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Analytical solutions for the transport of volatile organic chemicals 
in unsaturated layered systems 

S. R. Yates, S. K. Papiernik, F. Gao, and J. Gan 
u.s. Salinity Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Riverside, California 

Abstract. Several analytical solutions were developed that describe the transport of 
volatile organic chemicals or other gases in layered porous media. Solutions are presented 
for a one-dimensional system consisting of either two finite soil layers or a finite layer 
adjacent to an infinite soil layer. The proposed solutions may be useful for studying the 
movement of volatile chemicals or other gases in layered soils, as well as for gas 
movement from soils into passive flux chambers, which are commonly used for measuring 
the surface volatilization rate. The behavior of the solutions is illustrated by several 
examples showing the soil gas concentration and the flux density as a function of time. At 
early times it was found that the flux density into a chamber is relatively constant when 
the mass transfer coefficient h is small. However, the concentration at the soil-chamber 
interface changes rapidly. For large h the flux density at the interface changes rapidly, and 
the concentration is relatively constant. 

1. Introduction 

For decades, soil fumigants have played an important role in 
increasing crop production and quality. However, the in- 
creased use of fumigants over large agricultural areas has led 
to air pollution problems, has been shown to contaminate 
ground water, and can cause adverse health effects in people 
living near treated fields. Gas-phase transport and volatiliza- 
tion have been shown to be important processes affecting the 
environmental fate of volatile organic chemicals (VOC) [Jury et 
al., 1983; Taylor and Spencer, 1990]. For many VOCs, such as 
methyl bromide, 1,3-dichloropropene (1,3-D), methyl isothio- 
cyanate, and methyl iodide, volatilization is one of the most 
important processes governing movement during agricultural 
use [Majewski et al., 1995; van den Berg et al., 1992, 1993; Jin 
and Jury, 1996; Gan et al., 1996], accounting for up to 70% of 
the applied mass [Yates et al., 1996b]. Gas-phase transport is 
also very important in characterizing the production of cli- 
mate-affecting gases such as CO2, NO, and N20 [Suarez, 1999; 
Healy et al., 1996; Jury et al., 1991]. 

There is currently a great deal of interest in increasing 
knowledge of the transport of agricultural fumigants under 
field conditions. This is due primarily to the anticipated phase- 
out of methyl bromide which will undoubtably cause an in- 
creased use of alternative chemicals, many of which are likely 
to cause further environmental contamination. Research is 

needed to determine the amount of chemical that enters the 

atmosphere or is transported to ground water and to develop 
methods that minimize contamination. The limited research, 
to date, directed at minimizing VOC emissions can be attrib- 
uted to two factors. First, volatilization is not strictly regulated 
by environmental agencies. Second, because of the dynamic 
nature of the soil-atmosphere environment and the involve- 
ment of the gas, liquid, and solid phases, field studies for 
measuring volatilization are very complicated, expensive, and 
labor intensive. Continuous and extensive air sampling is es- 

Copyright 2000 by the American Geophysical Union. 

Paper number 2000WR900077. 
0043-1397/00/2000WR 900077509.00 

sential for generating representative concentration profiles in 
the near-surface atmosphere which can be used to estimate the 
volatilization rate. Also, simultaneous measurements of many 
soil and/or ambient atmospheric conditions are required for 
calculating volatilization flux using methods such as the aero- 
dynamic method, the theoretical profile shape, and integrated 
horizontal flux method [Denmead et al., 1977; Wilson et al., 
1982; Majewski et al., 1990; Yates et al., 1996b]. The flux cham- 
ber method can be used as an alternative for estimating the 
surface flux and only requires measurement of fumigant con- 
centration inside the chamber [Hollingsworth, 1980; Clendening 
et al., 1990]. Direct and accurate measurement of flux through 
experimentation is essential when estimating the production of 
climate-affecting gases or for the testing of simulation models 
prior to their use in simulating VOC emissions [Baker et al., 
1996; Wang et al., 1997]. 

The purpose of this paper is to report on the development of 
analytical solutions to the gas diffusion equation for layered 
soil systems. This research was motivated by a lack of analytical 
solutions which can be used to determine the effect of altering 
application methods on pesticide efficacy and total emissions 
into the atmosphere or transport to ground water. These so- 
lutions would provide a first approximation in describing VOC 
transport within a biologically active zone (e.g., root zone) and, 
subsequently, through the relatively unreactive porous media 
below (e.g., the vadose zone). Further, the solutions would be 
very useful for testing the accuracy of comprehensive numer- 
ical simulation models. In addition to layered soil systems the 
solutions can be used to study the performance of passive 
chambers used to measure the flux density from soil and may 
lead to new and more accurate approaches that utilize cham- 
bers to measure the surface emission rate. 

2. Theory 
The solutions are intended to describe the transport of a soil 

fumigant or other VOC in a one-dimensional system compris- 
ing two layers. This could be diffusion in a layered soil system 
or from soil into an enclosed passive chamber resting on top of 
the soil surface, with the chamber representing one of the 
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layers. It is further assumed that the water content of the soil 
is fairly low, so that water movement over relatively short time 
periods can be neglected, and that the diffusion coefficients for 
each layer and the mass transfer coefficient for a resistive barrier 
at the interface, if any, are spatially and temporally constant. 

Two equations are necessary to describe vapor diffusion in a 
layered system [Bear, 1972] and must be coupled at the inter- 
face boundary. For the upper and lower layers, diffusion can be 
described by 

OCa 02Ca o 
ma • = Wa ø •- /&aCa, (1) 

OCs O2Cs o 
57-= z)sø sCs, (2) 

respectively, where Ci(z, t) is the gas-phase concentration 
[m L -3] in layer i (i = a, s), Da ø is a combined liquid and 
gas-phase diffusion coefficient in each layer [L 2 t-•], R i = 
(0 i + Pb,iKa,i)/Kh + e i is the gas-phase retardation coeffi- 
cient [Jury et al., 1983] for the ith layer, 0 i is the water content 
[ L3 L-3], Pod is the bulk density [M L-3], e i is the air 
content [L 3 L-3], Kd, i is the adsorption coefficient 
[L3 M-1], Kh is the dimensionless Henry's law constant, and 
/&? is a first-order degradation coefficient [t -1] defined as 
/&? -- [(/&liq,iOi q- /&sorb,iOb,iKd,i)/Kh q- /&gas,i8i], where/&liq, i, 
/&sorb,i, and/&gas,/are the first-order degradation coefficients in 
the liquid, sorbed, and gas phases, respectively, for the i th 
layer. Henceforth it is assumed that "a" layer is a chamber 
resting on the soil surface, and the soil layer will be denoted by 
"s." The effective diffusion coefficient can be estimated using 
the Millington-Quirk tortuosity model [Jury et al., 1983] where 

10/3 ]-)air •10/3 D}vater a •/ •a 

Da = Daø/ga = T}•- • q- TIa 2 Rag h ' (3) 
where % is the porosity [L 3 L-3]. Since the diffusion coef- 
ficients are assumed to be constant, other methods for char- 
acterizing the soil tortuosity [Jin and Jury, 1995; Freijer, 1994] 
can be used in place of (3). Clearly, D a is equivalent to the 
free-air diffusion coefficient if the chamber only has an air 
phase, since 0 = 0, e = r/ = 1, and R a = 1. 

The solution to (1) and (2) is obtained by utilizing the 
Laplace transform method [Wylie and Barrett, 1982; Haberman, 
1983], where Ci is the concentration in Laplace space and s is 
the complex Laplace transform variable. In the Laplace space 
the governing equations are 

d2•a(Z, S) 
Da dz 2 - (s + /&a)Oa(Z, S) + C,(z, 0) = 0, (4) 

d2•'s(Z, s ) 
Ds dz 2 - (s +/&s)•(z, s) + Cs(z, 0) = 0, (5) 

where Ca(z, 0) and Cs(z, 0) are functions describing the 
initial concentration of the pesticide gas in the chamber and 
soil, respectively, and 

A general solution in the Laplace domain for a chamber with 
height F and positioned on top of a soil column of length d can 
be obtained by solving (4) and (5)' 

•a(Z,S) =A•cosh [ \Is+ /&a(F+z)] 
+ B• sinh [ x/s + /&a (f q- z) q- 0a,part(Z 0) (6) •a ' ' 

•s(Z, $)=A2 cosh [ x/s + /&s (z-d)] 
+B2 sinh [ x/s + /&s 1 - •ss (Z -- d) q- Cs,part(Z , 0), (7) 

where •i,part(Z, 0) is the particular solution in the Laplace 
domain when Ci(z, 0) 4= 0. The motivation for this solution 
is transport in laboratory columns. A general solution for a 
semi-infinite soil domain with an arbitrary initial chemical dis- 
tribution is [Haberman, 1983] 

Cs(Z,s)=A2explX/s+/&s ] I x/s + /&s ] • z +B2exp- • z 

z ] + x/s +/&s •s f(u) sinh x/s + d., (8) 
where in this case, f(z) = Cs(z, O) is a function describing the 
initial concentration of the volatile organic chemical of inter- 
est. 

2.1. Boundary Conditions at the Interface 

Two equations are needed to characterize transport across 
the boundary between the layers. To ensure that the mass of 
chemical leaving the lower layer (i.e., soil), by passing through 
the interface, is the same as the mass of fumigant entering the 
upper layer (i.e., chamber), the gas flux density at the interface 
must be identical. Therefore 

D•0 0 0s'gas ] 00 0a,gas OZ = Da OZ ' (9) 
z=0 z=0 

Another condition is needed which describes the behavior of 

the concentration across the boundary. To describe the pres- 
ence of an interface resistance such as a surface crust, com- 
paction or the presence of a resistive material such as polyeth- 
ylene plastic (commonly used to cover fields treated with 
fumigants) requires the use of a mixed boundary condition 

oO•s I -Ds-•- =-H(Os- Oa)lz:0 = -hgs(Os- 0,)z:0, (10) 
z=0 

where H is the mass-transfer coefficient [L T-•] and h = 
H/R s is an effective mass-transfer coefficient. Since the gas flux 
density across the boundary is equal (i.e., (9)), the left-hand 
side of (10) could be also written in terms of C, and would 
provide identical results. Also, when the mass-transport coef- 
ficient becomes large, (i.e., the limit as h -• •c), dividing (10) 
by h and taking the limit results in an equal-concentration 
boundary condition (i.e., C, (0, t) = Cs(0, t)). Therefore 
additional solutions with identical concentrations across the 

boundary are unnecessary. 

2.2. Case 1: Chamber and Soil Have Finite Length 

This solution is applicable to soil columns and closed passive 
chambers provided the VOC concentration in the chamber is 
initially zero and the concentration in the soil is Co every- 
where. The initial and boundary conditions in the Laplace 
domain can be written as 

Co 
Oa(Z , O): 0 Os(Z , O) 

s + /&s 
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Further, if the VOC cannot exit the top of the chamber or 
through the bottom of the soil column, the flux density at these 
locations must be zero. Therefore 

a•' a a•'•l = =0 az ß 
z = -F z =d 

Ca(Z, t)e •t dRs 

Co (FRa + dRs) 

2hRs © cos [13,(F + z)]e -13•Dat 
D ag a n•l fi 2 • •-• •-• 7•] •I• • ' (18) 

The remaining steps necessary to obtain a solution in terms 
of real variables are to incorporate (9) through (12) into (6) 
and (7) to obtain the coefficients .4 •, .4 2, B •, and B 2 which is 
followed by a transformation to the real domain. For this case, 
B • and B 2 in (6) and (7) are set to zero so that the solution will 
satisfy the zero-gradient boundary conditions at z = -F and 
z = d. The two remaining unknowns are found by applying (9) 
and (10). This gives 

CohRscsch [ x/s+ Fa 1 F 
.41 = hj-•a(S _{_ [&s)•/S -{- FaRad(S)' B 1: 0, (13) 

-Coh csch l X/s + lzs 1 
= x/-5ss( s + ) , = o, 

where 

hRs x/s + •a F] coth 4)(s): 1 + •g a x/s + Idea •s ] 

h [x/s+l•xd 1 --coth (15) + s,/X + ' 
A solution in terms of real variables can be obtained by 

finding the residues at the poles of •7x(z, s) and •,(z, s). 
Combining (13) and (14) with (6) and (7), respectively, it can 
be shown that there are no branch points but an infinite num- 
ber of simple poles which occur at the zeros of the denomina- 
tors of (13) and (14). Two subcases are considered: (1) p•x = 
p•, = p• = constant, which may or may not be zero, and (2) 

2.3. Case la: •s = •a = • = Constant 

When the degradation coefficients in the air, /x,, and soil, 
/%, are the same, the solution to (6) and (7) is considerably 
simplified. When/% = /x, - /x, the inverse transform of (6) 
and (7) can be found using the shifting theorem, that is, 
• -• { (7 (z, s + /z) } - e- •t• -• { (7 (z, p) }. Once the shifting 
theorem has been applied, the residues at the zeros of the 
denominator must be obtained, namely, at p = 0 and p = 
-k• 2, where the k n are the roots of 

•(P) p--•7ikn : O, (16) 

given in (15). In real space the kn satisfy 

•: x/OaOskn- • sshgs Ra --cøt [-•j - x/•h cot [ •sj 
(•7) 

Obtaining the residues and simplifying, the solutions for the 
chamber and soil concentration as a function of distance and 

time are 

Cs(z, t)e w dRs 2h © cos [a,(z - d)]e -"•m 
Co = (FR, + dRs) + •ss ,•• a,sin •-•j•)-• ' 

(19) 

dh dhRs cot [a•] cot [/3•F] 

*t• = i + •ss + dcr,• cot [cr,•d] - •a k/-•-sga 
FhRs 

+ Daga csc [/3nF] 2, (20) 
where a n = kn/X/-• s and/3. = kn/X/-• a. 

2.4. Case lb: Degradation With 

When the degradation in the soil differs from that in the 
chamber, the solution is somewhat more difficult to obtain. 
This solution is more meaningful for laboratory and field stud- 
ies with VOCs such as methyl bromide since degradation oc- 
curs primarily in the soil and water phases via hydrolysis and 
methylation [Gan et al., 1994]. These processes would not be 
significant in the chamber air space since methyl bromide deg- 
radation in air is negligible [Castro and Belser, 1981]. There- 
fore, given that /% is approximately constant and that degra- 
dation in air is negligible, the condition/% > jb[ a is satisfied. 

The solution proceeds as in case la, except the shifting 
theorem is not used. Obtaining the residues at the zeros of the 
denominator of (6) and (7) requires obtaining a portion of the 
solution from two regions along the negative real axis, that is, 
between -/% < s < -/x a and from -oc < s < -/%. If the 
real part of s > -/x a, there are no zeros and thus no contri- 
bution to the solution. Obtaining the residues and simplifying, 
the solution for the chamber gas concentration as a function of 
distance and time is 

Ca(Z , t) 

Go 

2hRs © cos [13.F + z)]e -l<"2t 
D aR a n•l ]3 n sin (13,F)XP, 
2hRs m COS [f,(F + z)]e 

+ DaRa • •i sin (•iF) &, ' (21) 
and the solution for the concentration in the soil is 

Cs(z, t) 

C0 
2h © cos [ a_,( z - d) ]½ -k•2t 
Ds •• a, sin 

2h m cosh [ k'i( Z -- d) ]e 
+ •ss • •,• sinh (•,,d)4>, (22) 

The values for k n are found from 

• = DaDsoz•3 •- hDa[3 •cot (oz.) - hRfi)sa, cot ([3•)/R a 

=0, n: 1,...,o•, (23) 

with an = V'(k•- p•s)/Ds and 13n = V'(k, 2 - p•,)/D,, and 
the values for X• are found by solving 
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•'7 = DaDsv,•, + hDa•i coth (rid) - hD•Rsv, cot (•iF)/Ra 

:0, i= 1,...,m, (24) 

with •i : V(/•/2 -- I&a)/Da and v, : V'(tx s - X•)/Ds, and 

a,2Dfish cot (/3nF) h cot (and) hd 
xltn = 2 3 + + csc (and) 2 Daga•n Dstxn •ss 

+ • • csc(t3.F) • 
D a Rain ' (25) 

v•2D•Rsh cot (sO,F) h coth (v,d) hd 
(I)i = 2 q- q- csch (rid) 2 Daga•t 3 DsPt •ss 

+ 2 Daga•t 2 csc (•,F)2. (26) 

The limiting values for •i are •s and •,, and therefore the 
value of m depends on their magnitudes. The equation for the 
zeros, •, has singularities which occur at v i = 0 and at values 
of fi = n w/F. The singularities result in boundaries between 
which is contained a single zero. After rearranging, a simple 
relationship that gives the maximum possible m is 

F •//&s- /&a] m _< integer + 1. (27) 

2.5. Case 2: Chamber on Top of a Soil Column 
of Infinite Length 

Many soil fumigants are applied below the soil surface using 
nozzles located at the rear of shanks using high pressure. The 
soil fumigant is applied as a line source and moves from the 
injection point in two dimensions. When many of these nozzles 
are present or when a planar device such as a noble plow [Yates 
et al., 1996a] is used to spread the initial pulse horizontally, a 
one-dimensional analog can be used to simulate the movement 
of a soil fumigant applied as a delta-function source. If this 
highly concentrated source is located in the soil at Zo, the 
initial spatial distribution of the VOC can be written 

Cs(z, O) = Co•(Z - Zo): 
(z - zo) Co exp -tx•t - 4Dst 

2 x/TrD.,.t t-->O 

(28) 

The solution in the Laplace domain can be obtained by incor- 
porating the initial and boundary conditions (equations (9), 
(10), and (28)) into (6) and (8) and settingA 2: 0, since Cs(z, 
s) must remain finite as z -• c•. For the chamber layer the 
solution in the Laplace domain is 

Oa(Z,S ) : 
CohRsexp(-•s;?*Zo) 

•s •/S q- I&sga(•i) ( S ) 

[?q-l&a(Fq-z)l (29) ß cosh Da , 

and the solution for the soil is 

C•=A exp - Ds (Z+Zo) 
+ + •s exp(-?D?Slz-zol)+exp[-•D s ( z + Zo) 1 

2 x/19s(S + 

where 

h •a •/S q- /&a sinh (argr)] ,4 = - 19s(S + ' 
hRs 

(7I)(s) = • cosh (argF) 
h•ax/S + I•a 

+ q- •a• s q- /&a] sinh (argr), 
where argF = FV(s + 

(30) 

(3•) 

(32) 

2.6. Solution Where ix s --> ]oL a 

This solution proceeds by integrating along the negative real 
axis around the branch cut, -c• < s < - •s, and obtaining the 
residues at one or more simple poles in the region - •s < s < 
-•,. To do this, the image function is integrated along the 
negative real axis from -c• < s < -•s, where arg [s] = e i•, 
is integrated around the branch point at s = -•s, and is 
integrated along the negative real axis from -•s > s > -c•, 
where the arg [s] = e -i•. As in case 1, the real part of s > 
-•, has no zeros and thus no contribution to the solution. A 
description of this procedure is given by Carslaw and Jaeger 
[1959]. Application of this approach for similar problems is 
given by Tang and Babu [1979] and Yates [1990, 1992]. Obtain- 
ing the residues and simplifying, the solution for the chamber 
and soil concentration as a function of distance and time is 

Ca(z, t) 2hRs 
Co 7rRa 

ß •• x cos [13x(F + z)][Q cos (axZ0) - P sin (a•z0)] dx eX2,(Q2 + p2) 

hR, m exp (_D,/3,2t_ a•z0)cos[/3,(z + F)] 
+ • e-•"'• •;• • (/3,F) + '72 sin (/3,F)] 

/=1 

respectively, and the solution for the soil is 

C•(z,t) 

Co 

exp 

, (33) 

(Z-Zo) ] [ (z+zo) ] 4Ds•- i•st + exp - 4DJ - I•st 2hD a 
2 x/wDst + rrDT 

. •• 13xsin (13xF){P cos[ax(Z +z0)] + Q sin[ax(Z + Zo)])xdx axeX2t(Q2 + p2) 

h D ae _ •a t m + Ds • 13•exp[-Dal3•2t - a•(z + Zo)]sin(13iF) (34) o•[T• cos (/3•F) + T2 sin (/3,F)] ' 
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where 

P = -Dah 13x sin (/3xF), (35) 
Q: axDs Dal3x sin (13xF) •aa COS (13xF) 

F 

'y• : •- [h + 
(36) 

and the K i are found by solving 

•tOshRs cos (•F) - Oa•tRa[•tOs + hi sin (D•F) = 0. (37) 

2.7. Case 3: Soil Column of Infinite Length With Initial 
Square Pulse and • m •a 

The solution for this case follows the same procedures de- 
scribed in case 2. The initial concentration in the soil is as- 

sumed to be zero in the chamber and eve•here in the soil 
zone except be•een depths zt < z < zo, where the concen- 
tration is Co. Therefore 

Cs(, 0) = c0{u( - - - (38) 

where u(x) is a Heaviside step •nction [Habe•an, 1983, p. 297]. 
Incorporating (38) into (7), the VOC movement in the 

chamber with B • = 0, gives 

Ca(Z,S) 
Co 

x/•hRs[exp (- •S ;s•SZt) - exp (- •S ;sP•Szb) ] 
4(s) 

s+ /•a (F + z) l ß cosh D a 
for the chamber and 

(39) 

C• = B2 exp - Ds z 

(cosh[ •s+•(z_zt)l _coshi •S;s!'•(Z_Zb)]) Ds 

(s+ 

(40) 

for the soil, where B2, is 

B2 = 
+ •, x/S + l•s•(S) csch l •S Da F] 

sinh Ds Zb I sinhi • s+• Ds zt 1 
+ (s +/.•) (41) 

alP(s) = x/•hRs(l•s + s) cosh Da 
+ Dag a •/l&a "{- s{h •/l&• '2r-S 

[ •s+/•F] (42) + x/•s(/•s + s)} sinh Da . 
Completing the Laplace inversion gives the solution in the 
chamber as 

Ca(z, t) -4hRs 

Co rr 

.f0•x cos [13x(F + z)]{P cos (axWo) + Q sin (axWo)) dx [.x eX2tax csc 2- (Zb -- Zt) (Q2 + p2) 

m -O"•'•t COS [/3,(Z + F)](e -z .... e -zb"') + DshRs e-•"t • a? ?• cos (/3,F) + 3/2 sin (/3,F) ' 
i=1 

(43) 

where a i, /3i, and Ki are defined in (36) and (37). In the soil 
zone the concentration is 

Cs(z, t) = Co{Cs,•(z, t) + Cs,2(z, t) + Cs,3(z, t)), 

where 

Cs,•(z, t): • erfc 2 Dx•st,/ + erfc 2xD/Dstst? 

-erfc(2•] erfc(2•/]' 
4hRaDa 

Cs,2(z, t) = - •Ds 

(44) 

(45) 

. fo•Xl3x sin (13xF) sin [ax(Zb -- zt)/2][Q cos (axW) - P sin (axW)] e•2t ax2(Q 2 + 1 >2) 

Cs,3 (z, t) = 2D ah R ae - 

(46) 

ß E •ie-D"13'2t sinh [OZi(Z b -- zt)/2][cosh (oz,w) - sinh (aiw)] 
l=l 

71 cot (/3,F) + 3/2 

P = D sozx[DaRa]3 x sin (13xF) - hRs cos (/3xF)], 

Q = DahRa•x sin (13xF), 

[ ] 'Y1: 2 h --{- ol iD s --{- Dar Ral3,2 ] , 

'Y2 = 2D a•t + 2 ' 
1 1 

w = j(2z + z• + zt), Wo = j(z• + zt). 

(47) 

(48) 

(49) 

(50) 

2.8. Solution Verification 

The solutions described above have been checked using the 
symbolic mathematics program Mathematica © (Wolfram Re- 
search, Inc., Champaign, Illinois). It is not difficult to show that 
each solution satisfies the differential equation and boundary 
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Table 1. Soil and Chemical Parameters 

Example Example 
Parameter I II Dimensions 

Soil retardation coefficient Rs 2.40 2.40 
Chamber retardation coefficient R a 1.0 7.70 
Soil dispersion D s 0.00527 0.00527 m 2 d -• 
Chamber dispersion Da 0.432 0.00105 m 2 d -• 
Soil degradation/z s 0.05 0.05 d -• 
Chamber degradation jb[ a 0.0 0.05 d -1 
Mass transfer coefficient h 0.01 10 m d -1 
Soil column length d 1.0 1.0 m 
Chamber height F 0.25 1.0 m 

conditions with the exception of the interface boundary con- 
dition in (10). For example, substituting (33) and (34) into (t0) 
and simplifying produces, after considerable manipulation, a 
relationship that does not evaluate directly to zero [Gradshteyn 
and Ryzhik, 1980, equation 3.896.4]; 

exp (-i•t - z•/4Dst) 2 foøø ( XZo I x/Dstrr + X•svr cos -•/e-X2t-•tdx 
=0. 

However, completing the integral demonstrates that the above 
relationship is true and that the boundary condition is satisfied. 
This procedure is also required for the solution in case 3. 

3. Examples 
To illustrate the behavior of the analytical solutions, several 

hypothetical examples were prepared. The values used for the 
soil and chemical parameters are shown in Table 1. The first 

0.0 0.2 0.4 0.6 0.8 1.0 

4.0 

2.0 

m 

•i 0.0 

-2.0 

-4.0 

100 d -1 

0.307 3. 2 = 8.27 

Figure 1. 

, i 

(a) Plots of the function gT(X) and gj(K,•) from 
equation (23) (solid line) and equation (24) (dashed lines). 
The zeros are required to obtain the concentrations in equa- 
tions (21) and (22). (b) When/•s is large, more than one zero 
may occur for • (X). For this case, there are two zeros when 
/•s is tOO d -•. 

example uses the solution for case 1 to describe the behavior of 
the concentration and flux density for situations where a 25 cm 
passive chamber is located on the surface of a 1 m thick soil 
block. The diffusion coefficient in the soil and chamber, 
0.00527 and 0.432 m 2 d -1, respectively, are shown in Table 1. 
Since/•s > /•a, the first step in obtaining the concentrations 
for this example is to find the roots to (23) and (24). Equation 
(27) is used to determine the number of roots between/•a < 
Xi < /•s and yields a value for the maximum number of roots, 
m = 1, (e.g., m = integer (0.027) + t). A search in this region 
is conducted for the zero, Xl = 0.184, using (24). For illustra- 
tive purposes the behavior of the function • (X) is shown in 
Figure t a as the solid line. When the value of/•s is larger, 
additional zeros may exist in this range. This can be seen in 
Figure lb, where/•s in increased to 100 d-1. For this value of 
/•s, two zeros occur at X l = 0.307 and X2 = 8.27. In most cases 
an unreasonably large value of/•s is required to yield more 
than one zero in this portion of the solution. Next, a search is 
conducted in the region K,• > X/tz s using (23). The function 
• (X) in the region from X/tz s to 1 is shown as dashed lines in 
Figure la. For the examples provided below, a total of 2000 
zeros were used to evaluate the series solution in (21) and (22) 
which far exceeds the number necessary to provide concentra- 
tions accurate to three decimal places for the stated example. 

Shown in Figure 2 are the chamber concentrations for a 25 
cm tall chamber located at the soil surface (i.e., between 
-0.25 < z < 0 m) along with the concentration in the soil 
from 0 < z < 1 m and at times 0.0, 1, 5, 14, 30, and 60 days. 
It is evident from Figure 2 that for the first 14 days the VOC 
is moving from the soil into the chamber. By day 30, however, 
the direction of movement has reversed with the chamber 

supplying VOC to the soil. This occurs because there is no 
degradation in the chamber, so when gradients permit, the 
VOC will diffuse back into the soil zone where it is degraded. 
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Figure 2. The gas concentration in a finite soil column and a 
chamber resting on the soil surface. The soil zone extends from 
0 < z < 1.0 m and the chamber from -0.25 < z < 0 m. A 

mixed boundary condition occurs at z - 0 with a mass-transfer 
coefficient of 0.01 rn d-1. The numbers on the concentration 

profiles indicate days. 
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Also, when the mass transfer coefficient at the chamber-soil 
boundary is low, the concentration profiles in the soil remain 
relatively straight compared to the profiles that are produced 
when an equal-concentration (e.g., C,(0, t) = Cx(0, t)) 
boundary condition is used (or equivalently, when h --• 

Figure 3 shows the early-time flux density (Figures 3a and 
3b) and concentration (Figures 3c and 3d) profiles inside a 
chamber resting on a finite soil column of length lm and a 
constant initial concentration of 5000 mg m-3 for two values of 
the mass-transfer coefficient, h = 0.01 m d-1 (Figures 3a and 
3c) and h = 10 m d-• (Figures 3b and 3d). The time intervals 
shown in Figure 3 are 5, 10, 20, 40, and 60 min. The early-time 
behavior of the flux density into the chamber depends strongly 
on the mass transfer coefficient. For low values of h a nearly 
constant flux density occurs during the time period from 5 to 60 
min after the chamber is placed on the soil surface and repre- 
sents less than a 3% change during this time interval. This 
suggests that a constant flux assumption may be appropriate 
for describing early-time behavior under these conditions. For 
large values of h, however, the flux density changes consider- 
ably from approximately 6500 mg m -2 d- 1 at 5 min to 1900 mg 
m -2 d -1 at 60 min, a 71% change. Also, the flux density profile 
in the chamber is initially highly curvilinear and becomes much 
more linear by 60 min. 

The concentration profiles within the chamber behave in an 
opposite manner to the flux density. For small values of h the 
concentration at the boundary surface changes rapidly with 
time. For large values of h the concentration at the boundary 
remains nearly constant, increasing by approximately 5% dur- 
ing the 5 to 60 min time interval. In both cases the concentra- 
tion profiles have similar shape except that the slopes near the 
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Figure 3. (a and b) The flux density and (c and d) concen- 
tration within the chamber shortly after being placed on the 
soil surface. The mass-transfer coefficient is 0.01 m d -1 in 

Figures 3a and 3c and 10 m d -• in Figures 3b and 3d. The 
number on each curve indicates the time in minutes. The initial 

concentration in the soil is assumed to be 5000 mg m -3. 
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Figure 4. (a) The gas concentration in the soil and chamber 
when a delta-function pulse is added to the soil at a depth of 
0.25 m. Equations (33) and (34) were used to obtain the con- 
centration. (b) The flux density at the interface, where negative 
values indicate diffusion into the chamber and positive values 
indicate diffusion into the soil. 

boundary are approximately parallel for small h, consistent 
with the observed nearly constant flux density in Figure la. 

Figure 4 is an example of the concentration distribution 
when a delta-function source is located 0.25 m deep in the soil. 
At early times the concentration curve resembles a Gaussian 
distribution, and the concentration in the chamber remains 
zero until the VOC plume has had sufficient time to diffuse to 
the soil surface. The behavior of the system after the VOC 
enters the chamber is similar to the constant-concentration 

case, in that the flux density vectors are directed toward the 
chamber at early times and toward the soil after about 15 days. 
This is shown in Figure 4b where a negative flux density indi- 
cates movement into the chamber. 

An example of a step concentration pulse located between 
0.25 and 0.5 m from the soil surface and subsequent diffusion 
into an overlying soil layer is shown in Figure 5. The soil and 
chemical properties for this example are different than the 
prior cases and are listed in Table 1 in example II. For this case 
a large value for h was used to demonstrate that this produces 
a equal-concentration boundary condition at the interface. In 
addition, the large value for the retardation coefficient in the 
upper layer, R•, produces a more nonlinear concentration 
curve in this layer (see inset). This is due to the smaller diffu- 
sion coefficient together with a nonzero degradation coeffi- 
cient. In addition, since the degradation coefficients are equal, 
the flux density vectors are directed into the upper layer for all 
times. It can be shown that reversals in the flux density vector 
only occur for solutions where tz s > t%. 

4. Summary and Conclusions 
Analytical solutions were developed to simulate one- 

dimensional transport of volatile organic chemicals or other 
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Figure 5. The gas concentration in the soil and an overlying 
soil layer for a step-pulse initial condition between 0.25 and 
0.5 m in the soil. The soil and chemical parameters from 
example II in Table 1 were used to obtain the concentration 
from equations (43) and (44). 

gases in layered porous media. One solution considers a system 
consisting of two finite soil layers with a constant initial con- 
centration in one layer. Two additional solutions are developed 
for situations where a finite layer is adjacent to an infinite soil 
layer and the initial concentration in the infinite layer is rep- 
resented by a (1) delta function at position Zo, or (2) a square 
pulse between depths z t and z•,. Two partial differential equa- 
tions are used to describe the gas transport. At the interface 
boundary an equal flux density and a mass-transfer boundary 
condition are used to couple the partial differential equations. 
The solutions were obtained using Fourier series and Laplace 
transform methods and result in either series or integral equa- 
tions. A unique feature of the solutions is the need for additional 
terms when the degradation coefficients in each layer differ. 

Several examples are provided that show the soil gas con- 
centration and the flux density as a function of time for gas 
movement from a soil into passive flux chambers. The analyt- 
ical solutions provide an efficient method for exploring the 
early times behavior of the soil gas concentration and flux 
density into the chamber. This allows a test of the assumptions 
implicit when estimating the flux density using passive cham- 
bers. For example, the flux density into a chamber is relatively 
constant when the mass transfer coefficient h is small, offering 
the possibility of using a constant-flux solution for estimating 
chamber flux under this condition. However, for large h the 
flux density at the interface changes rapidly, and a constant- 
flux solution would be inappropriate. 
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