (a) by the pdf
in (b).

hydraulic conductivity (Jury et al., 199 1). The heterogeneity
of the flow field is entirely characterized by the pdf for the
pore-water velocity, v. The general bivariate lognormal pdf
can be defined as (Spiegel, 1992, p. 118)

fwl'=
1

27W,vtlJ~

Yt - 2p,,Y,Y,  + Y;

-31 - PLI)
u51

with

y
”

= WV) - b, y
rl

= M-0 - wL,
U6a,bl

0” Qq

pvr,  =  <Y,Y,> =  m
ss

mYvY,J(v,q)dvdrl u71
0 0

Figure 2 demonstrates the two cases of perfect correlation
between v and Kd with the same values for the mean and
standard deviation as in Fig. lb for the bivariate lognormal
distribution. For a perfect negative correlation (p”~,,, = - l),
Kd decreases as v increases while the opposite is true for a
positive correlation when pvKdr = 1.

Field-Scale Mean Concentration

where tl denotes D, Kdr or a (i.e., the random parameter in In the stochastic stream tube model, field-scale transport
addition to v), p and o are the mean and standard deviation during steady state downward water flow is described by
of the log-transformed variables, and py,, is the coefficient of averaging local-scale concentrations across all stream tubes.

0 50 100 150
v (cm/d)

Fig. 2. The stochastic distribution coefficient, Kd, vs. pore-water veloc-
ity, Y, for a perfect negative (pVh = - 1) and positive (pIh = 1)
correlation.

correlation between Y, and Y,. The ensemble averages of v
and n are (Aitcheson and Brown, 1963, p. 8)

E18a,bl

and the coefficient of variation CV is

CV(v) = Jexp(o$ - l.,

CV(rl)  = Jexp(o’,)  - 1 t 1901
Figure lb presents an example of a bivariate lognormal

pdf for v and Kd, f(v,K,,),  with <v> = 50 cm d-‘, o. = 0.2,
<Kd> = 1 cm3 g-l, oKd = 0.2, and pvKd = -0.5. The distribu-
tion in terms of v is skewed due to the relatively high standard
deviation, o,, whereas the smaller o,~ results in a more symmet-
ric distribution in terms of Kd.  One may notice that v tends
to increase for decreasing Kd as a result of the negative p”~.

The joint pdf given by Eq. [ 151  can be simplified for particu-
lar values for pv,,.  The joint pdf becomes equal to the product of
two univariate lognormal distributions when the two parameters
are uncorrelated (p., = 0):

f(v,v) = f(v)fol) WI
where the univariate lognormal distribution is given by

f@l) = Goqq exp -
(

Un(W - ~1~1’
20?,

)
WI

Perfect correlation leads to Y, = Y, (py, = 1) and Yq = - Yy(pyn
= -l), respectively. Subsequent use of Eq. [18a] and [18b]
yields an expression of n in terms of v:

NV) = 5
P"T++h

( ) <q> exp
(
p,o, - $J:

)
WI
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The spatial average for the entire field is assumed equal to
the ensemble average:

<c(x,t)>  =

.!
s

m 01

A A

c(x,t)dA  =
51

c,(x,t;v,rllf(v,rl)dvdrl  v31
0 0

where A denotes the area of the field. The ensemble average of
the local concentration can be defined both for the flux-averaged
(<cr>) and the resident (<c~>) modes.

The field-scale resident concentration, &, i.e., cr averaged
across the entire horizontal plane at a particular depth, is
defined as the ensemble average, <c,>,  given by Eq. [23].
Figure lc shows the product of the concentration distribution
(Fig. la) and the joint pdf (Fig. lb) as an example of the
integrand on the right side in Eq. [23]. The peak of the plot
in Fig. lc indicates that stream tubes for which v is = 25 cm
d- ’ and Kd is = 1 cm3 g-’ contribute the most to the field-scale
mean concentration at x = 100 cm and t = 5 d. The total
volume of the distribution in Fig. lc corresponds to the ensem-
ble average of err and hence the field-scale concentration, 2,.
The field-scale total resident concentration ?r quantifies the
amount of solute in the liquid and adsorbed phases per volume
of solution:

& = Cr + !z( i = E + %Y>8 I8 1241

The field-scale flux-averaged concentration, &, can be de-
fined in a similar manner as Eq. [ 121 as the ratio of the mean
solute and water fluxes:

<VCf>
&(x,r) = - =

I I; ; vcf(x,t;v,rl)f(v,~)dvdrl
<V> <V>

WI

The solute flux for an entire field is given by AB<v>&.  To
evaluate &, it is necessary to determine the local-scale v and
cf (at the same location). Note that & is different from <cr>
for a stochastic v since, in general, <vcr> # <v><cr>.  If
local values for v cannot be easily obtained, the pdf for the pore
water velocity,f(v),  may be estimated from solute displacement
data by applying Eq. [23]  to either F, = <c,> or <cr>. Once
f(v) is specified, & can be used to predict the field-scale solute
flux.

Values for the field-scale mean concentration were obtained
by substituting analytical solutions for the local-scale CDE
and the joint pdf into Eq. [23]  or [25]. Numerical integration
was carried out on the log-transformed v and 9 with Romberg
quadrature. Analytical solutions for the local-scale CDE were
evaluated as described by Toride et al. (1993). The accuracy
and efficiency of the numerical integration was also improved
by narrowing the integration limits for v and tl by excluding
improbable values. The computer program for evaluating the
above local- and field-scale transport problems is described
by Toride et al. (1995).

Time Moment Analysis

Time moments of the BTC in terms of the concentration
given by Eq. [23]  and [25]  are useful to characterize transport
behavior. The nth normalized time moment, M,, for an arbi-
trary concentration mode can be defined as (Leij and Dane,
1991)

M” (x;c) = 3 = I; t"c(x,f)dt

I; c(x,t)dt
LW

where m, represents the nth regular time moment with nr~ =
mr,/v for a Dirac delta input in Eq. [6]. Substitution of Eq.
[23]  into Eq. [26]  yields the time moments for & or -Cc,>,
and <ct>:

c(x,t;v,n)f(v,rl)dvdn  dt1
cm a

= ss M!ii (x;c)f(v,rl) dvdv [271
0 0

where M!,‘,’  is the nth normalized time moment for the local-scale
CDE, and m. (= mB/v) is a deterministic constant for all stream
tubes. Note that mB  is proportional to the stochastic parameter
v for the flux-mode injection (Eq. [ 161).  The order of integration
in Eq. [27]  can be changed because the pdf is time invariant.
Similarly, time moments for & are obtained by substituting
Eq. [25]  into Eq. [26]  to obtain

1 mm
M”(X$f) = ~

s smo<v> 0
vMP (x;cr)f(v,Wvdn [281

0
The first (M\“)  and second (&-)  normalized local time

moments of cr and cr for the nonequilibrium CDE with a Dirac
input are presented in Table 1 (Valocchi, 1985). The nth time
moment can be derived from solutions in the Laplace domain
according to

mix (x;c) = (- 1)” lim
[ 1-K Z(X,p)

p-0 dp”
WI

where T(x,p) is the Laplace transform of c(x,t) with respect
to time, and p is the corresponding transform variable. Mo-
ments for the equilibrium CDE are obtained by letting a+m.
Normalized time moments for the field-scale mean concentra-
tion are derived by substituting the local normalized moments,
M!,,,  of Table 1 into Eq. [27]  or [29]. The ensemble average
of the ratio of two stochastic parameters is evaluated according
to Eq. [A31  of the Appendix.

RESULTS AND DISCUSSION
Time Moments

Table 2 presents two time moments of the field-scale
flux-averaged concentration, Pf, in terms of parameters
of the bivariate lognormal distribution, f(v,D), f(v,&),
andf(v,a),  as given by Eq. [15]. The first moment, MI,
describes the mean breakthrough time, while the second

Table 1. Normalized first (My) and second (M$) time moments
of the flux (c,) and resident (cl) concentration for the nonequilib-
rium convection-dispersion equation as a result of a Dirac
input.?

Concen-
tration M? MP

RX Z(R - 1)x 2DRtx RY
CI -

” la” +-+Y,Y)
2(x + D/v)(R  - 1) 4D=R’ 4DR’x R%’

C,
rl” +y,+ -yT+yr

t See text for definitions of variables.
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Table 2. Mean travel time (MI) and variance (Var,) of the field-scale flux-averaged concentration, &, as a result of a Dirac delta input
with three different probability density functions (pdf).?

Type of pdf Mean  travel time M, Variance Var,

RX-
<v>

<R>x
<v>

2(R - Ox + Z<D>R’x
a<v>

-exp(3ut - Zp,nu,uo)  + $&Iexp(u:) - 11
<v>”

Zpb<Kd>x
atJ<v>

exp( - 2p,~,u,ur,)

+ - expt - ~P,~~wJ~,  +
82

ok)

2p,<K&- 1 + -
8

[exp(ut  - ~~~~~~~~~~ - 11

f(w) Rx
G5

- ZP”K,U”UK,  + u?Q) - 11

2(R - 1)x 2DR’x
<a><v>ev(u2.)  + <v>” exp(3d)  + g  [exp(ut)  - I]

t See text for definitions of variables.

central moment or variance, Var,(&)  = M2 - I#,
represents the degree of spreading in the solute BTC.
The first moment is identical to that for the deterministic
CDE (Table l), except that ensemble averages are used
for the random variables. This equivalence indicates that
the variability in local parameters does not affect the
mean breakthrough in terms of Et at the field scale.

The variance, Var&;&), can be partitioned into three
different terms for each pdf. As shown in Table 2, the
first term is due to nonequilibrium adsorption, the second
term is related to local-scale dispersion, D, while the
third term is primarily due to velocity differences between
the stream tubes (i.e., stochastic convective transport).
Similar to the local-scale equilibrium CDE, moments
for equilibrium adsorption are obtained by letting a-+00.
The effect of variability in the local parameters on solute
spreading can be evaluated by comparing the magnitude
of each term in the expression for Var,. For all three
pdf, the first and second terms are linear in x whereas
the third term in proportional to x2.  Hence, solute spread-
ing due to stochastic-convective transport will become
more dominant compared with spreading due to variabil-
ity in D, Kd,  or a, with increasing travel distance, X.
Table 2 can also be used to analyze field-scale transport
when only one random variable is present by setting the
standard deviation for the second random parameter
to zero. If both parameters are deterministic, Mr and
Vart reduce to the expressions given in Table 1. The
variance for the deterministic CDE is proportional to x

because the third term of Var,  in Table 2 disappears when
o” = 0.

A similar moment analysis may be carried out for the
mean flux-averaged (<Q>) and field-scale resident
(& = <c,>) concentrations. We considered the case
where only v is a random parameter (o,, = 0). Table 3
presents the mean breakthrough time, Ml, and variance,
Var,, for this simplified scenario. Temporal moments
for two random parameters, such as those shown in
Table 2 for &, can be easily obtained by Eq. [A3]. The
mean breakthrough time, Mr, for <cf> and 2, is now
affected by the variability in v, in contrast to the mean
breakthrough time in terms of Ff shown in Table 2. Note
that among the three field-scale mean concentrations both
MI and Var, are largest for 2, and smallest for &.

Nonreactive Solute Transport
To demonstrate the effect of the variability in v and

D on field-scale concentrations, we first consider trans-
port of a nonreactive solute (R = 1) as described with
Eq. [3] at the local scale. Figure 3 shows BTC in terms
of Ff at x = 100 cm when only v is a random variable
with three different ov and <v> = 50 cm d-r, and a
constant dispersion coefficient, D = 20 cm* d-’ . Deter-
ministic transport occurs when the local-scale velocity
is uniform across the field, i.e., CL = 0. The mean travel
is 2 d regardless of ov (MI in Table 2), while solute
spreading increases significantly for greater CT”.  The BTC

.

Table 3. Mean travel time (MI)  and variance (Var,)  of the mean flux-averaged concentration (<c~>) and the field-scale resident concentration
(2, = <c,>) as a result of a Dirac delta input with a stochastic v.t

Concentration
Mean travel time

Ml
Variance

Var,

c.
$exp(3ti)  + gexp(d)

2(R - 1)x
----exp(u:)  +

2DR’x
a<v>

~3 exp(6uZ) + sexp(3uZ) - exp(2ut)]

x exp(u:)  + $ exp(3uZ) + Ps[4  exp(lO&)  - exp(6&)]

+  %12exp(6&)  - exp(4u:)l  + s]exp(3ui)  - exp(?ut)]

t See text for definitions of variables.
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Fig. 3. Field-scale flux-averaged concentrations (fr) vs. time for three
values of the standard deviation of In Y, cr”,  at depth, x = 100 cm,
for a nonreactive solute (R = 1).

for ov = 0.5 is clearly nonsymmetrical, with early solute
breakthrough at the field-scale and significant tailing.

If both v and D are stochastic, a positive correlation
between these two parameters is plausible as indicated
by the widely used relationship D = hv, where h is the
dispersivity (cm). When ov = a~ and pv~ = 1, Eq. [22]
reduces to (n = D):

CD>
D(v) = <v> v

This implies that the dispersivity h is constant (= <D>l
<v>)  for all stream tubes. If h is also positively correlated
with v, (TD  might be greater than CL. Biggar and Nielsen
(1976) studied the spatial variability of v and D for a
field soil; they found that pv~ = 0.795, <v> = 44.2 cm
d-’ with ov = 1.25, and <D> = 367.6 cm* d-’ with
o,, = 1.74.

Figure 4a presents the travel time variance, Var,, in
terms of & vs. distance. The curves were calculated with
the expression forf(v,D) in Table 2 with <v> = 50 cm
d-’ with (3” = 0.5, and a deterministic (oD = 0) or
stochastic (oD = 0.5, p”D = 1) dispersion coefficient
where <D> is either 20 or 200 cm* d-i. The tenfold
increase in D resulted in a relatively small increase in
the variance, whereas the variability in D (00 = 0.5)

caused a decrease in the variance for this positive &D.
The effect of oD on the variance, however, was minor
especially for small <D> as previously discussed by
Amoozegar-Fard et al. (1982) and Bresler and Dagan
(1981).

Figure 4b plots the ratio of the third and second terms
in the expression for the variance of &, in case of a
stochastic v and D (Table 2), vs. travel distance x for
the same parameter values as used for Fig. 4a. This
ratio is proportional to <v>xl<D>, which may be viewed
as the Peclet  number in terms of the observation scale,
x. Solute spreading due to local-scale dispersion (the
second term) is important for small <v>/xl<D>,  while
spreading due to a stochastic v (the third term) will
become dominant for large x, i.e., for increased <v>xI
<D>. When <D> is small compared with <v> (e.g.,
<v> = 50 cm d-’ and <D> = 20 cm* d-’ in Fig. 2),
the deterministic (oD = 0) and stochastic (oD = 5)

Co’._
K

&r

>”

a

- Iso  = 0.5

0 50 100 150

x (cm)

0 50 IQ0 150
x (cm)

Fig. 4. Travel time variance (Var,) for field-scale flux-averaged concen-
trations (tr)  as a function of travel distance, x, with the local-scale
equilibrium convection-dispersion equation for deterministic (ao =
0) or stochastic (ao = 0.5 and p”o  = 1) dispersion coefficients, with
<D> = 20 or 200 cm*  d-r:  (a) Var, profiles, and (b) the ratio of
the third to the second terms of Var, forf(v,D)  described in Table 2.

dispersion process will give almost identical results. A
constant dispersivity according to Eq. [30] might be
appropriate for many applications of the stream tube
model where little information is available regarding ov
and 6~. This does not imply, however, that local-scale
dispersion should be neglected, as will be discussed in
t h e  f o l l o w i n g .

Bresler and Dagan (1981) assumed a local-scale disper-
sivity , h, of 3 cm. They concluded that the effect of
local-scale dispersion on field-scale concentration pro-
files is negligible. Most previous studies of stochastic
transport have, therefore, neglected local-scale disper-
sion (Dagan and Cvetkovic, 1993; Destouni and Cvet-
kovic, 1991; Jury, 1982). As demonstrated in Fig. 4,
local-scale dispersion can be neglected for relatively large
values of <v>xKD>.  The mean dispersivity observed by
Biggar and Nielsen (1976) was 8.3 cm (D = 0.6 +
2.93v’.”  with p”D = 0.795),  which exceeds the value of
3 cm used by Bresler and Dagan (1981). Mallants et al.
(1996, unpublished data) determined that D = 31~‘.~~
with pvD = 0.74 from measurements on undisturbed
soil columns of l-m length and 30-cm diameter. These
researchers demonstrated that neglecting local-scale dis-
persion could result in quite different field-scale mean
solute distributions. Dispersion coefficients for undis-
turbed soils are generally much greater than those for
repacked soils. For practical applications of the stream
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Fig. 5. Breakthrough curves for field-scale flux-averaged (Cr) and
resident (& = <c~>)  concentrations and ensemble averages of tbe
flux-averaged concentration, <CC>,  at x = 100 cm for a nonreactive
solute (R = 1).

tube model, the value of <v>xl<D>  is an index to
determine whether or not local-scale dispersion can be
neglected (Fig. 4).

Figure 5 presents BTC for three different field-scale
concentrations (&, &, and <cr>) assuming <v> = 50
cm d-’ with ov = 0.5, and D = 200 cm* d-’ with
QD = 0. The corresponding dispersivity, h, is 4 cm.
The BTC for i’r has the highest peak at a relatively early
time, while the BTC for 2, (= <c,>)  and <cr> are quite
similar. The mean breakthrough time and the amount
of spreading are smaller for b than for & and <cr>. This
is consistent with the expressions for the time moments in
Tables 2 and 3. Notice that the concentration for all
modes is almost identical at t = 2 d, which is the mean
breakthrough time for &. Since solutes will reach x =
100 cm prior to t = 2 d only in stream tubes with a
velocity greater than the ensemble average (<v> = 50
cm d-l), Er according to Eq. [25] is greater than the
ensemble-averaged concentrations during the initial
stages of the displacement (t < 2 d). On the other hand,
& becomes less than & or <cr> for t > 2 d.

Reactive Solute Transport
In addition to variability in v and D, the variability

in the distribution coefficient, Kd,  and the nonequilibrium

300 I ’ I - I q I ’

_ x=lOOcm

O-

0.0 0.2 0.4 0.6 0.8 1.0

%

Fig. 6. Travel time variance (Var,)  of breakthrough curves for the
Lld-scale  flux-averaged concentration (Ed at x = 160 cm as a
function of uV  for tive  correlation coefficients, p.-

0 50 100 150

x (cm)

Fig. 7. The effect of correlation between the pore-water velocity and
the distribution coefficient, pVK,,  on the field-scale resident concen-
tration (2,) as a function of depth at time, I = 5 d.

rate parameter, a, was also considered for reactive sol-
utes. The effect of a stochastic v or Kd  on field-scale
concentrations was first investigated for equilibrium ad-
sorption (a-%). Figure 6 shows the travel time variance,
Var,, at x = 100 cm for 4 as a function of ov for five
different correlation coefficients, pv~~, with <v> = 50
cm d-‘, D = 20 cm* d-r, <Kd> = 1 g-’ cm3, <IK,  =
0.2, (R> = 5, and pb/O  = 4 g cmm3: Figure 6 demon-
strates that solute spreading increases for negatively cor-
related v and Kd  in spite of a relatively small value for
oKd*

Figure 7 shows the field-scale resident concentration,
C, at t = 5 d as a function of depth for either perfect
or no correlation between v and K,I. The same parameter
values are used as for Fig. 6. The negative correlation
between v and Kd  (and hence R) leads to additional
spreading of the field-scale concentration. The effect of
variability in Kd on solute spreading, with the relatively
simple stream tube model, is quite similar as observed
from more general stochastic continuum approaches
(e.g., Bosma et al., 1993; Cvetkovic and Shapiro, 1990).
For relatively high water contents, a negative correlation
between v and Kd seems plausible since coarse-textured
soils generally have a relatively high conductivity (and
hence v) and a small Kd, whereas the opposite is true
for fine-textured soils. On the other hand, the unsaturated
hydraulic conductivity of fine-textured soils decreases
much more rapidly compared with the fine-textured soils
as the water content decreases, whereas Kd values would
not be greatly influenced by water saturation. Robin et
al. (1991) found a weak negative correlation between
Kd and the saturated hydraulic conductivity. The sensitiv-
ity of the field-scale concentration to CL&, as displayed
in Fig. 6 and 7, illustrates the importance of quantifying
the relationship between v and Kd.

If solutes are not adsorbed spontaneously, field-scale
concentrations can be described with local-scale nonequi-
librium transport models such as defined by Eq. [1] and
[2]. We will first assume that the nonequilibrium rate
parameter, a, is deterministic. The effect of a may be
interpreted in terms of an adsorption time scale given
by l/a; a smaller a describes slower adsorption. The
overall effect of a on field-scale transport is similar to
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Pig. 8. Field-x-ate resident (2,)  and total resident (ET) concentrations
as a function of depth for three values of the nonequilibrium rate
parameter, a, at time I = 1 d assuming a negative correlation
between the distribution coefficient and the pore-water velocity,
pVxr = - 1: (a) a = 2.5 d-‘,  (b) a = 0.5 d-‘, and (c) a = 0.1
d-‘.

that for one-dimensional deterministic transport, i.e.,
the field-scale BTC becomes more skewed for-slower
adsorption (van Genuchten and Cleary, 1979; Jury and
Roth, 1990). Figure 8 shows calculated field-scale resi-
dent (2,) and total resident (2~) concentrations vs. depth
at r = 1 d, assuming that v and & are stochastic parame-
ters with pyKd = -1 for (a) a = 2.5 d-‘, (b) a = 0.5
d-i, and (c) a = 0.1 d-l. All other parameter values
are the same as for Fig. 7. The difference between 2~
and 2, reflects the amount of adsorbed solutes. As a
decreases, some of the solutes will move downward
faster because of delayed adsorption, while a relatively
large fraction of the solutes will be adsorbed near the
inlet for greater a.

0 5
Tiii (d)

15 20

Fig. 9. Breakthrough curves for the field-scale flux-averaged concen-
tration (&) at x = 100 cm for three correlations between the
pore-water velocity and the nonequilibrium parameter, pV,,.

It is again possible to evaluate the effect of local-scale
parameters on field-scale spreading at a certain depth,
n, by comparing terms in the expressions for the variance,
Var,, given in Tables 2 and 3. The first term is related
to nonequilibrium adsorption and the last term to velocity
fluctuations. The ratio of the first to the last term is
proportional to the ratio of the adsorption time scale,
l/a, and inversely proportional to the convection time
scale, xI<v>. Solute spreading is primarily due to non-
equilibrium adsorption when the adsorption time scale
is larger than the convection time scale.

The prediction of field-scale concentrations becomes
more complicated when the nonequilibrium rate coeffi-
cient, a, is a stochastic parameter. The effect of a random
a on field-scale transport was investigated with the non-
equilibrium CDE with f(v,a)  assuming a deterministic
&. Figure 9 shows &, at x = 100 cm, vs. time for three
values of py,, with <v> = 50 cm d-‘, ov = 0.5, D =
20 cm* d-‘, R = 5, <a> = 0.5 d-l, and oa = 0.5.
The BTC becomes more skewed for decreasing pm. The
variance is independent of pva,  as shown by the equation
for Var, in Table 2 for a stochastic v and a. The effect
of pya is relatively similar to that of the nonequilibrium
parameter, a, as demonstrated in Fig. 8. A negative
correlation between v and a implies that adsorption is
relatively slow in stream tubes with a high v and relatively
fast for a small v. Figure 10 shows & and 2, profiles
vs. depth at t = 1 d for pycl = 1 and -1 with the same
parameters as in Fig. 9. For a negative correlation,
solutes in fast stream tubes move to relatively greater
depths because of slower adsorption (Fig. 10b). Although
field-scale transport is sensitive to pya as shown in Fig.
9 and 10, theoretical or experimental studies relating v
and a are still lacking.

The peaking concentration will become smaller with
distance, as observed in Fig. 9 for pycl = - 1 at x =
100 cm. Figure 11 shows that early solute arrival and
subsequent tailing due to the negative correlation between
v and a may cause a bimodal breakthrough curve at
greater depths. Destouni and Cvetkovic (1991) explained
the same type of breakthrough curve with the physical
nonequilibrium concept, which differentiates a mobile
and an immobile liquid region. Because the deterministic
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Fig. 10. Field-scale resident (L?,)  and total resident (ET) concentrations

vs. depth for a perfect correlation between the pore-water velocity
and the nonequilibrium rate parameter at 1 = 1 d: (a) p,. = 1 and
(h) pw = - 1.

transport equations for physical and chemical nonequilib-
rium are mathematically very similar, or sometimes iden-
tical such as for linear adsorption (e.g., Nkedi-Kizza et
al., 1984))  the two types of nonequilibrium should also
give very similar breakthrough curves for stochastic
transport. It appears more difficult to use the stream tube
model for a physical than for a chemical nonequilibrium
model for transport at the local scale. The formulation
of a pdf in the former case is complicated due to the
dependency of the pore-water velocity of each stream

x=250 cm
0.03

<o' 0.02

0.01
iti

0.00 *II1
0 10

Tizi (d)
30 40

Fig. 11. Breakthrough curves for the geld-scale flux-averaged concen-
tration (&) at x = 250 cm for a perfect negative correlation between
the pore-water velocity and the nonequilibrium parameter (pV. =
- I).

tube on the mobile water content. Although the pdf are
more easily formulated for chemical nonequilibrium, the
pdf for a may also be difficult to determine, especially
when both v and Kd are stochastic.

SUMMARY AND CONCLUSIONS
The downward movement of reactive and nonreactive

chemicals across the field was described with the stochas-
tic stream tube model with the CDE for local-scale
equilibrium and nonequilibrium transport of reactive sol-
utes. The effects of heterogeneous flow conditions at the
field scale were demonstrated assuming pairs of random
parameters for the local CDE. The pore-water velocity,
v, was always considered to be a random parameter,
while the additional random parameter was either the
dispersion coefficient, D, the distribution coefficient for
linear adsorption, Kd, or the first-order rate coefficient
for adsorption, a. Field-scale mean concentrations were
evaluated as ensemble averages of the analytical solutions
for the CDE with a bivariate lognormal pdf for pairs of
random transport parameters.

Three types of field-scale mean concentrations were
defined for a stochastic velocity field based upon the
local-scale concentration detection mode: (i) the ensem-
ble average of the flux-averaged concentration, <c&
(ii) the field-scale resident concentration, 2, (= <c,>);
and (iii) the field-scale flux-averaged concentration,
&( = <vcf>I<v>).  The latter reflects the solute flux across
an entire field. The BTC for <cf> and & showed similar
distributions for most parameter combinations as long
as the dispersivity is relatively small. The BTC for
these ensemble averages contrasted with the BTC for &,
especially for a more heterogeneous flow field.

Expressions for first- and second-order time moments
in terms of & were derived for three types of joint pdf,
i.e., f(v,D), f(v,Kd),  andf(v,a).  The first moment, Ml,
suggested that the variability in local parameters does
not affect the mean breakthrough time. The variance,
Var,, could be partitioned into terms for (i) nonequilib-
rium adsorption; (ii) local-scale dispersion, D; and (iii)
differences in velocity between stream tubes. The effect
of variability in the local-scale parameters on solute
spreading was evaluated by comparing the magnitude of
each term in the expression for Vart. Among the three
field-scale mean concentrations, both Mr and Var, were
smallest for & and largest for E,.

As previously shown by Amoozegar-Fard et al. (1982)
and Bresler and Dagan (1981),  the effect of variability
in Don mean solute distributions was minor as long as the
Peclet number, <v>xl<D>,  in terms of the observation
scale, x, is relatively large. When the local-scale disper-
sivity (h = D/v) is large, solute spreading due to local
dispersion may still be considerable (especially for rela-
tive short travel distances). However, most previous
studies of stochastic transport considered local-scale dis-
persion, D, to be negligible. We recommend to first
estimate the Peclet number, <v>xl<D>,  before deciding
whether or not the effect of D can be neglected in the
stream tube model (Fig. 4). An attractive simplification
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is the use of a constant dispersivity across the field (i.e.,
py~ = 1 and cry = of).

For a stochastic distribution coefficient, &, solute
spreading increased for negatively correlated v and Kd,
even for small variations in Kd.  For nonequilibrium
adsorption, the field-scale BTC became more skewed
for slower adsorption. This is in line with the observations
for deterministic nonequilibrium transport. If the rate
parameter, a, was stochastic, a negative correlation be-
tween v and a also enhanced the skewness of the solute
distribution.

As long as the local-scale transport is linear, travel
time moments can be used to characterize field-scale
transport according to the stream tube model. Time
moments presented in this paper characterized the effect
of stochastic local-scale CDE parameters on field-scale
solute distributions. In the second part of this study
(Toride and Leij, 1996), the stream tube based upon the
CDE is further investigated for various types of initial
and boundary conditions that may be encountered in the
field.

APPENDIX
Ensemble Averages for the Bivariate

Lognormal Distribution
For the formulation of time moments of field-scale

concentrations, we need to evaluate the ensemble average
of <n”lv”>. The average of this ratio is defined as

where f(v,n) is a bivariate lognormal distribution given
by Eq. [15]. Changing the integration variables to Y,
and YV as defined in Eq. [16] leads to

_ exp(np,  - mclJ ms s m
27c  JF& --m  --m exp

x _ yt - 2P”,Y,Y” + r;
2U - I%>

- movY, + no,Y, dY,dY,,1 iA21

Evaluation of these integrals is accomplished with iden-
tity (7.4.2) of Abramowitz and Stegun (1970),  resulting

m2

- pWmno,o,  + z 0; =
)

<n>”
- exp
<V>”

[A31
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Convective-Dispersive Stream Tube Model for Field-Scale Solute Transport:
II. Examples and Calibration

Nobuo Toride and Feike J. Leij*

ABSTRACT
The use of the stream tube model developed in the first part of this

study is illustrated for several examples with a stochastic pore-water
velocity, Y, and distribution coefficient, Kd.  The model allows quantifi-
cation of the concentration variance in the horizontal plane to evaluate
models for transport in heterogeneous fields. Increased vertical solute
spreading due to stochastic local-scale parameters is accompanied by
increased horizontal variations of the field-scale mean concentration.
Solute application at the surface is modeled as a boundary value
problem (BVP) and an initial value problem (IVP).  The field-averaged
concentration vs. depth exhibits more spreading for the BVP than the
IVP since a variable solute mass is applied to each stream tube in the
latter case. Flow is also modeled by a lognormal probability density
function for the saturated conductivity, KS, and the unit gradient
assumption instead of Y. The use of a random Y instead of KS is
preferable for small variations in water content. Results of the stream
tube model are compared with those of a one-dimensional macroscopic
convection-dispersion equation (CDE)  with effective parameters (i.e.,
depth-dependent constants). When these constants are determined
from time moments of the field-scale flux-averaged concentration, &,
for the BVP, the stream tube model and the macroscopic CDE will
give different results if the effective parameters are used to model
other transport scenarios. Finally, the stream tube model was fitted
to the concentrations obtained from a detailed numerical simulation
of flow and transport in a (hypothetical) heterogeneous field. The
(simple) stream tube model appears to provide a sensible description
of the field-averaged concentration and variance.

T H E STREAM TUBE CONCEPT was presented in the
first part of this study (Toride and Leij, 1996) for

modeling solute transport in heterogeneous porous me-
dia. Transport in each stream tube was described with the
CDE in which pairs of model parameters are considered
realizations of a stochastic process that may be described
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with a bivariate lognormal pdf. The simplifications asso-
ciated with the stream tube model may restrict its use-
fulness for many practical problems involving area-
averaged transport. We will review the following aspects
of applying the stream tube model to field-scale problems
involving steady downward flow.

First, we will examine the variation of the solute
concentration in the horizontal plane. Traditionally,
spreading perpendicular to the direction of flow has not
received as much attention as dispersion in the direction
of flow. The horizontal solute distribution can be conven-
iently quantified with the stream tube model.

Second, an appropriate description of the initial and
boundary conditions is needed before the stream tube
model can be applied. Most previous studies of the stream
tube model evaluated field-scale transport by solving the
local-scale BVP with a Heaviside (continuous) or Dirac
delta (instantaneous) type of solute input (e.g., Bresler
and Dagan, 1979; Destouni and Cvetkovic, 1991). Solute
application is described with a flux-mode boundary condi-
tion; the amount of mass in each stream tube is propor-
tional to the local-scale v. Travel time moments were
already derived for a Dirac delta input (Toride  and Leij,
1996). Solute application at the surface of a field can also
be described as an IVP. A resident mode concentration is
used to quantify the solute application in this case, the
solute is (initially) distributed uniformly across the field.
Jury and Scotter (1994) discussed the difference between
boundary and initial value problems for the stream tube
model. We will further explore differences between the
BVP and IVP for nonreactive and reactive solutes with
a stochastic v.

Third, Dagan and Bresler (1979) investigated a stream
tube type model assuming a lognormal pdf for the satu-
rated hydraulic conductivity, KS; v was calculated assum-
ing a unit gradient in hydraulic head (gravitational flow).

Abbreviations: BTC, breakthrough curve; BVP, boundary value problem;
CDE, convection-dispersion equation; CV, coefficient of variance; IVP,
initial value problem; pdf, probability density function.
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Such an indirect approach of characterizing stochastic
flow is often convenient since values for K, are relatively
easy to measure. This paper investigates the results of
the stream tube model if either v or K, is used as the
basic stochastic parameter.

Fourth, solute transport in a heterogeneous field is
sometimes described with a macroscopic, deterministic
CDE with effective parameters. By adjusting transport
parameters for different depths, a relatively simple math-
ematical model can, perhaps, be used to simulate trans-
port in heterogeneous media. This approach is evaluated
by comparing field-averaged solute profiles predicted by
the macroscopic CDE and the stream tube model.

Finally, the utility of the (approximate) stream tube
model can be assessed by comparing its predicted mean
concentration and variance profiles with those obtained
from a detailed numerical simulation of steady, unsatu-
rated flow and transport in a hypothetical heterogeneous
field.

STREAM TUBE MODEL

Let us assume that the pore-water velocity, v, and the
distribution coefficient, Kd, are stochastic variables, which may
be described with a bivariate lognonnal pdf. The local-scale
concentration in each stream tube is obtained by solving the
equilibrium or nonequilibrium CDE [Eq. [l] through [3]  in
Toride and Leij (1996)]. The field-scale resident concentration,
&, is equal to the ensemble average of the local-scale resident
concentration, <c,>:

&(x,t)  = <c&t)>
m cm

=
si

c,(x,t;v,Kd)f(v,Kd)dvdKd [II0 0
wheref(v,Kd)  is the bivariate lognormal pdf with means <v>
and <Kd>, standard deviations o, and o&,, and coefficient of
correlation between In v and In Kd, pvKd  [Eq. [15]  in Toride
and Leij (1996)].  The field-scale total resident concentration
is given by Eq. [24] in Toride and Leij (1996). The field-scale,
flux-averaged concentration, &, is defined as the ratio of the
solute and water fluxes:

<VCf>
&(x,t) = -

<V>

1 mm=-
ss<v> 0

vcf(x,t;v,Kd)f(v,Kd)dVd~d  [21
0

We described in Toride and Leij (1996) how the local-scale
flux-averaged concentration, cf, is related to err  and how Eq.
[l] can also be used to define <c,>.

The dispersion coefficient, D, is also assumed to be stochastic
and to be perfectly correlated with v. This is a reasonable
assumption in view of the widely used relationship D = hv,
where h is the dispersivity (cm). According to Eq. [22]  in
Toride and Leij (1996),  we can write

WV) = &( )'u14;0>  exp(+D - $&) PI

where o” and oD are the standard deviations of In v and In D.
All other local parameters, including the volumetric water
content, 8, and the bulk density, pb, are deterministic.

Fluctuations in the local-scale concentration at a particular

depth, between stream tubes across the horizontal plane, can
be characterized by the variance (Bresler and Dagan, 1981)

Var[c(x,t)]  = O1 [C(X,t)  - <C(X,t)>]2f(V,&)dVd&

= <c2(x,t)>  - <c(x,t)3 r41
The variance for the field-scale flux-averaged concentration,
&, may be expressed as

Var[vcf(x,t)l<v>]  =

1

-1 s
m m [VCf(X,t)  - <VCf(X,t)>]2f(V,&)dVd&  =

<v>* 0 0

2

<:> [<
v*c:(x,t)>  - <vcf(x,t)3] [51

The solutions for the BVP and IVP in terms of the field-scale
stream tube model follow directly from the local-scale solution
for each tube, with boundary and initial conditions

c&,0) = G(x), s(x,O)  = K&(x) NM1
am4t)

vcr(O,t)  - D------ax
= we>

$(m,t)  = 0

where ci and g are the initial and input concentrations (g cmm3),
respectively, and s is the adsorbed concentration (g g-‘).
Solutions of the equilibrium and nonequilibrium CDE are
available for several initial and boundary conditions (e.g., van
Genuchten and Alves, 1982; Toride  et al., 1993). Field-scale
concentrations and variances were evaluated by substituting the
appropriate analytical solution for the local-scale concentration
and the joint pdf into Eq. [ 11, [2], [43,  or [5], as discussed
in Toride and Leij (1996). Details on the analytical solutions
for the CDE and the numerical evaluation of field-scale concen-
trations are given by Toride et al. (1995).

RESULTS AND DISCUSSION
Conceritration Variation
in the Horizontal Plane

Figure 1 shows the mean, C, = <c,>, and variance
according to Eq. [4]  as a function of depth for three
values of o, at t = 3 d after a single pulse application
of a nonreactive solute (R = 1) for 2 d with <v> = 20
cm d-l, D = 20 cm* d-‘, and CID = 0. All concentrations
are assumed to be normalized.

More solute spreading occurs in the &-profile when
ov increases (Fig. la). Figure lb shows that the variation
in the local-scale cr also increases with ov, indicating
that a more heterogeneous solute distribution will occur in
the horizontal plane. Because flow and transport become
more heterogeneous as cry increases, more observations
are needed to reliably estimate field-scale mean values
when o, equals 0.5 instead of 0.1. The variance profiles
have a double peak with a relative minimum around x =
30 cm (Fig. lb) where the highest concentration occurs
(Fig. la). A similar bimodal behavior of the variance

I
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Fig. 1. The effect of the variability in the pore-water velocity, v, on

(a) the field-scale resident concentration (&) profile, and (b) the
distribution of the variance for cr in the horizontal plane with three
values of the standard deviation, I&, at time, 1= 3 d for a nonreactive
solute as a result of a pulse input for 2 d to an iniitally solute-free
soil (x = depth).

was observed by Burr et al. (1994) for a numerical
simulation of transport in three dimensional heteroge-
neous media. The variance also depends on the duration
of the solute application. Continued solute injection will
counteract the variance caused by random solute transport
and the variance will decrease.

Boundary and Initial Value Problems
Consider solute application to the surface of an initially

solute-free soil. The initial and boundary conditions for
this case are given by Eq. [6]  through [H] with ci = 0.
For a BVP involving instantaneous solute application,
g(t) in Eq. [7]  is given as

g,(t)  = T s(t)

where a(f) is the Dirac delta function (d-l), and MB is
the amount of mass added to a unit area of the liquid
phase in the soil (g cm-2). The amount of mass added
to a unit area of soil is given by 6 mB. Note that the
input mass, mB,  is proportional to v due to the third-type
inlet condition (Eq. [7]).  The mass applied to an individ-
ual stream tube, mB equals v<ms>/<v>.

A very similar transport scenario can be described as
an IVP. Consider a solute that is initially distributed
uniformly across the soil surface; solute free water is

1.2 1 I I

1.0 - r\ IVP (a) R = 1

0.8

<$ 0.8

0.4

0.2

0.0

0 50 100 150 200

x (cm)

Ia21

~ IVP
(a) cR> = 5

1
0.8

<$ 0.8

0.0

0 50 100 150 200

x (cm)

Fig. 2. Field-scale total resident concentrations (ET)  vs. depth, x, for
a Dirac delta application based upon the boundary value problem
(BVP) and initial value problem @VP) formulation for (a) a nonreac-
tive solute at time, t = 1 d and (b) a reactive solute (<R> = 5) at
t=Sd.

subsequently applied to the surface. The initial distribu-
tion (a solute spike at x = 0) is given by

Ci(X) = 7 6(X) DOI

where 6(x) is a Dirac delta function (cm-‘), ml is the
amount of mass present in the solution phase per unit
soil area (g cm-‘). The IVP according to Eq. [lo] implies
that the same amount of solute, ml, is present in all
stream tubes regardless of v. Note that solutions of the
BVP and the IVP are identical for the deterministic
equilibrium CDE when mB = mJR8 (Jury and Roth,
1990, p. 61),  whereas solutions for the nonequilibrium
CDE are slightly different for the BVP and IVP because
of the kinetic desorption process (Toride et al., 1993).

Figure 2a shows the total resident combination, &,
as a function of depth at t = 1 d according to the solution
of the BVP (Eq. [9])  and the IVP (Eq. [lo]) for a
nonreactive solute with <v> = 50 cm d-‘, <D> = 20
cm2 d-‘, and CL = (TD = 0.5. Note that the soil contains
the same amount of solute (<mB> = md8) for the BVP
and the IVP. More solute remains near the surface for
the IVP, while somewhat faster downward movement
occurs for the BVP since a larger fraction of solutes
resides in stream tubes with a higher velocity as a result of
the velocity dependent injection mode (Jury and Scatter,
1994). If mB is constant for all stream tubes, the i?, profile
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is identical for the BVP and the IVP. We also note that
for the equilibrium CDE with a constant &, the ensemble
average of the flux-averaged concentration, <cr>, for
the BVP is identical to the field-scale flux-averaged con-
centration, Cr, for the IVP [see Fig. 5 in Toride and Leij
(1995)].

The differences between the BVP and IVP increase if
the BVP and the IVP are solved for a reactive solute.
Figure 2b shows 2~ profiles at t = 5 d for a reactive
solute, assuming that <mB> = mKR>8 with <R> =
5, p&l = 4 g cm- 3, <&> = 1 g-’ cm3, ok, = 0.2,
and pvK.j  = - 1. The same flow parameters were used
as for Fig. 2a. The solution of the IVP predicts a slightly
different solute amount in each stream tube since Kd is
stochastic, and a greater solute fraction remains near the
surface after 5 d than for the nonreactive solute after
1 d.

Because the stream tube model does not permit mixing
between tubes, the solutions based upon the local-scale
BVP and IVP constitute two limiting cases. Redistribu-
tion between stream tubes is likely to establish an interme-
diate scenario where the mass in each stream tube is not
constant, as assumed in the IVP, but the differences
between tubes are not as large as for the BVP because
of horizontal mixing. In reality, some horizontal mixing
could also occur at the surface. The mathematical descrip-
tion of the solute application has to be selected based
upon the horizontal mass distribution if the stream tube
model is used to describe field-scale transport.

Leaching of Reactive Solute
Relatively little attention has been paid to the use of

the stream tube model in conjunction with the IVP. We
will discuss two typical scenarios for leaching of reactive
solutes with equilibrium and nonequilibrium adsorption
with the analytical solutions of the CDE for a stepwise
initial distribution (Toride et al., 1993).

Figure 3 presents the mean, 2, (= <G>), and the
variance of cr as a function of depth with three values
of pi,, at t = 3 d for the application of solute-free water
to a soil with a stepwise initial distribution as shown in
Fig. 3a. The following values were used: <v> = 50 cm
d-‘, <D> = 20 Cm’ d-i, (3” = oD = 0.5, a> = 5,
pi,/8 = 4 g cmw3, <Kd> = 1 g-’ cm3, and oK, = 0.2.
In this example, it is assumed that solutes in the liquid
and adsorbed phases are always at equilibrium. Although
a negative correlation between v and Kd enhances solute
spreading in a similar manner as for the BVP [Fig. 7
in Toride and Leij (1996)],  the spreading is less than
observed for the BVP (Fig. 2). Figure 3b illustrates an
increase in the variance for pvK,, = - 1, while a similar
bimodal behavior occurs as for the BVP (Fig. lb).

Figure 4 presents field-scale resident (C) and total
resident (&) concentration profiles at t = 3 d for the
same problem but now with nonequilibrium adsorption
[Eq. [2] in Toride and Leij (1996)].  Three values are
used for the rate coefficient, a, including equilibrium
adsorption (a403). The field-scale total resident concen-
tration consists of solutes in the liquid and adsorbed
phases (CT = E, + pb <s>/8). Note that the 2, profile

<o’

1.0

0.5

0,o

I I I
--‘-‘-i J
t=o I t=3d

i PvKd=  ’ cl”  = 0.5. csXd = 0.2

0 50 100 150
x (cm)

0 50 100 150
x (cm)

Fig. 3. The effect of the correlation between pore-water velocity, Y,
and distribution coeliicient, & at time, 1 = 3 d, for leaching of a
reactive solute by applying solute-free water to a soil with a stepwise
initial distribution: (a) the field-scale resident concentrations (&),
and (b) the variance for c, (Var = variance; x = depth).

for the equilibrium case (Fig. 4c) is identical to the
dotted line for py~d = - 1 shown in Fig. 3a. For nonequi-
librium adsorption, the &-profile still resembles the initial
distribution at t = 3 d because of the slow desorption
rate. For equilibrium adsorption, 80% of the solute at
this time has already leached below x = 25 cm, whereas
for the nonequilibrium cases with a = 0.1 and 0.5 d-l,
66 and 42% of the solute remains in the upper 25 cm
of the profile, respectively. Once desorption takes place,
the leaching process will proceed faster because of the
slower adsorption of solutes from the liquid phase in
case of nonequilibrium. Knowledge of the adsorption
time scale is important to assess contamination risks.

Lognormal Probability Density Function
for Saturated Hydraulic Conductivity

Dagan and Bresler (1979),  Bresler and Dagan (1979),
and Bresler and Dagan (198 1) described heterogeneous
unsaturated flow with the stream tube model assuming
a lognormal pdf for the saturated hydraulic conductivity,
KS. We will evaluate the flow field according to their
assumptions and compare it with the lognormal distribu-
tion for the pore-water velocity, v, used in this study.
The lognormal pdf for KS may be written as
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Fig. 4. The effect of nonequilibrium rate parameter (a) on the field-
scale total (PT)  and resident (&) concentration profiles at I = 3 d
as the result of applying solute-free water to a soil with a stepwise
initial distribution: (a) a = 0.1 d-‘, (b) u = 0.5 d-l,  and (c)
equilibrium (a-m) (x = depth).

f(Ks)  = &kKsKs  exp
[In(KJ - Ed\

20%~ , VII

where pi, and oar are the mean and standard deviation
of In KS, respectively, and where the ensemble average
is defined similar to Eq. [18] in Toride and Leij (1996),
i.e., <KS> = exp(uK, + &/2).  The local-scale pore-
water velocity, v, in each stream tube was obtained
by the unsaturated hydraulic conductivity according to
Brooks and Corey (1964):

lip

where B is an empirical constant, and 8, and 8, are
the residual and saturated water contents, respectively.
Steady water flow was assumed to occur as a result of

a constant surface recharge rate, r, with respect to time.
If r < KS, the soil is unsaturated and v is obtained by
assuming gravitational flow at a uniform water content:

K(e) rv=-=-
8 8 r131

Ponding occurs if r > KS in which case the soil is
saturated:

8 = e,, KSv=-
8, (r 2 KS) WOI

If we assume that water can indeed be applied uniformly,
which is unlikely because lateral water flow will occur
at the surface while ponding results in an increased r,
and if 8, = 0, the water content and the pore-water
velocity can be given as a function of KS (Eq. [12] and
V31):

rpe=esz,
0

r’-PK!v=-
8, Q-C KS) Wa,bl

s

Figure 5a shows a lognormal pdf for KS when <KS> =
20 cm d-’ and oar = I; the CV is 131% [Eq. [19] in
Toride and Leij (1996)].  Figure 5b and 5c present 8 and
v according to Eq. [14] and [15] as a function of KS for
four recharge rates, r, assuming 8, = 0.4 and l/B = 7.2
(Dagan and Bresler, 1979). Because of the unit-gradient
assumption, the Darcy  water flux, vt3, equals r for unsatu-
rated flow; only changes in water content, 8, will affect
v in this case. Hence. v increases only minimally for
r < KS, as shown in the right side of Fig. 5c, whereas
v increases linearly with KS for saturated conditions (Eq.
[ 14b]).  The fraction of stream tubes with saturated flow,
which depends for a given r on the pdf for KS shown in
Fig. 5a, is equal to the probability that KS I r. In our
case, there is a 19% probability that KS I r if r = 5
cm d--l, 69% for r = 20 cm d-‘, 92% for r = 50 cm
d-‘, and 98% for r = 100 cm d-‘. If r is much greater
than <KS>,  for example r = 100 cm d-‘, ponding occurs
almost everywhere. On the other hand, if r is much less
than <KS>,  such as r = 5 cm d-‘, flow is mainly
unsaturated with an almost uniform v across the field
due to the unit gradient assumption.

Since KS is described with a lognormal distribution,
the corresponding pdf for the pore-water velocity, f(v),
given by Eq. [14b]  and [15b],  is also described with a
lognormal distribution containing the following parame-
ters (Aitcheson and Brown, 1963, p. 11; Jury and Roth,
1990, p. 65): p.” = ln(l/O,) + uK, and ov = oKd for 0 <
v < r/8,; and uy = ln(rs-‘18,)  + B uLK,  a n d  o, =
/?a~,,  for v I r/(3,  (Eq. [15b]).  Figure 6 presents f(v) as
a result of four recharge rates with the same conditions
as for Fig. 5. The pdf is discontinuous at v = r/8,
because of the different assumptions for saturated (Eq.
[ 141) and unsaturated (Eq. [ 151)  flow. For the admittedly
high value of r = 100 cm d-’ (Fig. 6b), the resulting
f(v) is almost identical to the lognormal f(v), while for
r = 5 cm d-’ (F’lg. 6a),  f(v) based upon Eq. [15b]  has
a sharp peak, indicating almost uniform flow. The pdf
for r = <KS> = 20 cm d-‘, however, has a double
peak because of the simultaneous occurrence of both
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Fig. 5. Gravitational flow for the stream tube model assuming a
lognormal probability density function (pdf)  for the saturated hy-
draulic conductivity, KS, as a result of four recharge rates, r: (a)
lognormal pdf for KS  with <KS> = 20 cm d-‘,  and (TX,  = 1, (b)
water content, 8, vs. K,,  and (c) pore-water velocity, v, vs. KS.

heterogeneous saturated flow and homogeneous unsatu-
rated flow.

Excess water as a result of r > KS is not allowed to
move to other stream tubes with a higher KS. The example
of ponding is therefore somewhat unrealistic. The unifor-
mity of unsaturated flow in stream tubes with a high KS
can be attributed to a lack of water supply form tubes
with a lower KS. In reality, preferential flow may occur
in a fracture whose conductivity is higher than that in
the surrounding area because excess water will move
toward such a fracture. Figures 5 and 6 demonstrate that
the lognormal pdf for KS in conjunction with the unit
gradient assumption to predict the unsaturated velocity
may be unrealistic. On the other hand, application of
the lognormal pdf for v, as also used in Toride and
Leij (1996),  assumes a constant 0 across the field. For
unsaturated flow, however, both 8 and v are stochastic.
As a first approximation, the use of a constant 8 and a
lognormal pdf for v is probably appropriate for the stream
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Fig. 6. The probability density function (pdf) for the pore-water
velocity, v, as a result of gravitational flow based upon the lognormal
pdf for KS with the recharge rates: (a) r = 5 and 20 cm d-‘, and
(b)r=SOandlOOcmd-‘.

tube model as long as the CV is much lower for 0 than
for v.

Macroscopic Convection-Dispersion Equation
Solute transport in a heterogeneous field is sometimes

described with a one-dimensional macroscopic CDE with
effective parameters (Sposito et al., 1986). Although
mathematically and physically incorrect, this approach
is still being used since it simplifies the simulation of
transport in heterogeneous media. The dependency of
effective parameters, such as the dispersion coefficient,
on the solute travel time or travel distance is often used
to characterize the heterogeneous nature of transport
(Khan and Jury, 1990; Porro et al., 1993). The macro-
scopic CDE will be used here to model transport in
accordance with the stream tube model. The one-
dimensional macroscopic CDE for a field-scale resident
concentration, &, may be described as where the super-
script eff refers to an effective parameter, which is as-
sumed constant when solving

a2R”ff-_r  = De” a22,,ffa&r

at a.9 ax WI

the transport problem for a particular depth. The bound-
ary and initial conditions for E, are identical to those for
the conventional CDE (Eq. [6] through [8]),  except
that effective parameters are used. The initial adsorbed
concentration for a stochastic distribution coefficient Kd,
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may be given by 4(x, 0) = <&>ci(x). We can obtain
& from C, with

. 1
D'" 2,

Cf =  G - Veff -g [I71

Values for the effective parameters are obtained from
moments for the stream tube model; we will use the first
two time moments for & as a result of a Dirac input.
When the position, x, is equal to the travel distance,
Ax, the first normalized time moment, Ml, for the macro-
scopic CDE is given by [Table 1 in Toride and Leij
WWI

ReffAx
M,(Ax;&)  = -

eff U81
V

while the central second moment or variance, Var,, is
written as

Var,(Ax;?f)  =
2Deff(Reff)*Ax

(v”“)’
[I91

Effective parameters can be obtained if M1 and Var,
are known. This example involves & modeled with a
stochastic v and Kd. Substitution of the expression for
M(Ax;&) in Table 2 of Toride and Leij (1996) into Eq.
[18] leads to

$zff
< v >

-=-

Reff  <R> WI

where <R> is given by 1 + pb<Kd>l0.  For a nonreactive
tracer (<R> = R” = l), tiff is equal to the ensemble
average <v>. If veff = <v>, it follows that for a reactive
solute Reff = <R>. An expression for the effective dis-
persion coefficient, Deff, was obtained by inserting the
equation for Var,(Ax;&)  in Table 2 of Toride and Leij
(1996) into Eq. [19] while assuming that veff  = <v> and
R”” = <R>. The result is

Deff(Ax;&)  =

Pb<&>  D
a&R>*  ’ -CR>*

--exp(3oZ) 1 +
2 Pb<Kd>

8
94  -2pvKdakd)

+ pi+%>*
---+xP(-4P”K~(T,oKd  + o&J

e* 1

<v>Ax
+ ___

2<R>*

[211

This expression can be further simplified for equilibrium
adsorption or for nonreactive solute transport. Notice
that Deff  increases linearly with the travel distance, Ax,
because the third term in Eq. [21]  is proportional to Ax.

Figure 7 compares the use of the stream tube model
with the corresponding macroscopic CDE to predict
BTC, at two positions, in terms of Ef as a result of a
l-d application of a nonreactive (Fig. 7a) and a reactive
(Fig. 7b) solute to an initially solute-free field. The
stream tube parameters are <v> = 20 cm d-l, o, =

0.25 I r I ’ I r I *
- x =lOOcm (a) Nonreactive Solute (BVP) _

0.20 - i? -  Stream Tube Model

Macroscopic CDE

1
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t (d)

0.05 I I I

(b) Reactive Solute (BVP)

0 .04 -
:‘A cK, > =1 a&g,  <R> =5

=lOOcm
0.03 - Stream Tube Model

<o’
--------- Macroscopic CDE
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t W

Fig. 7. Comparison of the stream tube model with the macroscopic
convection-dispersion equation (CDE) for predicting field-scale
breakthrough curves in terms of flux-averaged concentration, &,
at x = 100 and 200  cm as a result of a l-d solute input to an
initially solute-free field for (a) a nonreactive solute, and (b) a
reactive solute (BVP = boundary value problem; x = depth).

0.5, and D = 10 cm2 d-’ while the parameters for the
macroscopic CDE are tiff = 20 cm d-l, Reff = 1, LY* =
305 cm* d-’ for x = 100 cm and D”” = 589 cm2 d-l
for x = 200 cm. Additional parameters for a reactive
solute undergoing equilibrium adsorption (a-m) are
<Kd> = 1 Cm3  g-‘, n& =  0 . 2 ,  pb/e  =  4 g CIK3, <R> =

5, and p”~ = - 1 for the stream tube model, and Reff =
5, D”” = 580 cm2 d-’ for x = 100 cm, and
Deff  = 1130 cm* d-’ for x = 200 cm if the macroscopic
CDE is used. The BTC for the stream tube model and
the macroscopic CDE agree well for both the nonreactive
and reactive solute, although only the first two moments
of & were used.

There is no guarantee, however, that the macroscopic
CDE with the above parameters can be used for other
transport problems (e.g., the solution of the IVP, predic-
tion of field-scale resident concentrations). Different time
moments should be used in such cases, and the effective
parameters will change accordingly. In reality, effective
parameters are usually determined from limited sets of
concentration data. In the following, we will illustrate
how well the macroscopic CDE, with effective parame-
ters determined from the BTC in terms of Cf for a BVP,
predicts field-scale transport for other conditions.

Figure 8 presents BTC for Ef at x = 100 and 200
cm as the result of a stepwise initial distribution for a
nonreactive solute (ci = 1, 0 < x < 25 cm; ci = 0, x >
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Fig. 8. Comparison of the stream tube model with the macroscopic

convection-dispersion equation (CDE), with effective parameters
based on the boundary value problem, for predicting field-scale
breakthrough curves in terms of flux-averaged &, at x = 100 and
200 cm as a result of applying solute-free water to a soil having a
stepwise initial distribution of a nonreactive solute (ci = 1, 0 <
x < 25 cm; ci = 0, x > 25 cm) (IVP = initial value problem; x =
depth).

Fig. 9. Comparison of the stream tube model with the macroscopic
convection-dispersion equation (CDE), with effective parameters
based on the breakthrough curves in terms of flux-averaged concen-
tration, &, for predicting &-profiles at t = 2 and 5 d as a result
of a l-d application of a nonreactive solute to an initially solute-free
field (BVP = boundary value problem; x = depth).

similar results can be obtained for a reactive solute. As
long as the assumptions for the stochastic stream tube
model and the CDE are different, deviations between
the two models like those in Fig. 8 and 9 will exist.
When the macroscopic CDE is applied to only BTC,
so-called scale-dependent dispersion coefficient (Fried,
1975) may provide a good description of the measured
data as shown in Fig. 7. However, the solute distribution
for other transport scenarios may not be accurately pre-
dicted with the macroscopic CDE. In other words, if
D’” has to be modified for each different depth, X, the
actual transport model will be different from the CDE.

25 cm). The stream tube model and the macroscopic
CDE use the same  parameters as for Fig. 7a. The effective
dispersion coefficient, De*, described with Eq. [21] is a
function of the travel distance from the surface, Ax.
Note that the travel distance for the BVP is not exactly
the same as that for the IVP. The BTC in Fig. 8 displays
a higher peak concentration and earlier breakthrough for
the macroscopic CDE than for the stream tube model.
At x = 200 cm, the BVP (Fig. 7a) and IVP (Fig. 8)
give almost identical results for the macroscopic CDE,
whereas the BTC are different for the BVP and the IVP
if the stream tube model is used. As was pointed out in
the discussion of Fig. 2, the stream tube model assumes
that a large fraction of the solute resides in stream tubes
with a higher velocity for the BVP, while all stream
tubes have the same solute mass for the IVP. On the other
hand, the one-dimensional macroscopic CDE assumes a
uniform solute distribution in the horizontal plane for
both the BVP and IVP.

If we replace Ax in Eq. [21] by <v>Ar, where At is
the travel time, Deff  at t = Ar may be given by Eq. [21].
Figure 9 shows the field-scale resident concentration, &,
vs. depth, at t = 2 and 5 d as result of a l-d application
of a nonreactive solute. The same parameter values are
used in the stream tube model as in Fig. 7a. We also
assumed that Eq. [20] and [21], which are based on time
moments for the field-scale flux-averaged concentration,
&, can be used for estimating the field-scale resident
concentration, 2,. The effective parameters for the macro-
scopic CDE are now veff = <v> = 20 cm d-‘, Reff  =
1, and Deff  = 134 cm* d-’ for I = 2 d and De* = 305
cm* d-’ for t = 4 d. The agreement between the stream
tube model and the macroscopic CDE for the &-profile
in Fig. 9 is poor compared with the BTC for & in Fig.
7a. The concentration near the surface decreases rapidly
with time for the stream tube model, whereas the macro-
scopic CDE predicts a higher concentration near the
surface at both times because of a relatively high Deff.

Although Fig. 8 and 9 are for a nonreactive solute,

Calibration and Testing
In an attempt to independently evaluate the stream

tube model, we will use the model to simulate nonreactive
tracer transport during steady unsaturated flow in a hypo-
thetical random field, which was already observed in a
hypothetical numerical experiment by Tseng and Jury
(1994) as briefly outlined in the following.

Water flow and solute transport were described by
solving the Richards equation and the CDE, respectively.
The unsaturated hydraulic functions were described ac-
cording to van Genuchten (1980). Furthermore, geomet-
ric similitude was assumed with a stochastic scaling
factor, 6, with variance 0% = 0.25 where Y = In 6.
The respective horizontal and vertical correlation lengths
of 50 and 150 cm are typical for the field (Jury, 1985).
Water was applied at a uniform rate, 4 = 2.16 cm
d-‘, to the surface of a two-dimensional field with a
unit-gradient condition at the bottom. First, a steady
flow regime was established with <0> = 0.339 and a
corresponding CV of 9.4%. Subsequently, solute was
applied uniformly for 1 d. The distributions of the total
resident concentration were calculated, from which the
mean field concentration was obtained by averaging
across horizontal transects of the numerical grid. The
snapshots of total resident concentrations showed nonuni-
formity due to lateral variations in the local velocity as
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Fig. 10. Observed and predicted field-scale resident concentrations Fig. 11. Observed and predicted variances of the resident concentra-
(&) as a function of depth in a hypothetical random field at (a) t = tion, Var (c.), in the horizontal plane as a function of depth in a
5 and 10 d, and (b) t = 36 and 45 d (v = pore-water velocity; hypothetical random tieId  at (a) 1 = 5 and 10 d, and (b) I = 36
x = depth). and 45 d (v = pore-water velocity; x = depth).

a result of field heterogeneity [Fig. 3 in Tseng and Jury
(1994)].

The field-scale total resident concentration (&)  profile
at I = 5 d was used to calibrate the standard deviation
of the pore-water velocity, o,, of the pdf for the stream
tube model. A value for ov of 0.136 was obtained by
the nonlinear least-squares inversion method of Toride
et al. (1995). We again assumed 8 to be constant due
to its relatively low CV. The stream tube model was
then used to simulate solute application with <v> =
6.37 cm d-t, and <D> = 1.6 cm2 d-’ assuming a
constant dispersivity, h = 0.25 cm. The stream tube
model calibrated at t = 5 d was subsequently used for
predicting mean concentrations and variances at larger
times.

Figure 10 presents 2, vs. depth at four selected times.
The predicted 2, distribution agrees relatively well with
the observed distribution. At larger times the observed
solutes still remained close to the surface while the
concentration front was steep compared with the profile
predicted with the stream tube model. Figure 11 shows
observed and predicted variances as a function of depth.
Although the observed variances after 30 and 45 d fluctu-
ated locally, there seems to be an overall agreement
between observed and predicted distributions. The bi-
modal distribution displayed in Fig. lb was found for
both the observed and predicted distributions at 5 and

4.0E-5
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2.OEb

I .OES

o.o.E+o
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,

0 20 4 0  60 8 0  100
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10 d. The agreement in variance suggests the utility of
the stream tube model to simulate transport for this
hypothetical heterogeneous field.

Note that the value for ov is quite small. For example,
Biggar and Nielsen (1976) found that o, = 1.25 for
ponded infiltration, while Mallants et al. (1996, unpub-
lished data) observed that 6, = 1.09, where q is the
Darcy velocity, in an experiment involving undisturbed
l-m-long soil columns.

SUMMARY AND CONCLUSIONS
A stochastic stream tube model for a bivariate lognor-

mal pdf of the pore-water velocity, v, and the distribution
coefficient, Kd,  was investigated for several types of
BVP and IVP problems. Analytical solutions for the
equilibrium and nonequilibrium CDE were used for lo-
cal-scale transport. Solute application at the surface was
modeled according to the BVP or the IVP. Although the
amount of solute applied across the entire field was the
same, the solution to the BVP predicted more spreading
in the field-scale resident concentration, &, than the IVP
since the amount of solute in each stream tube was
proportional to v for the BVP due to the flux-mode
injection, while each stream tube contains the same solute
mass for the IVP.

The assumption of a lognormal pdf for the standard
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conductivity, KS, with gravitational flow was also dis-
cussed in terms of a stochastic pore-water velocity, v.
When the recharge rate, r, is larger than KS, ponding
occurs, whereas unsaturated flow occurs in stream tubes
where r < KS. Although the stream tube model could be
used to describe unsaturated flow with a variable v and
0, the model may become inaccurate since the excess
water for stream tubes where r > KS cannot move into
stream tubes with higher KS. The predicted unsaturated
flow will be more uniform than the actual flow. As
long as 8 is relatively homogeneous compared with the
variation in v across the field, the assumption of a lognor-
ma1 pdf for v with a constant 8 appears reasonable.

The variance was evaluated to describe the variation
in the local-scale concentration at a particular depth
and time in the horizontal plane. An increase in solute
spreading because of a higher ov, a negative p”~~, or
any other reason discussed in Toride and Leij (1996), was
accompanied by an increase in the horizontal variation
of the concentration. This result indicates that solute
spreading in terms of the field-scale mean concentration
is the result of a heterogeneous local-scale concentration
distribution in the horizontal plane. The effects of correla-
tion between v and Kd on leaching of a reactive solute
for the IVP were similar as for the BVP discussed in
Toride and Leij (1996), except that the solute spreading
associated with a negative correlation is less than that
for the BVP. During nonequilibrium adsorption, more
time is required to displace solute initially present in the
upper part of the soil profile due to slower desorption.

A simplified one-dimensional macroscopic CDE with
effective parameters was compared with the stream tube
model. The effective parameters for the macroscopic
CDE were determined with time moments for the BVP
in terms of field-scale flux-averaged concentrations, &.
The predicted BTC in terms of & were similar for the
macroscopic CDE and the stream tube model for both
nonreactive and reactive solutes. The effective dispersion
coefficient, Deff,  increased linearly with travel distance.
However, the macroscopic CDE with these effective
parameters will give different results than the stream
tube model for other transport scenarios such as an
IVP as well as transport in terms of field-scale resident
concentrations, G.

The utility of the stream tube model was finally exam-
ined for area-averaged solute transport during steady
unsaturated flow in a hypothetical random field. The
standard deviation of the pore-water velocity, o,,, was
obtained by fitting the stream tube model to the field-scale
resident concentration profile of the numerically gener-
ated flow field. The resulting calibrated stream tube
model was then used to predict area-averaged transport.
The predicted mean concentrations and variances agreed
well with observed data. Although the use of a constant
8 in case of a lognormally distributed v can only be
approximate for unsaturated (heterogeneous) flow, it ap-
pears that this approach is reasonable to estimate o,. and
to quantify the heterogeneity of the flow field.
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