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Abstract

Analytical models can be valuable tools to investigate solute transport in porous media. The
application of analytical solutions is limited by the perception that they are too cumbersome to
derive while their implementation rests on assumptions that are too restrictive. The Green’s

Ž .function method GFM was applied to facilitate analytical solution of the advection–dispersion
Ž .equation ADE for solute transport in uniform porous media with steady one- or two-dimensional

flow. The GFM conveniently handles different boundary and initial conditions as well as
multi-dimensional problems. Concise expressions are possible for the solute concentration with the
GFM. This paper provides a general framework to efficiently formulate analytical solutions for
many transport problems. Expressions for the longitudinal and transversal Green’s function are
presented that can be inserted in the general expression to solve a wide variety of transport
problems in infinite, semi-infinite, and finite media. These solutions can be used to elucidate
transport phenomena, estimate transport parameters, evaluate numerical solution procedures and
simulate the movement and fate of solutes. An illustration of the GFM is provided by the
analytical modeling of transport from a planar source of persistent, long-lasting contamination.
Such a source may be used to represent dissolution from a pool of a non-aqueous phase liquid
Ž .NAPL . Analytical solutions are obtained for a first-, second-, and third-type condition in case of
a planar source; the third-type condition is due to downward flow or rate-limited dissolution.
Several examples are presented to show the effect of source conditions, the sensitivity of NAPL
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1. Introduction

The deterministic advection–dispersion model has been widely used to describe the
movement of dissolved chemicals, heat and other substances in porous media. Mathe-
matical solutions of this model allow us to quantify the spatial and temporal distribution
of the solute concentration in porous media to monitor and improve the quality of the
subsurface environment. This is usually done numerically. For idealized conditions,
however, we may employ analytical solutions. Such solutions are useful to assess the
performance of numerical solution techniques, to gain a better understanding of the
importance of different transport parameters and mathematical conditions, to estimate
model parameters with inverse methods, and to study transport for conditions where
numerical methods may not yield accurate or reliable results.

Ž .Analytical solutions of the advection–dispersion equation ADE have typically been
Žobtained using techniques such as Laplace and Fourier transforms e.g., Leij et al.,

. Ž . Ž1993 , finite integral transforms e.g., Cleary and Adrian, 1973 , and Fourier series e.g.,
.Guven et al., 1984 . Relatively little direct use has been made of the Green’s functions¨

Ž .method GFM although this method is in principle well suited for solving boundary
Žvalue problems including those for the ADE Neuringer, 1968; Yeh and Tsai, 1976;

.Galya, 1987 . Appropriate expressions for Green’s functions can often be obtained from
existing solutions of the ADE or by adopting Green’s functions that have been published

Ž .for the diffusion equation Tikhonov and Samarskii, 1963; Beck et al., 1992 . The GFM
is particularly attractive to deal with transport problems involving arbitrary initial or

Ž .inlet solute profiles, several dimensions, irregular geometries Greenberg, 1971 , frac-
Ž .tured media Fogden et al., 1988 , or water flow that is not parallel to the stratification

Ž .of the porous medium Ellsworth and Butters, 1993 . This study was partly motivated by
the potential application of the GFM to solve transport in a medium with a continuous or
persistent source.

Persistent sources of contaminants in the subsurface environment may pose a serious
threat to the quality of soil and groundwater. Spills of hydrocarbon solvents can create
hazardous and long-lasting sources of groundwater contamination. Due to its density and

Ž .viscosity, a dense nonaqueous phase liquid DNAPL will sink to the bottom of aquifers
and remains there as a contamination pool because of its low solubility in water.

Ž .Similarly, a light nonaqueous phase liquid LNAPL may form a relatively immobile
pool on top of the aquifer. Pollution from oil tanks, landfills, and other buried sources
are further examples of gradual and continuous contamination from a fixed source.
Solutions may be derived by integrating instantaneous sources with time or space
However, it is desirable that the mathematical model allows the specification of different
types of time-dependent conditions at the interface of source and porous medium.
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Problems of persistent DNAPL or LNAPL contamination were described as boundary
Ž . Ž .value problems by Chrysikopoulos et al. 1994 and Holman and Javandel 1996 ,

respectively. Solutions for transport of the NAPL pool were obtained with integral
Ž .transforms. Shan and Javandel 1997 solved a similar problem with several integral

transforms by dividing the medium into three regions, with the source located on top of
the center region. The GFM facilitates the solution of transport problems involving
persistent sources and different source conditions.

The first objective of this study is to formulate the GFM for three-dimensional
transport problems and to provide Green’s functions for finite, semi-infinite, and infinite
media and several boundary conditions. The second objective is to illustrate how the
GFM can be used to quantify dissolution and movement in the aqueous of a solute
species with a low solubility.

2. Green’s function method

2.1. General formulation

A brief introduction will be given to the GFM for solving the ADE. Further
Žinformation on the GFM can be found in several books on Green’s functions Green-

.berg, 1971; Stakgold, 1979; Roach, 1982; Beck et al., 1992 . The ADE will be used to
model equilibrium solute transport in a porous medium whose transport properties are
constant with time and space. For a Cartesian coordinate system, the three-dimensional
ADE is given by:

Ec E2c Ec E2c E2c
R sD yÕ qD qD yRmcql 1Ž .x y z2 2 2Et ExEx E y Ez

Ž y3 .where c is the solute concentration ML ; R is the solute retardation factor; t is time
Ž . Ž .T ; x denotes the position L along the longitudinal coordinate in the direction of flow;

Ž .y and z are positions L along the transversal coordinates; Õ is the pore–water velocity
Ž y1 . Ž 2 y1.LT ; D is the longitudinal dispersion coefficient L T ; D and D are thex y z

Ž 2 y1. Ž y1 .transversal dispersion coefficients L T ; m is a first-order degradation factor T
Ž y3 y1.and l is a zero-order source or production term ML T , which may depend on

time or position. The corresponding problem in terms of the differential operator, LL , is

D E2c Õ Ec D E2c D E2c Ec lx y z
LL c sy q y y q qmcs 2Ž . Ž .2 2 2R R Ex R R Et REx E y Ez

Ž .An alternative adjoint problem is obtained through multiplication of Eq. 2 by a
Green’s function G and subsequent integration over the solution region. This procedure

Ž .can be schematically represented as cf. Greenberg, 1971 :

l
UG LL c sboundary termsq c LL G s G 3Ž . Ž . Ž .HHHH HHHH HHHH

R
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Ž .where the formally adjoint differential operator Roach, 1982 is defined as:

D E2 Õ E D E2 D E2 Ex y zULL sy y y y y qm 4Ž .2 2 2R R Ej R R EtEj Eh Ez

Ž . ŽThe dummy variables j , h, z , t correspond to the regular independent variables x,
.y, z, t . The adjoint operator is similar to the ADE operator except for the negative time

and velocity. A solution for c may be obtained from the equivalent problem in terms of
the adjoint operator. The GFM uses the Dirac delta function for this purpose. The
adjoint differential operator on G is equal to the following four-dimensional Dirac delta
function

LL U G sd xyj , yyh , zyz , tytŽ . Ž .
sd xyj d yyh d zyz d tyt 5Ž . Ž . Ž . Ž . Ž .

Ž . Ž .The Green’s function G x, y, z, t; j , h, z , t denotes the concentration at x, y, z, t
Ž .as the result of instant solute release at t for a unit source located at j , h, z . For an

infinite spatial domain, application of the GFM allows the concentration to be expressed
as:

j™`
` `1 Ec EGt

<c x , y , z , t s D G yD c yÕGc dz dh dtŽ . HH H x xž /R Ej Ej0 y` y` j™y`

h™`
` `1 Ec EGt

<q D G yD c dz dj dtHH H y yž /R Eh Eh h™y`0 y` y`

z™`
` `1 Ec EGt

<q D G yD c dh dj dtHH H z zž /R Ez Ez0 y` y` z™y`

tst2` ` ` ` ` ` lt
<y Gc dz dh djq G dz dh dj dtH H H HH H H

Ry` y` y` 0 y` y` y`ts0

6Ž .

Ž .Eq. 6 provides the basis for a wide variety of analytical solutions for one- and
multi-dimensional problems, which could alternatively be solved with more complicated
techniques. The first three terms on the right-hand side arise for boundary value
problems in the x, y, and z directions while the fourth term is associated with an initial
value problem where the upper boundary, t , is beyond the time of interest t. These2

terms may all be dropped for an initially solute free medium while assuming zero
concentration gradients at infinite x, y, and z; only the fifth term remains and the
transport problem is essentially a production value problem.

The solution of production value problems is straightforward if l is expressed in
terms of Dirac delta functions. This approach has already been used in conjunction with

Ž . Ž . Ž .Green’s functions by Yeh and Tsai 1976 and Galya 1987 . Yeh 1981 lists results for
line and point sources involving different aquifer geometries. Most transport problems,
however, are better described as boundary and initial value problems and we will
assume ls0.
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Ž .The appropriate Green’s function is determined by solving Eq. 5 . This equation is
Ž .homogeneous except for a discontinuity when jsx, hsy, zsz, ts t . According to

the superposition principle, G is often written as the sum of a fundamental and a regular
Ž .solution Renardy and Rogers, 1993 . The fundamental or free-space solution is obtained

Ž .by solving Eq. 5 for homogeneous boundary conditions at infinity. The regular or
Ž .causal solution is obtained by solving the homogeneous version of Eq. 5 , i.e.,

excluding the Dirac source, to ensure that the nonhomogeneous boundary conditions on
the concentration can be satisfied.

Ž .The fundamental solution, F, may be obtained by transforming Eq. 5 into a
Ž .diffusion problem, which is solved by Fourier transformation p. 67, Greenberg, 1971 ,

Žor by solving the initial value problem for an instantaneous point source e.g., Prakash,
.1984 :

F x , y , z ,t ;j ,h ,z ,t sF x ,t ;j ,t F y ,t ;h ,t F z ,t ;z ,tŽ . Ž . Ž . Ž .x y z

H tytŽ .
s exp y m qm qm tŽ .x y z3 žD D D 4p tyt rRŽ .( x y z

2 2R xyj yÕ tyt R yyhŽ . Ž . Ž .
y y

4RD tyt 4D tytŽ . Ž .x y

2R zyzŽ .
y 7Ž ./4D tytŽ .z

where the solution for t) t is made equal to zero, as mandated by the reverse nature of
the adjoint problem, by including the Heaviside step function, H. The solution may be
written as the product of functions for the longitudinal and two transversal directions
with msm qm qm . Because the GFM is based on homogeneous boundary condi-x y z

tions, a well known advantage of higher dimensional Green’s functions is that they may
be written as a product of lower dimensional functions.

2.2. Specific formulation

The Green’s function for a particular problem is formally obtained by solving the
adjoint problem for the boundary conditions that are derived from the corresponding
advection–dispersion problem. There are several convenient approaches to derive them,

Ž . Ž .namely: i deduction from the fundamental solution, ii inspection of solutions for the
Žadvection–dispersion or diffusion equations Carslaw and Jaeger, 1959; van Genuchten

. Ž .and Alves, 1982; Javandel et al., 1984 , and iii adaption of published Green’s functions
Ž .Tikhonov and Samarskii, 1963; Beck et al., 1992 . We will continue with a brief outline
of the approach to determine Green’s functions for both longitudinal and transversal

Ždirections. The concentration for the one-dimensional longitudinal problem described
.by the ADE is denoted as c while the concentration for the one-dimensionalx

Ž .transversal problems described by the diffusion equation are c and c .y z
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Table 1
Selected longitudinal and transversal Green’s functions

Function Expression Conditions

IŽ . Ž . Ž .G x,t,j ,t H tyt r 4p D tyt rR EG rEj x,t;"`,t s0' Ž .x x x

2w x=exp ym tyt y R xyj y Õ tyt r 4D R tytŽ . Ž . Ž . Ž .Ž .Ž .x x

S1Ž . Ž . Ž . Ž .G x,t,j ,t H tyt r 4p D tyt rR G x,t;0,t s0, EG rEj x,t;`,t s0' Ž .x x x x

2w x= exp ym tyt exp y R xyj y Õ tyt r 4D R tytw xŽ . Ž . Ž . Ž .� Ž .�x x

2w xyexp ÕxrD y R xqj q Õ tyt r 4D R tytŽ . Ž . Ž .Ž .Ž . 4x x

S3Ž . Ž . w Ž .x Ž . Ž .G x,t,j ,t H tyt exp ym tyt 1r 4p D tyt rR EG rEj x,t;0,t s0, EG rEj x,t;`,t s0' Ž .�x x x x x

2w x= exp y R xyj y Õ tyt r 4D R tytŽ . Ž . Ž .Ž .Ž .x

2w xqexp ÕxrD y R xqj q Õ tyt r 4D R tytŽ . Ž . Ž .Ž .Ž .x x

y Õr 2 D exp ÕxrD erfc R xqj q Õ tyt r 4D R tyt'Ž . Ž . Ž .Ž . Ž . Ž . 4Ž .x x x
F1 ` 2 2 2 2Ž . Ž . Ž Ž .. ŽŽ . . w Ž . Ž . Ž . Ž . <G x,t,j ,t H tyt Ý 2 a q h r a q h Lq h exp ym tyt q h xyj G x,t;0,t s0, D EG rEj q ÕG s0jsLx ns1 n n x x x x x

2 2Ž . Ž . x Ž . Ž .y a q h D tyt rR sin a x sin a jn x n n
F 3 ` 2 2Ž . Ž . Ž w Ž . Ž . Ž . Ž . x. Ž . Ž . <G x,t,j ,t H tyt Ý 2exp ym tyt q h xyj y b q h D tyt rR r EG rEj x,t;0,t s0, D EG rEj q ÕG s0jsLx ns1 x n x x x x x

2 2ŽŽ . .w Ž . Ž .xw Ž . Ž .xb q h Lq2h b cos b x q hsin b x b cos b j q hsin b jn n n n n n n
2IŽ . Ž . Ž .G y,t,h,t H tyt r 4p D tyt rR exp ym tyt y R yyh r 4D tyt EG rEh y,t;"`,t s0Ž . Ž . Ž . Ž .Ž .Ž .( Ž .y y y y y

S1Ž . Ž . w Ž .x Ž . Ž .G y,t,h,t H tyt exp ym tyt r 4p D tyt rR G y,t;0,t s0, EG rEh y,t;`,t s0Ž .(y y y y y

2 2
= exp y R yyh r 4D tyt yexp y R yqh r 4D tytŽ . Ž . Ž . Ž .Ž . Ž .Ž . Ž .y y
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S2Ž . Ž . w Ž .x Ž . Ž .G y,t,h,t H tyt exp ym tyt r 4p D tyt rR EG rEh y,t;0,t s0, EG rEh y,t;`,t s0Ž .(y y y y y

2 2
= exp y R yyh r 4D tyt qexp y R yqh r 4D tytŽ . Ž . Ž . Ž .Ž . Ž .Ž . Ž .y y

S3Ž . Ž . w Ž .x Ž . Ž .G y,t,h,t H tyt exp ym tyt 1r 4p D tyt rR kG yEG rEh s0, EG rEh y,t;`,t s0Ž .(�y y y y y hs0 y

2 2
= exp y R yyh r 4D tyt qexp y R yqh r 4D tytŽ . Ž . Ž . Ž .Ž . Ž .Ž . Ž .y y

� w Ž . x4y k exp k yqhq kD tyt rR erfc R yqh q2kD tytŽ . Ž .Ž .Žy y

r 4D R tytŽ .( y . 5
F1Ž . Ž . w Ž .x Ž . Ž .G y,t,h,t H tyt exp ym tyt r 4p D tyt G y,t,0,t s0, EG rEh y,t;L,t s0Ž .(y y y y y

2` nŽ .=Ý y1 exp y yyhq2nL r 4D tyt rRŽ .Ž . Ž .Ž .ns y` y y

2 2Ž .yexp y yqhq2nL r 4D tyt rR D t rL -0.2Ž .Ž . Ž .Ž .y y y

` 2Ž Ž .. w Ž . Ž . x Ž . Ž .= 2 H tyt rLÝ exp ym tyt y b D tyt rR sin b y sin b hns 1 y n y n n
Ž . Ž . Ž 2 .b s 2ny1 p r 2 L D t rL )0.2n y

F 2Ž . Ž . w Ž .x Ž . Ž .G y,t,h,t H tyt exp ym tyt r 4p D tyt EG rEh y,t;0,t s0, EG rEh y,t;L,t s0Ž .(y y y y y

2`=Ý exp y yyhq2nL r 4D tyt rRŽ .Ž . Ž .Ž .ns y` y y

2 2Ž .qexp y yqhq2nL r 4D tyt rR D t rL -0.2Ž .Ž . Ž .Ž .y y y

` 2Ž . w Ž .xH tyt exp ym tyt 1rL q 2rL Ý exp y b D tyt rR cos b y cos b hŽ . Ž . Ž . Ž . Ž .Ž .y ns1 n y n n
2Ž .b sp nrL D t rL )0.2n y

F 3 ` 2 2 2 2 2Ž . Ž Ž . . w Ž . Ž . Ž .xŽ . Ž . Ž .G y,t,h,t 2 H tyt rL Ý exp ym tyt y b D tyt r RL b q n L r kG yEG rEh s0, EG rEh y,t;L,t s0y ns1 y n y n y y hs0 y
2 2Ž Ž .. w Ž .x w Ž .xŽ . Ž .b q nL 1q nL cos b 1y yrL cos b 1yhrL b tanb s nL D t rL )0.2n n n n n y
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The general concentration, resulting from one-dimensional advective–dispersive
Ž .transport, may be deduced from Eq. 6 as:

xu1 Ec EGt x x
<c x ,t s D G yD c yÕG c dtŽ . Hx x x x x x xž /R Ej Ej x0 l

xu

q G x ,t ;j ,0 c j ,0 dj 8Ž . Ž . Ž .H x x
xl

where the lower and upper boundaries x and x are specified depending on the solutionl u

domain. This expression is made more specific by applying the boundary conditions for
c and by subsequently specifying convenient conditions for G . The latter should bex x

used when solving the adjoint problem:

D E2 G Õ EG EGx x x xULL G sy y y qm sd xyj d tyt 9Ž . Ž . Ž . Ž .x x2R R Ej EtEj

Table 1 lists longitudinal Green’s function for boundary and initial value problems in
infinite, semi-infinite and finite porous media and conditions on G. The superscripts I, S,
and F denote an infinite, semi-infinite, and finite coordinate whereas ‘‘1’’, ‘‘2’’ and
‘‘3’’ indicate a first-, second- and third-type inlet condition for the ADE. The functions

Ž .in Table 1 were derived from the fundamental solution cf. Greenberg, 1971 and
published solutions of the ADE.

The concentration in the transversal y direction as result of one-dimensional diffu-
Ž Ž ..sion may be expressed according to the GFM as cf. Eq. 6 :

yu
y1 Ec EGt uy y

c y ,t s D G yD c dtq G y ,t ;h ,0 c h ,0 dhŽ . Ž . Ž .H Hy y y y y y yž /R Eh Eh0 yy ll

10Ž .

Explicit expressions for the concentration in the transversal y direction C and also for
the transversal z direction C are obtained by imposing a zero-gradient condition for cy

at a finite or infinite distance and by substituting the appropriate Green’s function, G .y

The latter function is derived by solving the adjoint problem given by

D E2 G EGy y yULL G sy y qm sd yyh d tyt 11Ž . Ž . Ž .Ž .y y2R EtEh

and the appropriate conditions as specified in Table 1. These and additional functions
Ž .have been published elsewhere Beck et al., 1992 .

The functions in Table 1 can be applied to a wide range of initial and boundary value
problems involving additional advection terms, different conditions for each boundary,
additional impermeable layers. For example, the one-dimensional solutions given by van

Ž .Genuchten and Alves 1982 for simple initial and input profiles, can all be written
Ž .down from Eq. 6 after applying the mathematical conditions, inserting the correspond-

ing Green’s function from Table 1, and evaluating the resulting integrals with a table of
integrals or mathematical software. In the following we hope to illustrate the utility of
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the GFM for solving transport problems using a problem involving persistent contamina-
tion.

3. Persistent solute sources

Consider solute movement from a planar source as sketched in Fig. 1. This type of
problem may arise when an immobile pool of a low-solubility organic is located on top

Ž . Žof a saturated soil for either a laboratory or field setting or an aquifer cf. Shan and
.Javandel, 1997; Hofstee et al., 1998 . Other types of solute contamination may also be

Ž .described by this scenario, as long as Eq. 1 can be used to describe the transport. The
longitudinal x-domain is infinite, the horizontal transversal z-coordinate is infinite while
the vertical y-coordinate is semi-infinite although the analysis can be readily applied to
a finite impermeable layer. Note that a mathematically equivalent problem occurs when
the pool is located at the bottom of the medium.

The solute may move from the source, which has a negligible thickness, by diffusion
or advection. Four different conditions for the concentration in the porous medium at the
source boundary are considered, for the time being we will not be overly concerned with
their physical merits. A first-type condition should be used if a value can be prescribed
for the concentration; an example would be instantaneous dissolution of a low-solubility
chemical where the boundary concentration is equal to its solubility. A second-type

Fig. 1. Schematic of a planar solute source to model transport due to persistent contamination at the exterior of
a porous medium.
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condition is appropriate if the concentration gradient can be ascertained; this scenario
occurs when solute transfer from the source is entirely due to Fickian diffusion and a
reliable estimate for the diffusion coefficient is available. The last two conditions pertain
to a third-type condition, which includes both the solute concentration and its vertical
gradient; the third-type condition is relevant for rate-limited diffusion or for transport by

Ž .diffusion and vertical advection rainfall . Mixed-type conditions — such as a first-or
third-type condition for the source and a homogeneous second-type condition for the rest
of the surface — are more accurate than a uniform surface condition, but will not be

Žconsidered here since they are mathematically more cumbersome De Wiest, 1969;
.Greenberg, 1971 .

The general initial and boundary conditions, i.e., excluding the surface, are:

c x , y , z ,0 s0 y`-x-`, 0-y-`, y`-z-` 12Ž . Ž . Ž .
Ec

"`, y , z ,t s0 0-y-`, y`-z-` 13abŽ . Ž . Ž .
Ex

Ec
x ,`, z ,t s0 y`-x-`, y`-z-` 14Ž . Ž . Ž .

E y

Ec
x , y ,"`,t s0 y`-x-`, 0-y-` 15abŽ . Ž . Ž .

Ez

Ž .An intermediate result is obtained by substituting the above conditions in Eq. 6 :

j™`
` `1 EGt

<c x , y , z ,t s yD c yÕGc dz dhŽ . H H H x½ ž /R Ej0 0 y` j™y`

` ` EG Ec EG
<y D c q D G yD c dz djH H y y yž /Eh Eh Ehh™`y` y` hs0

`` ` EG
<y D c dh dj dt 16Ž .H H z 5Ezy` 0 z™y`

The Green’s function is written as the product of one-directional functions, GsG G G .x y z

The exact formulation of the concentration will be determined in the following by
specifying appropriate conditions on G , G , and G .x y z

3.1. First-type condition

Ž .The solute concentration is prescribed for the surface ys0 according to:

g x , z ,t x -x-x , z -z-zŽ . Ž .1 2 1 2c x ,0, z ,t s 17Ž . Ž .½ 0 otherwise

Ž . ŽFor pool dissolution, g x, z, t can be set equal to the water solubility Hunt et al.,
. Ž .1988 . The boundaries of the source x , x , z and z were already shown in Fig. 11 2 1 2

while, although not necessary, we assume that the prescribed concentration only depends



( )F.J. Leij et al.rJournal of Contaminant Hydrology 41 2000 155–173 165

Ž .on time. Eq. 16 then implies that the following conditions be placed on the Green’s
function:

EGx
x ,t ;"`,t s0 18abŽ . Ž .

Ej

EGy
G y ,t ;0,t s y ,t ;`,t s0 19abŽ . Ž . Ž .y

Eh

EGz
z ,t ;"`,t s0 20abŽ . Ž .

Ez

These conditions are met by respectively selecting G I , GS1, and G I from Table 1 forx y y
Ž .G , G , and G . All conditions and functions are inserted in Eq. 16 . The integrationx y z

with respect to j and z is possible due to the simple form of G and G . The resultingx z

solute concentration is given by:

c x , y , z ,tŽ .
x z1 EGt 2 2 y

s D g t G x ,t ;j ,t y ,t ;0,t G z ,t ;z ,t dz dj dtŽ . Ž . Ž . Ž .HH H y x zR Eh0 x z1 1

21 yg tyt Ry R xyx yÕtŽ . Ž .t 2
s exp ymty erfcH

3 ž /ž /4 4D t 4D Rt(0 4p D t rR y( xy

R xyx yÕt zyz zyzŽ .1 2 1
yerfc erfc yerfc dt 21Ž .ž / ž /ž /4D Rt 4D trR 4D trR( ( (x z z

3.2. Second-type condition

This condition is used when dissolution of the solute can be described as a diffusive
Žprocess for which the concentration gradient can be specified e.g., Chrysikopoulos et

.al., 1994 at the surface while the concentration is unknown. The surface condition
becomes:

Ec yG x , z ,t x -x-x , z -z-zŽ . Ž .1 2 1 2x ,0, z ,t s 22Ž . Ž .½E y 0 otherwise

Ž y4 . U UFor solute dissolution, the parameter G ML may be defined as k c rD where ko e
Ž y1 .is a mass transfer parameter LT , c is a reference or saturated solute concentrationo

Ž y3 . Ž 2 y1. ŽML and D is an effective coefficient of molecular diffusion L T cf.e
.Chrysikopoulos, 1995 . The ratio of the solute fluxes due to dissolution and diffusion

may be quantified by the Sherwood number, ShskLrD , where L is a characteristice

length.



( )F.J. Leij et al.rJournal of Contaminant Hydrology 41 2000 155–173166

Ž .To eliminate the unknown concentrations in the solution according to Eq. 16 , the
Ž . Ž .conditions on the Green’s function should be given by Eqs. 18ab and 20ab as well as:

EG EGy y
y ,t ;0,t s y ,t ;`,t s0 23abŽ . Ž . Ž .

Eh Eh

It can be shown that G and G are again equal to G I and G I , respectively, whereas Gx z x y y

is now given by GS2. If G is assumed to depend solely on time, the concentration cany

be written as:

c x , y , z ,tŽ .
x z1 t 2 2

s D G t G x ,t ;j ,t G y ,t ;0,t G z ,t ;z ,t dz dj dtŽ . Ž . Ž . Ž .HH H y x y zR 0 x z1 1

21 G tyt Ry R xyx yÕtŽ . Ž .t 2
s exp ymty erfcH ž /ž /4 4D tpt RrD 4D Rt(0 ( yy x

R xyx yÕt zyz zyzŽ .1 2 1
yerfc erfc yerfc dt 24Ž .ž / ž /ž /4D Rt 4D trR 4D trR( ( (x z z

3.3. Third-type condition

3.3.1. Film diffusion
Dissolution of organics into the aqueous phase is often described with a linear driving

Ž .force model Abriola et al., 1993; Fortin et al., 1998 . The surface condition is
formulated with a third-type condition to describe rate-limited dissolution from the
source through a boundary layer:

Ec
x ,0, z ,t sk x , z ,t c x ,0, z ,t yg x , z ,t withŽ . Ž . Ž . Ž .

E y

c x -x-x , z -z-zŽ .o 1 2 1 2g x , z ,t s 25Ž . Ž .½ 0 otherwise

w y1 xwhere k is a transfer coefficient L , which accounts for film diffusion and thickness,
Ž .while c x, 0, z, t and c represent lower and upper concentration limits as determinedo

by the bulk solution and the solubility value. From now on, we assume that g and k are
independent of time and position, although this is not necessary with the GFM. The

Ž .second-type condition given by Eq. 26ab is a special case of the third-type condition,
U Ž . Ž .which may be obtained by ksk rD and by setting c x, 0, z, t yg x, z, t equal toe

a value that yields the desired concentration gradient. For film diffusion, the Green’s
Ž . Ž .function should satisfy Eqs. 18ab and 20ab and

EG EGy y
kG y s y ,t ;`,t s0 26abŽ . Ž .yž /Eh Ehhs0
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The concentration may now be written as

x z1 t 2 2

c x , y , z ,t s D kc G x ,t ;j ,t G y ,t ;0,t G z ,t ;z ,t dz dj dtŽ . Ž . Ž . Ž .HH H y o x y zR 0 x z1 1

2kc D R Ryt o y
s exp ymt exp yŽ . (H ž /4R pt 4D t0 y

Ryq2kD ty
ykD exp k yqkD trR erfcŽ .Ž .y y ž /4D Rt( y

R xyx yÕt R xyx yÕtŽ . Ž .2 1
= erfc yerfcž / ž /4D Rt 4D Rt( (x x

zyz zyz2 1
= erfc yerfc dt 27Ž .ž / ž /4D trR 4D trR( (z z

with G equal to GS3 as defined in Table 1.y y

3.3.2. Vertical flow
Consider the scenario where there is a small vertical flow in addition to the horizontal

Ž .flow. If we ignore cross-dispersion terms, the ADE given by Eq. 1 without the
zero-order source term can be modified as follows to include the additional term, w, for
vertical flow:

Ec E2c Ec E2c Ec E2c
R sD yÕ qD yw qD yRmc 28Ž .x y z2 2 2Et Ex E yEx E y Ez

The following condition may be selected for the upper boundary:

Ec wg t x -x-x , z -z-zŽ . Ž .1 2 1 2wcyD s 29Ž .y ½ž /E y 0 otherwiseys0

where w constitutes the downward pore-water velocity. With the GFM, it is relatively
straightforward to modify our solution approach for the additional flow term. The
following intermediate expression may be obtained for the concentration:

j™`
` `1 EGt

<c x , y , z ,t s yD c yÕGc dz dhŽ . H H H x½ ž /R Ej0 0 y` j™y`

` ` EG
y D c qwcGH H yž /Ehy` y` h™`

EG
y wg t GqD c dz djŽ . yž /Eh hs0

`` ` EG
<y D c dh dj dt 30Ž .H H z 5Ezy` 0 z™y`
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ŽThis suggests that the same conditions be imposed as for the second-type scenario i.e.,
Ž . Ž . Ž .. IEqs. 28 , 20ab and 23ab . Again, G and G are equal to the free-space functions Gx z x

and G I , respectively, while G is equal to the longitudinal GS3 because of vertical flow.y y x

The concentration becomes:

x z1 t 2 2

c x , y , z ,t s wg t G x ,t ;j ,t G y ,t ;0,t G z ,t ;z ,t dz dj dtŽ . Ž . Ž . Ž . Ž .HH H x y zR 0 x z1 1

wg tyt R xyx yÕtŽ . Ž .t 2
s exp ymt erfcŽ .H ž /4R 4D Rt(0 x

R xyx yÕt zyzŽ .1 2
yerfc erfc ž /ž /4D Rt 4D Rt( (x z

2zyz R RyywtŽ .1
yerfc exp y(ž / ž /p D t 4D Rt4D Rt( y yz

w wy Ryqwt
y exp erfc dt 31Ž .ž / ž /2 D D 4D Rt(y y y

4. Examples

The previously derived solutions will be used to obtain the solute concentration as a
function of time and position for several examples assuming Rs1 and ms0. For this
purpose, a computer program was written, which is available upon request. The
following two examples are generic and the units that are provided for constants and
parameters may be replaced by any other set of consistent units.

The first example concerns transport from a rectangular source at the surface ys0
with x sz sy10 cm and x sz s10 cm. The horizontal pore–water velocity1 1 2 2

Õs10 cm dayy1, the dispersion coefficients were selected according to D s5 cm2
x

dayy1 and D sD s0.5 cm2 dayy1 while c s1 mg cmy3. Fig. 2 shows they z o

steady-state contours of the solute concentration in the yx-plane at zs0 as the result of
advection and dispersion in the porous medium. For a first-type condition shown in Fig.
2a, the surface concentration is equal to 1 mg cmy3 at the source and zero otherwise.
The contours resulting from a second-type condition are plotted in Fig. 2b. The
concentration gradient, G , was set to 0.33 mg cmy4 at the source and zero for the rest
of the surface. We noticed that the numerical results were very sensitive to the imposed
gradient, this condition should only be used if the gradient can be specified correctly a
priori. Contours resulting from a third-type surface condition are displayed in Fig. 2d,
assuming a downward flow ws0.2 cm dayy1, and Fig. 2c for ks0.33 cmy1.

The effects of the boundary conditions can clearly be observed. The first-type
condition, with a zero surface concentration away from the source and a jump in surface
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Ž .Fig. 2. Steady-state contours of the dimensionless concentration crc in the xy-plane at zs0 resultingo

from a planar source with x s z sy10 cm, x s z s10 cm, Õs10 cmrday, D s5 cm2 dayy1 and1 1 2 2 x
2 y1 Ž . Ž . Ž .D s D s0.5 cm day : a first-type condition with g t sc , b second-type condition with G s0.33y z o

y4 Ž . Ž . y1 Ž .mg cm , c third-type condition due to rate-limited dissolution with g t sc , and ks0.33 cm , and do
Ž . y1third-type condition due to downward flow with g t sc and ws0.2 cm day .o

Ž .concentration at xs10 cm, is not plausible Fig. 2a . The contours obtained with the
second-type condition are symmetric with respect to the surface; the solute does not

Žmove as deep as for the first-type condition. The zero-gradient at the surface x)10
. Žcm , i.e, no diffusion, is more realistic than for the first-type and third-type film

. Ž .diffusion . The surface concentration for a third-type condition Fig. 2c and 2d lies in
between that for a first- and second-type condition. In both cases, the diffusive flux at

Ž .the surface is not zero. The effect of downward flow can clearly be observed Fig. 2d .
Ž .Less solute moves from the source into the medium for rate-limited diffusion Fig. 2c

Ž . Ž .than for a fixed concentration gradient Fig. 2b or instantaneous dissolution Fig. 2a .
The development of the concentration profile over time is shown in Fig. 3 for the

same example as in Fig. 2. Contours of the relative concentration are shown as a
function of depth, y, and time, t, at xs100 cm and zs0 for a first-, second-, and
third-type condition. For a first-type condition the maximum concentration, which is
relatively low, occurs at ys3 cm while solute is again excluded from the surface. For a

Ž .second-type condition Fig. 3b , a relatively high maximum concentration occurs at the
surface. The solute does not penetrate as deep as for a first-type condition. In case of
downward flow, the maximum concentration is again in between the first- and second-
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Ž .Fig. 3. Contours of the dimensionless concentration crc in the yt-plane at xs100 cm and zs0 resultingo

from a planar source with x s z sy10 cm, x s z s10 cm, Õs10 cmrday, D s5 cm2 dayy1 and1 1 2 2 x
2 y1 Ž . Ž . Ž .D s D s0.5 cm day : a first-type condition with g t sc , b second-type condition with G s0.33y z o

y4 Ž . Ž . y1 Ž .mg cm , c third-type condition due to downward flow with g t sc and ws0.2 cm day , and do
Ž . y1third-type condition due to rate-limited dissolution with g t sc and ks0.33 cm .o

type concentrations. The solute does move to greater depths due to vertical advection.
Ž .The lowest maximum concentration occurs for rate-limited dissolution Fig. 3d .

In the second example, we considered the maximum concentration in the medium
resulting from a source at the surface. If solute-free water reaches the source, the solute
concentration will gradually increase in the flow direction until a maximum is reached.
For one-dimensional transport, this position corresponds to the length of the mass-trans-

Žfer zone and the maximum concentration follows from the aqueous solubility cf. Fortin
.et al., 1998 .

Ž . Ž .Fig. 4 shows crc according to Eq. 27 film diffusion at the center of ao

downstream strip source boundary with z sy100 cm and z s100 cm at xsx ,1 2 2

yszs0 and ts100 days as a function of the five dimensionless parameters. The latter
Ž y1 . Ž y1 . Ž 2are defined as krk k s1 cm , ÕrÕ Õ s40 cm day , D rD D s40 cmo o o o x xo xo

y1 . Ž 2 y1. Žday , D rD D s10 cm day , and LrL with Lsx yx where x isy yo yo o 2 1 2
.set at 20 cm with L s40 cm and y20 cm-x -20 cm . For each curve, onlyo 1

one parameter is varied while the four other parameters are constants given by



( )F.J. Leij et al.rJournal of Contaminant Hydrology 41 2000 155–173 171

Ž .Fig. 4. Relationship between maximum concentration crc at x s10 cm ys zs0 and ts100 d and oneo 2
Ž .of the five dimensionless parameters krk , Õr Õ , D rD , D rD , and LrL with Ls x y x whereo o x x o y yo o 2 1

the other four parameters are defined according to ks0.5 cmy1 , Õs20 cm dayy1, D s20 cm2 dayy1,x

D s5 cm2 dayy1, and x sy10 cm and x s10 cm and additional parameters are: ts100 days,y 1 2

z sy100 cm, z s100 cm, and D s5 cm2 dayy1.1 2 z

ks0.5 cmy1, Õs20 cm dayy1, D s20 cm2 dayy1, D s5 cm2 dayy1, and x sy10x y 1

cm and x s10 cm. Furthermore, D is set to 5 cm2 dayy1. The concentrations are well2 z
Ž .below the saturation value crc s1 . Even for an infinitely long source, c willo

normally not reach c because of transversal dispersion. The extent of NAPL contamina-o
2 Ž .tion depends mainly on a Damkohler number, k D x yx rÕ, and the Peclet number¨ y 2 1

ÕxrD . The transfer parameter k is proportional to the diffusive flux and so is thex

maximum concentration. The maximum crc is slightly decreased by longitudinalo
Ž . Ždispersion D . At low velocities the maximum increases somewhat with Õ Pecletx

.number , but at larger Õ the maximum concentration decreases due to reduced opportu-
Ž .nity for NAPL to dissolve in a given body of liquid Damkohler number . The maximum¨

concentration is proportional with D and L because these parameters determine they

total amount of solute that dissolves. Similar analyses are possible to determine the
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influence of transport and pool characteristics on the extent of the solute plume and the
total mass flux into the medium.

5. Summary and conclusions

In the first part of this study, we briefly reviewed the GFM to analytical model solute
transport as described by the ADE for uniform and steady water flow. The GFM has not
been widely employed for this purpose despite some of its advantages. Very concise
expressions can be written for the solute concentration. The GFM is well suited to be
employed for different boundary and initial conditions. Solutions for multidimensional
problems may be obtained by multiplying the Green’s functions for separate one-dimen-
sional problems. Table 1 lists the longitudinal and transversal Green’s function that can
be used to formulate the solution for a wide variety of transport problems in infinite,
semi-infinite, and finite media.

In the second part of this study, we applied the GFM to solve transport from a planar
source of persistent contamination. We obtained solutions for one-dimensional flow for
a first-, second-, and third-type condition at the source as well as for two-dimensional
flow with a third-type condition. It should be noted that mixed-type conditions at the

Žsurface either a first- or third-type condition for the source and a homogeneous
.second-type for the rest of the surface may yield physically more meaningful C albeit

mathematically more complicated C solutions.
The solutions were applied to two different examples. The first example illustrated

the surface condition for transport from a planar source. Solute contours were shown in
the xy- and yt-planes. The first-type condition unrealistically mandates that the surface
concentration be zero away from the source; the maximum concentration is relatively
low. For a second-type condition the problem is that the gradient at the source needs to
be specified a priori. A relatively high maximum concentration is predicted, but it occurs
at the surface and possible contamination will not extend far into the medium. A

Ž .third-type condition, either by using a vertical flow term w or mass transfer parameter
Ž .k , probably leads to more realistic concentration predictions. The second example also
involved transport from a planar source; a third-type condition was used to simulate the

Ž .rate-limited dissolution from a source e.g., a NAPL pool at the surface. The sensitivity
of the maximum NAPL concentration was quantified as a function of k, Õ, D , D andx y

x yx .2 1
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