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ABSTRACT
Nitrate (NO~) is one of the major nonpoint source pollutants 

the vadose zone. In this study, NO~- distributions were estimated in
an 800 by 800 by 1.8 m soil volume using kriging and cokriging with
nonsymmetric pseudo-crossvariograms. Cokriging with pseudo-cross-
variograms maximized the use of available information at different
soil depths. Cokriging allowed easily obtained information at shallow
layers to be used to improve soil chemical estimations at deeper layers.
Compared with kriging, cokriging significantly reduced the mean
squared errors (MSEs) and mean kriging variances (MKVs) of 
NO.~ estimations in the soil. For the same estimation accuracy of
kriging, cokriging with pseudo-crossvariograms used less than half
the data; thus potentially it could reduce more than half the sampling
cost than kriging estimation. Cokriging with pseudo-crossvariograms
was shown to be a precise and an economic way for determining
nonpoint source pollutant distributions in large fields.

TwHE QUALITY of our soil and groundwater is a nation-
ide concern for agricultural, public health, and

environmental reasons. Mismanagement of chemicals
has caused serious groundwater contamination in every
state (Lau and Mink, 1987). For example, the U.S. Envi-
ronmental Protection Agency (USEPA, 1990) surveyed
1300 wells throughout the country for 101 pesticides, 25
pesticide degradates, and NOB-. In over half the wells
sampled, NO;- was the major pollutant. Nitrogen fertil-
izer and pesticide use in the USA has increased steadily,
peaking in the early 1980s, and has resulted in chemicals
being transported to groundwater systems through the
vadose zone (USDA, 1990). This problem also affects
Wyoming: groundwater contamination by NOy was first
observed in 1986 in Torrington. Nitrate levels dramati-
cally increased in several wells by the spring of 1988,
when concentrations in some wells exceeded the
USEPA limit of 10 mg kg-1 NO;--N. By the end of
1988, all of the municipal wells were approaching the
USEPA-recommended maximum concentrations.

Because of the high cost of sampling and analyzing
NO.i- concentrations in the field, there are only a limited
number of field experiments. However, accurately esti-
mating solute mass and distributions in the vadose zone
and groundwater systems is critical in many environ-
mental studies, such as designing best management prac-
tices of soil and water, protection of soil and water
from nonpoint source pollution, and modeling chemical
movement and fate in soils. With limited data, geostatis-
tical analyses provide useful tools to characterize spatial
distributions of soil chemicals and estimate solute mass
in soils (Warrick et al., 1986).

Geostatistics can use interrelationships between two
or more spatially-dependent variables to improve the
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estimation of the variables. The interrelationships can
be among different variables at the same space or among
different depths for the same variable. Cokriging is an
extension of the kriging method and incorporates both
spatial and intervariable correlations into the estimation
process. Cokriging has been applied to study various
spatial variables. For example, Yates and Warrick
(1987) estimated the soil water content using cokriging
where the bare soil surface temperature and the sand
content were used to supply additional information.
Stein et al. (1988) used cokriging to increase computa-
tion precision in soil water content. Zhang et al. (1992b)
improved the estimates of soil texture by including asso-
ciated spectral properties in a cokriging procedure.
Zhang et al. (1995) estimated concentrations of trace
elements in soils and plants using kriging and cokriging.

An essential part of any geostatistical analysis using
cokriging is the modeling of crossvariograms among the
variables. A major disadvantage of standard approaches
for modeling crossvariograms is that only values for the
variables having common sample locations can be used
to estimate the cross-correlation functions. Therefore,
estimating crossvariograms requires a large number of
locations where data are collected for each variable, a
condition that is frequently not satisfied in practice.
To alleviate this difficulty, Myers (1991) described 
variation of cokriging that does not require measure-
ments of variables at the same locations. The approach
involves the development of pseudo-crossvariograms
and their use in a cokriging algorithm. Zhang et al.
(1992a) used cokriging with symmetric pseudo-crossvar-
iograms to estimate spatial distributions of various soil
chemicals. Zhang et al. (1997) applied nonsymmetric
pseudo-crossvariograms in cokriging to improve esti-
mates of soil solute concentrations.

To determine nonpoint source pollution in the vadose
zone, it is necessary to measure soil chemicals at differ-
ent locations and depths. However, the difficulty of mea-
surement of soil chemicals increases dramatically with
depth. To enhance estimation precision of chemical dis-
tributions at deeper layers using available data at shal-
lower layers, cokriging is a logical choice by incorporat-
ing both spatial continuities and correlations of soil
chemicals between layers into the estimation process.
The purpose of this paper is to estimate NO~ distribu-
tions in a large soil volume using kriging and cokriging
with pseudo-crossvariograms assuming only limited
data are available at deeper layers.

MATERIALS AND METHODS
To study spatial distributions of NO;~, an extensive field

experiment was conducted at an irrigation farm in the western
part of Fresno County near the town of Mendota, CA. Soil

Abbreviations:’MSE, mean squared error; MKV, mean kriging vari-
ance; ICP, inductively coupled photometer; RMKV, relative mean
kriging variance; RMSE, relative mean squared error.
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samples were collected in an 800 by 800 m field at depths of
0.15, 0.30, 0.45, 0.60, 0.90, 1.20, 1.50, and 1.80 m. The number
of samples varied at different depths, ranging from 108 data
points at 0.15 m to 83 data points at 1.80 m (Table 1). The
field site is a commercial farm that has a varying cropping
history. Furrow irrigation using California Aqueduct water
and well water was the primary irrigation practice. The soil
type on the site was the Panoche silty clay loam (fine-loamy,
mixed calcareous, thermic Typic Torriorthent). Soil samples
were collected at the specified depths using a truck-mounted
soil sampling machine. The soil collected from each depth
increment was mixed as a homogenous soil for chemical analy-
ses. The soil samples were extracted using a quantitative 1:1
soil/water extract procedure. Concentrations of NO;~ (NO~-,
cmol~ L-~) were measured using an inductively coupled pho-
tometer (ICP) and a flow injection analyzer. Other physical
properties were also measured including gravimetric water
content and bulk density.

In this study, cokriging is applied to estimate spatial distri-
butions of NO~ using data from different depths by incorpo-
rating not only spatial correlations on the horizontal space
but also the correlations of NO~ concentrations between
depths. Let Z~(xl) ..... Zl(Xm) ..... ZI(x,,) denote NO.~ concentra-
tion values measured at the sample locations xl, ..., x ....... , Xn
Of depth 1 and Z2(x0 ..... Z2(xm) denote NO~- concentration
values measured at the sample locations x~ ..... Xm of depth 2
(depth 1 < depth 2 and n > m). The cokriging estimator 
NO3 at x0 of depth 2 can be written in the form (Myers, 1984):

NI N2
= E x,, Z,(xli) + E x2j [11

i-!

where N~ and N2 are the number of neighboring values of Zl
and Z2, respectively. Accordingly, Z2 at x0 is estimated by a
weighted average of the observations on the variable at the
two depths and the spatial locations. The weighting factors k~
and kz are determined based on the variograms of Z~ and Z~
as well as their crossvariogram. The problem is that the com-
nron rn points at the two depths may not be enough to calculate
a meaningful crossvariogram using traditional methods,
whereas more data are available at depth 1.

To maximize the use of the available data, a pseudo-cross-
variogram of Z1 and Z2 is defined as (Myers, 1991):

g~z(h) = gz,(-h) 0.5Var[Z~(x) - Zz(x + h)l [2

It is assumed that this function depends only on the separation
distance h. Note that it is not required that Z~ and Zz are
sampled at the same locations. The pseudo-crossvariogram is
not necessarily symmetric. The sample pseudo-crossvario-
grams for the variable at depth 1 (Z0 and depth 2 (Z2) are
computed as:

1g]~z(h) = ~N(h)i=IE [Zl(xi) - Z2(xi -~ h)]2 [31

and
1 N(h)

g~(h) 2N(h)~=~ ~ [Z2(x~) - Z,(x~ + h)2 [4]

where N(h) is the number of sample pairs for lag h. If g~(h)
and g~(h) are symmetrical, we may obtain a crossvariogram
~hz from the pseudo-crossvariogram g~ (Myers, 1991; Zhang
et al., 1992a). If g~(h) and g~(h) are nonsymmetrical, and it
is assumed in this study that they can be modeled by the
common variogram functions (conditionally negative defi-
nite), such as exponential, spherical, and linear models. Param-
eters of the pseudo-crossvariogram are determined by cross
validation. The cross validation procedure produces estimates
corresponding to measured locations using the cokriging tech-
nique to be discussed below. In this procedure, every known

Table 1. Statistics of NO~- of the original data.
No. of Standard

Depth data Mean deviation Skewness Kurtosis

m cmol~ L-t cmol~ L-m (cmol, L-~)~ (cmol~ L-l)4

0.15 108 4.709 5.670 1.552 5.513
0.30 109 0.520 1.041 2.568 9.429
0.45 94 0.544 1.406 3.434 16.016
0.60 109 0.827 1.840 3.531 18.529
0.90 103 0.485 1.010 2.445 8.528
1.20 90 0.301 0.753 3.006 12.275
1.50 85 0.269 0.749 3.067 11.608
1.80 83 0.286 0.709 3.166 13.711

point is estimated by using neighboring observations, but not
itself. Based on the statistical analysis of the estimates and
measurements, an appropriate pseudo-crossvariogram can be
chosen. Similar to the selections of variograms and crossvario-
grams through cross-validation (Yost et al., 1982a,b), the
choice of a pseudo-crossvariogram should result in a near-
zero value of mean error, and near unity for the reduced
kriging variance.

In terms of the variograms and pseudo-crossvariograms
of the random variable at two depths, Z~(x) and Z2(x), the
cokriging equations are expressed in the form of
N1 N2

E Xli ’~/l(Xli -- Xl) ~- E )k2j gl2(Xxj -- Xl) 
i=l j=l

g~(Xo - xi) I = 1,2 .....
N1 N2

E )kli g21(Xli -- Xj) -k E )k2j ~2(X2j -- 
j=~

"/2(x0 - x j) J = 1,2,...,N~
N2

j-1

Solving the system of linear equations, we can obtain the
cokriging weights k~ and ~. It should be verified that the
variograms and pseudo-crossvariograms in the equations sat*
isfy the Schwarz’s inequality given by (Myers, 1982)

"h(h)’/2(h) glz(h)g2~(h) [61
This condition guarantees that the variance of the estimated
variables is positive.

RESULTS AND DISCUSSION

In this study, we applied the kriging and cokriging
techniques to estimate NO;- distributions in the three-
dimensional field of 800 by 800 by 1.8 m. The use of
cokriging can maximize the estimation precision by us-
ing limited data and other available information at dif-
ferent soil depths, which shows potential saving of sam-
pling costs. In particular, we used nonsymmetric pseudo-
crossvariograms that were computed using data sampled
at the same and/or different horizontal locations at dif-
ferent depths.

Table 1 lists the descriptive statistics, including the
mean, standard deviation, skewness, and kurtosis, of all
NO3- data at the depths from 0.15 to 1.80 m. In general,
the mean and standard deviation decrease with depth,
which might be mainly attributable to the agriculture
practices and transport processes. The vertical sample
support sizes are 0.15 and 0.30 m, respectively, from
0.15 to 0.60 m and from 0.60 to 1.80 m. The smaller
vertical support size at the shallow depths may also
contribute to the larger values of standard deviation.
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Table 2. Correlation (r) of NOf concentration at different depths
(68 common locations).

Depth 0.15 0.30 0.45 0.60 0.90 1.20 1.50 1.80

Ill

0.15 1 0.121 0.010 0.200 0.060 0.171 0.349 0.184
0.30 1 0.483 0.256 0.295 0.564 0.666 0.629
0.45 1 0.518 0.611 0.591 0.552 0.757
0.60 1 0.526 0.459 0.407 0.477
0.90 1 0.802 0.603 0.698
1.20 1 0.831 0.778
1.50 1 0.826
1.80 1

Table 3. Linear variogram models for NO~- concentrations at dif-
ferent depths.

Depth Intercept Slope

m (cmol~ L ~)~ (cmol~ L-~)~

0.15 28 0.015
0.30 0.73 0.0018
0.45 0 0.0042
0.60 1.8 0.004
0.90 0.45 0.0018
1.20 0.2 0.0015
1.50 0.3 0.001
1.80 0.2 0.00092

The correlations of NO;- concentrations at the depths
are shown in Table 2. There are low correlations be-
tween data at 0.15 cm and other depths. The correlations
between layers generally increase with depths.

Considering the lower sampling cost at shallower lay-
ers and correlations of the chemical concentrations
among the layers, we chose the available 103 data at
0.90 m and different reduced data sets at each layer
below 0.90 m. Sample variograms at the layers were
computed using all the data. The sample variograms
are characterized with linear models and their slopes
decrease with depths from 0.015 to 0.00092 (Table 3).
Figures 1A and B show the sample variograms and
models for NO~- concentrations at the depths 0.90 and
1.20 m, respectively. The pseudo-crossvariograms of
NO;- concentrations between the depths 0.90 and 1.20
are presented in Fig. 2. As shown in Table 4, both g~2
and g2~ of NO.~ between the depths of 0.90 and 1.20 m,
0.90 and 1.50 m, and 0.90 and 1.20 m are linear models;
however, the slope of g2~ is about two to three times
that of g12. The variograms and pseudo-crossvariograms
in the tables satisfied the Schwarz’s inequality given in
Eq. [6] among the depths. For example, between the
depths 0.90 and 1.20 m, we have

"h(h)"/z(h) : (0.45 + 0.0018h)(0.2 + 0.0015h) 

g~2(h)gz,(h) = (0.12 + 0.00216h)(0.12 + 0.001h) 

Thus,

"]l(h)’~2(h) g~2(h)g2,(h) :

0.076 + 6.56 × 10.4 h + 6 × 10-7 hz > 0 [9]

Using the variograms and pseudo-crossvariograms in
Tables 3 and 4 and cross-validation, we estimated NO.~
concentration at the sample locations at the depths of
1.20, 1.50, and 1.80 m with kriging and cokriging tech-
niques.

The following criteria were used to compare kriging
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Fig. 1. Sample variograms (circles) and models (solid lines) 
NO~ at the depths of (A) 0.9 and (B) 1.20 
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Fig. 2. Pseudo-crossvariograms of NO~-, g12, and g2J, between the

depths of 0.90 and 1.20 m. The circles and triangles represent the
sample pseudo-crossvariograms, gfi and gS, respectively, whereas
the solid and dashed lines represent the fitted pseudo-crossvari-
ograms.

and cokriging estimates. The MSE is calculated with

MSE = 1_ ~ [Z(x,) - Z*(xi)]2 [10]

where Z(x3 and Z*(x3 are the measured and estimated
values at x~, respectively. Relative improvement, or rela-
tive reduction of MSE, is defined by

RMSE = 100%(MSEk - MSE~)/MSEk [11]
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Table 4. Pseudo-crossvariogram models for NO3 concentrations
between depths.

Depths Pseudo-crossvariogram

m (cmol,. L-I)~

0.90 and 1.20 g~z(h) 0.12 + 0.00216h
gz~(h) 0.12 + 0.001h

0.90 and 1.50 gu(h) 0.1 + 0. 00167h
gz~(h ) 0.1 + 0.0005h

0.90 and 1.80 glz(h) 0.1 + 0.0015h
gz~(h) 0.1 + 0.0005h

where MSEk and MSEck are the mean squared errors for
kriging and cokriging, respectively. Similarly, relative
reduction of the kriging variance is defined by

RMKV : 100%(MKVk - MKV~)/MKV~ [121

where MKV~ and MKVc~ are the mean kriging variances
of kriging and cokriging, respectively. The correlation
coefficient (r) between measurements and estimates
was also used for the comparison.

The original data sets and various reduced data sets
at the depths were used for cross-validation, that is, the
available 103 data at 0.90 m and the common 60, 40,
and 20 data points at each depth below 0.90 m. At each
of the data points, the concentration was estimated by
using neighboring observations, but not itself. The re-
sults are summarized in Table 5. Compared with kriging,
cokriging reduced the MSEs from 23 to 58% and the
MKVs from 24 to 47%. For all the cases, the correlation
coefficients between the measurements and cokriging
estimates are significantly higher than those between
the measurements and kriging estimates. Note that co-
kriging provided more negative estimated values than
kriging at the locations with zero concentrations. Never-
theless, physically the negative values can be set as zeros.
As shown in Table 5, the correlation coefficients be-
tween the measurements and cokriging estimates by
setting the negative estimated values as zeros were very
close to (slightly higher than) those between the mea-
surements and the original cokriging estimates. The to-
tal 210 kriging and cokriging estimates at the depth 1.20
m and 203 kriging and cokriging estimates at the depth
1.80 m are compared with the corresponding measure-

4t ¯ Cokriging (r = 0.798)

1
" Kriging (r = 0.586)

0 1 Measu:ements 3 4

4

0 1 2 3 4

Measurements
Fig. 3. Comparison of kriging and cokriging estimates vs. measure-

ments at the depths of (A) 1.20 and (B) 1.80 

ments in Fig. 3A and B, respectively. Again the correla-
tion coefficients (r) between the measurements and cok-
riging estimates are much higher than those between
measurements and kriging estimates.

To estimate NO~- distributions in the 800 by 800 by

Table 5. Summary statistics of concentration estimation using cokriging and kriging.

Cokriging Kriging
No. of

Depth estimates MSE’~ MKV r MSE MKV r RMKV RMSE

1.20

1.50

1.80

-- (cmolcL ~)~-- -- (cmol~L-l) ~- %
90 0.2124 0.1789 0.791 (0.794)$ 0.3460 0.3332 0.624 46 39
60 0.2358 0.1893 0.801 (0.807) 0.3993 0.3551 0.625 47 41
40 0.3040 0.2066 0.811 (0.815) 0.7161 0.3875 0.476 47 58
20 0.0641 0.2611 0.616 (0.613) 0.0838 0.4625 0.316 44 41
85 0.3324 0.3093 0.638 (0.640) 0.4395 0.4154 0.468 26 24
60 0.4604 0.3201 0.622 (0.623) 0.6238 0.4327 0.426 26 26
40 0.3381 0.3349 0.648 (0.649) 0.4562 0.4547 0.527 26 26
20 0.7961 0.3859 0.650 (0.651) 1.1086 0.5091 0.461 24 28
83 0.2238 0.2054 0.741 (0.744) 0.3236 0.2966 0.591 31 31
60 0.1897 0.2139 0.727 (0.731) 0.3154 0.3113 0.474 31 40
40 0.1475 0.2260 0.515 (0.518) 0.1906 0.3277 0.270 31 23
20 0.1777 I).2744 0.739 (0.739) 0.2660 0.3921 0.551 30 33

MSE - mean squared error; MKV = mean kriging variance; RMKV = relative reduction of mean kriging variance; RMSE = relative reduction of
mean squared error.
Correlation coefficients between the measurements and cokriging estimates by setting the negative estimated values as zeros.
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1.8 m soil volume, kriging and cokriging were applied
to estimate 1681 values of the NO3~ concentration on a
grid of 20 by 20 m at each layer. For soil layers above
0.90 m, all data and kriging were used for the concentra-
tion estimation. Three schemes were applied to estimate
NO3~ concentrations below 0.90 m: (i) kriging with all
data at each layer; (ii) kriging using the common 40
data points at each layer; (iii) cokriging with the same
40 data at each layer and the 103 data at 0.90 m. In
terms of sampling cost, cokriging with the pseudo-cross-
variograms (scheme 3) used less than half the data than
scheme 1. In terms of estimation precision, cokriging
produced better results than kriging using all of the
data. Cokriging produced much more precise results
than kriging using the same 40 data points at the depths.
The kriging variances are more than two times the co-
kriging variance at the estimated points.

SUMMARY
It is critical to estimate chemical distributions in soils

for many agricultural and environmental problems, such
as nonpoint source pollution. A large-scale field experi-
ment was conducted to measure NO3~ concentration at
depths of 0.15, 0.30, 0.45, 0.60, 0.90,1.20,1.50, and 1.80
m in an area of 800 by 800 m. Geostatistical methods,
kriging, and cokriging were applied for studying sam-
pling and estimation strategies. Especially, cokriging
with pseudo-crossvariograms was used to maximize the
use of data at different depths and improve estimation
of NO3~ spatial distributions at deeper layers. The
pseudo-crossvariograms were nonsymmetric for all
depths and were modeled with linear variograms.

It was shown that cokriging can be used to increase
estimation precision and reduce sampling requirements.
Through cokriging, much more easily sampled informa-
tion at shallow layers was used to improve estimations
at deeper soil layers. Compared with kriging, cokriging
reduced the MSEs and the MKVs up to 60 and 50%.
Cokriging with the nonsymmetric pseudo-crossvario-

grams used less than half data for the estimation of
NO3~ distributions, thus it potentially could reduce more
than half the sampling cost than kriging estimation.
Therefore, cokriging with pseudo-crossvariograms is an
economic yet precise method for estimating distribu-
tions of nonpoint source pollutants in large fields.
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