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ABSTRACT Aboitiz et al. (1986) used the water balance equation
and reference evapotranspiration (ETo ) for an irrigatedImproved methods of irrigation scheduling are needed to reduce
field to develop a state space model capable of estimat-irrigation and drainage water volumes while not affecting yield. State

space models based on mass balance principles and empirical flux ing and forecasting soil water depletion and crop ET.
laws can be used to estimate and forecast soil water and salinity Their formulation allows for real-time estimation of soil
regimes in the field. In this research, a state space model was developed moisture and associated estimation errors. Or and
that describes soil water and salinity dynamics and includes the effects Hanks (1992) developed a state space model of the
of shallow, saline groundwater. The model was evaluated using daily soil water balance and potential ET and used Kalman
time domain reflectometry (TDR) measurements of the soil water filtering to obtain temporal soil water storage estimates
content (�) and bulk soil electrical conductivity (ECb ). Data were

and estimation errors. In Kalman filtering, model pre-collected throughout the 1997 growing season in a field where cotton
dictions are updated as new measurements on the sys-(Gossypium hirsutum L.) was being grown using an experimental
tem state variables become available. Or and Hanksshallow groundwater management technique that was designed to
found that the estimated soil water storage agreed betterreduce both irrigation and drainage volumes. The model was tested

by supposing that either weekly or biweekly profile-averaged mea- with measured values when the estimates were based a
surements of � and ECb were available, and then comparing the combination of spatial and temporal data, rather than on
resulting filtered model forecasts with the full data set. The results either spatial or temporal information independently.
show that the measured water content was within the predicted confi- Skaggs and Mohanty (1998) developed a state space
dence intervals of 1- or 2-wk forecasts of the profile-averaged water model that described shallow water table dynamics in
content, soil water EC (ECw ), and EC of saturated extract (ECe ), a tile-drained field. Their formulation did not include
even though the performance of the model in predicting the resident

the vadose zone water content.salt concentration (mass of salt per volume of soil) was less satisfactory.
The previous state space formulations of soil moisture

dynamics did not consider groundwater recharge–dis-
charge. In an irrigated soil with a shallow groundwater
table, a significant amount of groundwater can be usedPrudent irrigation scheduling not only saves wa-
by plants (Wallender et al., 1979; Ayars and Schoneman,ter, but also reduces the potential for non-point
1986; Torres and Hanks, 1989). The salinity level of thesource pollution. Irrigation scheduling is typically based
root zone is also a concern for crop growth and yield.on soil or plant monitoring or evapotranspiration (ET)
From an agricultural production standpoint, the concen-estimation, both of which have drawbacks. Soil or plant
tration of dissolved salts in soil water, commonly quanti-monitoring provides information about the current sta-
fied by the electrical conductivity of the water (ECw ),tus of the soil or plant, but does not predict when future
is a critical parameter. State-space models based onirrigation will be needed. Irrigation scheduling based
site-specific measurements will be able to estimate andon ET estimation is not site-specific, and does not take
forecast the soil water and salinity regime, which willinto account, for example, the salinity conditions in the
provide flexible irrigation scheduling for farmers.field. Therefore, there is a need to develop new tech-

The objectives of this research were (i) to develop aniques that provide flexible irrigation schedules in real
state-space model for the root zone water content andtime, and that meet irrigation requirements with a mini-
salinity that includes the effects of shallow groundwater;mum amount of water.
(ii) to estimate and forecast the soil water and salinityTime-series methods have been used more frequently
regimes in an irrigated soil with a shallow groundwaterin hydrologic investigations and water quality manage-
table; (iii) to evaluate the effect of the observation inter-ment during the past a few decades (Hipel et al., 1977).
val on estimation errors associated with the KalmanUsing the hydrologic budget and soil water transport
filter (KF); and (iv) to evaluate the effects of upwardequations, Parlange et al. (1992) developed a first-order
groundwater flow on root zone salinity.autoregressive Markovian model to estimate the soil

water regime in the top 1.05-m soil profile. The pre-
dicted water storage in the soil profile was close to that MATERIALS AND METHODS
measured by a neutron probe. Wu et al. (1997) found

Field Experimentthat changes in soil moisture could be modeled as an
Our research site was Section 13-4 in the Broadview Waterautoregressive-moving average process.

District in Firebaugh, CA. The field is a commercial farm and
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of the field was maintained at a depth about 1.2 m. Irrigation
scheduling was based on 60% allowable soil water depletion.

Three-rod TDR probes 20 cm long were installed at 10, 30,
50, 70, 90, and 110 cm below the surface at three sites along
a transect perpendicular to the drainage lines in the northeast
corner of the field. The three sites were approximately 70 m
apart. The TDR instrumentation was used to make daily mea-
surements of the volumetric water content and bulk soil EC
(ECb ) from Day 141 (21 May) through Day 258 (15 Septem-
ber), 1997 (Herkelrath et al., 1991; Whalley, 1993; Schaap et
al., 1996). In this paper we focus mainly on the data from Site 1.

Figures 1A and 1B show the profile-averaged (to depth 120
cm) water content, �k, and bulk soil EC, ECbk, measured at
Site 1 on Days k � 141...258. These two series were constructed
by averaging the daily TDR measurements over the six depths.

Furrow irrigation records kept by the farm were not suffi-
cient to determine the timing and volume of water applied to
our experimental plots. For modeling purposes, we assumed
the water applied during irrigation was equal to the increase
in the total water stored in the soil profile, as measured by
TDR. The resulting irrigation series Ik, which is an average
over the three sites, is shown in Fig. 1C. Although our analyses
focus on one experimental plot, we use the averaged irrigation
value because in practice irrigation amounts will be known
only approximately. There was no measurable precipitation
during our study.

The daily actual evapotranspiration (ETak ) was calculated
as

ETak � KckETok [1]
where the reference ETo was obtained from the California
Irrigation Management Information System (CIMIS Station
7, Firebaugh/Telles) and the crop coefficient was calculated
according to the regression equation reported in Cotton Pro-
duction Manual (University of California-Division of Agricul-
ture and Natural Resources, 1996):

Kck � 4.29 � (9.46 � 10�2)k � (6.49 � 10�4)k2
Fig. 1. (A) Field measured profile-averaged water content, �k, (B)

bulk electrical conductivity, ECb, (C) irrigation input, and (D) � (1.29 � 10�6)k3 [2]
estimated evapotranspiration (ET) during the growing season,

where k is day of the year. The resulting ETak time series is1997.
shown in Fig. 1D.

We also monitored irrigation water, groundwater, and
drainage water quality and crop yield. The irrigation water wasHaplocambids). Ten percent, the northwest and southeast cor-
from a reservoir and had a total dissolved salt concentration ofners, are a Tranquillity series (fine, smectitic, thermic Sodic
approximately CI � 288 mg L�1 with little variation over theHaploxerert).
season, whereas the groundwater had a salt concentration ofThe field contains a subsurface drainage system with drain
approximately CGW � 3840 mg L�1. The ET and irrigationlaterals buried 1.5 to 1.8 m deep, running east–west, 123 m
time series shown in Fig. 1 are used as forcing functions inapart. The collector drain is located on the east side of the
our simulation model, which is described next.field. At the low end of the collector drain, we installed a

device that regulates flow in the drainage system and permits
State Space Modelingcontrol of the water table depth. The purpose of the modified

drainage system is to maintain the water table at a depth State space models consist of two parts, a dynamics equation
that allows crops to obtain water through upward flow of that describes the time evolution of the system state, and a
groundwater, with the larger objective being a reduction in measurement equation that relates system state variables to
both irrigation and drainage volumes. Preliminary studies con- measurable quantities. The dynamics equation usually consists
ducted over two cropping cycles found that irrigation require- of a statement of mass balance and empirical flux laws that
ments were reduced by 15 to 20% without reduced yields of specify system fluxes in terms of state variables. Model predic-
tomato (Lycopersicon esculentum Mill.) or cotton. The effi- tions are obtained through a cycle of model forecasting and
ciency of this type of shallow groundwater management will measurement updating, known as filtering. In this section we
depend in part on irrigation scheduling. The long-term sus- develop a state space model for root zone soil water and sa-
tainability will be determined by the extent to which the in- linity.
duced upward flow of groundwater salinizes the root zone.

This study focuses on a short-term experiment conducted to Water Balance Equationevaluate plot-scale root-zone soil water and salinity dynamics
over a single growing season. The field was planted to cotton Assuming that there is no runoff and that water flow in the

root zone is one dimensional, the water balance equation canduring the spring of 1997, and throughout the growing season
drain flow was regulated so that the water table on the east side be expressed as:
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zone on a given day, Gk, is a piece-wise linear function of that
�

L

0

��

�t
dz � P � I � ETa � D � R [3] day’s profile-averaged water content, �k. Our rationale for

making Gk a function of �k is the supposition that when the
soil is wet, drainage out of the root zone to groundwater occurswhere P is the precipitation rate, I is the irrigation rate, ETa

(Gk � 0), and when the soil is dry, upward flow from theis the actual evapotranspiration rate, D is the root zone drain-
shallow groundwater occurs (Gk � 0). The Gk(�k ) relationshipage rate to groundwater, R is the root zone recharge rate from
specified by Eq. [9] to [11] is shown as a solid line in Fig. 2.groundwater, � is the volumetric water content, t is time, z is
For profile-averaged water contents less than 0.34, Eq. [9] todepth, and L is the depth of the root zone. Although there
[11] predict Gk � 0.2 cm of water per day will move from thewas no measurable precipitation in our study, we include it
groundwater to the root zone. For �k � 0.34, it is predictedhere for the sake of generality.
that Gk drops off linearly, crossing over to profile drainageIntegrating Eq. [3] with respect to time and dividing both
(Gk � 0) at a water content slightly greater than 0.34. Wesides by L yields the following expression for the profile-
arrived at the specific form of Eq. [9] to [11] by examiningaveraged water content on day k � 1 (�k�1):
the experimental data shown as open circles in Fig. 2. These

�k�1 � �k � (Pk � Ik � ETak � Dk � Rk )/L [4] data are the “observations” of the daily net water flux at the
bottom of the root zone, Gk, plotted vs. the daily measuredwhere
�k. The “observed” Gk is calculated according to the water
balance equation (Eq. [4]), Gk � Rk � Dk � (�k�1 � �k )L ��k �

1
L

�
L

0
�kdz. [5]

Ik � Pk � Etak, using the daily data for Ik, Pk, and ETak that
are shown in Fig. 1 and measured water content data for all
three experimental plots. It is evident from Fig. 2 that bothSalt Balance Equation
the functional form and the parameter values used in our

Assuming negligible salt uptake by plants and no precipita- Gk(�k) model are based on subjective choices. It is also clear
tion or dissolution of salts, the salt balance equation can be from the scatter of the data that the Gk(�k) model is inexact.
formulated similarly to the water balance equation: Below, we account for this imprecision by introducing a ran-

dom noise term.
�

L

0

��C
�t

dz � PCp � ICI � DCD � RCGW, [6] 3. The profile-averaged salt concentration of water is ap-
proximated to be Ck � Sk/�k (see Eq. [8]).

where P, I, R, and D are as defined above, CP is the salt 4. The salt concentration of water draining out of the soil
concentration of precipitation, CI is the concentration of irriga- profile is assumed to be equal to the profile-averaged
tion water, CD is the concentration of drainage water, and CGW

concentration, CD
k � Ck.

is the concentration of groundwater water. 5. For purposes of calculating the salt flux at the bottom
Assuming that CP � 0, that CI and CGW are constant over of the root zone, we assume that either profile drainage

the growing season, and that CD is constant over a given day, or recharge occurs on a given day, but not some combina-
integrating Eq. [6] and dividing by L yields: tion of the two. Thus, the daily salt flux at the bottom

of the root zone can be approximated as CGWGk whenSk�1 � Sk � (CIIk � CGW Rk � CD
k Dk)/L, [7]

Gk � 0, and as CD
k Gk � (Sk/�k )Gk when Gk � 0.

where
These assumptions and definitions for the various water

and salt fluxes can be substituted into the water and salt
Sk �

1
L

�
L

0
�kCk dz [8] balance equations to obtain the following (nonlinear) state

equation that describes the time evolution of the state vari-
is the profile-averaged mass of dissolved salt per unit volume ables �k and Sk:
of soil on day k.

��k�1

Sk�1
� � � (1 � �k/L)�k � 	k/L

Sk � (�k�k � 	k )C*k /L�State Dynamics Equation
In developing a model for the soil water and salinity dynam-

ics, we make the following assumptions:
� �1/L

0
1/L
CI/L

�1/L
0 ��

Pk

Ik

ETak
� � �w�

k

wS
k
�, [12]1. We assume the water table depth is more or less constant

during the growing season, remaining at or very near
the root zone depth L. Data from observation wells where �k � �(�k ), 	k � 	(�k ),
located near the experimental plots verified that this was
a reasonable approximation during our study. C*k � �Sk/�k Gk � 0

CGW Gk 
 0
[13]2. Defining Gk � Rk � Dk as the net daily water flux at

the bottom of the root zone, we assume that and wk � [w�
k, wS

k]T is a random noise sequence with covariance
Mk. The first term on the right-hand side of Eq. [12] representsGk � Rk � Dk � ��k � 	, [9]
the internal system dynamics. The second term represents the

where, for our study site, external forcing of the system. The noise term accounts for
errors introduced by the various simplifying assumptions, as
well as our inability to specify exactly the forcing terms Pk,�(�k ) � ��36.4 cm �k � 0.34

0 cm Otherwise
[10]

Ik, and ETak. The noise covariance is quantified below in the
parameter estimation section.and

State Forecasting
	(�k ) � �12.5 cm �k � 0.34

0.2 cm Otherwise
. [11]

Equation [12] can be written more compactly as

xk�1 � ak (xk ) � Buk � wk, [14]Thus we assume the net water flux at the bottom of the root
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Fig. 2. Observed and regression lines of groundwater recharge (�) and discharge (�) as a function of profile-averaged soil water content.

where xk � [�k, Sk]T is the system state variable, and where use this information to update our estimates of xk and Pk.
To implement the filtering, we must specify the relationshiplower case letters are vectors and upper case letters are matri-

ces. The noise term in Eq. [14] makes xk a random variable, between the measurements and the system state.
and consequently forecasts of the state dynamics must be
in terms of some estimate of xk, such as the mean value. Measurement Equation
Additionally, it is desirable to quantify the distribution of xk

Rhoades et al. (1976) assumed that ECb is comprised of aabout that estimate, so that some type of confidence interval
liquid phase conductivity and a solid phase conductivity (ECs ),can be assigned.
and that the two conductivities can be modeled as parallelSpecifically, we seek an estimate x̂k � [�̂k, Ŝk]T of xk at future
resistors. Noting that the liquid phase conductivity dependstimes, as well as the covariance of the estimation error, Pk �
on the EC of the soil water (ECw ) as well as the transmissionE[(xk � x̂k )(xk � x̂k )T]. Given an estimate of system state on
coefficient (T, a water content-dependent tortuosity factor),day k � 0, x̂0 � x0, and the error covariance, P0, it can be
Rhoades et al. (1976) arrived at the following expression forshown that the minimum mean square error estimate of xk is
the bulk soil EC:given by (Gelb, 1974; Lewis, 1986)

ECb � ECw�T � ECs, [18]x̂k�1 � a(x̂k ) � Buk. [15]
where T is defined asThe corresponding equation for the error covariance is (to

first-order) T � a� � b, [19]
Pk�1 � AkPkAT

k � Mk, [16] with empirical parameters a and b. Additionally, a common
approximation is that ECw is proportional to the total dissolvedwhere
salt concentration (Marion and Babcock, 1976; U.S. Salinity
Laboratory Staff, 1954),Ak � da

dx�
x�x̂k

. [17]
C � KECw, [20]

In these projection equations, it is assumed that E[x0] � x̂0, where the value of K is approximately 0.64 when EC is in dS
E[x0 � x̂0 )(x0 � x̂0 )T] � P0, and wk � [w�

k,ws
k]T is uncorrelated m�1 and C is in mg mL�1 (Rhoades, 1986).

in time, zero mean Gaussian noise sequence with covari- These relationships, along with the previously assumed
ance Mk. Ck � Sk/�k, allow us to write an equation that relates the

measurable quantities �k and ECbk to the state variables �k

Updating Forecasts When Measurements and Sk:
Are Available

� �k

ECbk
� � � �k

Sk (a�k � b)/K � ECS
� � �v�

k

vS
k
�, [21]Given daily measurements of the system forcing uk, Eq.

[15] and [16] can be used to calculate x̂k and Pk in real time.
Suppose at some time k we make a field measurement that where vk � [v�

k, vS
k,]T is an error sequence (with variance Nk)

that accounts for errors in the measurement of �k and ECbk,provides information about system state xk. We would like to
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Fig. 3. (A) Time domain reflectometry measured and Kalman filter estimated profile-averaged soil water content (WC) and its estimation error
and (B) Kalman filter estimated salt concentration (mg cm�3 soil) and its estimation error with weekly measurement update. The diamond
symbol indicates the weekly water content measurement used to update the filter.

as well as uncertainties in the specified relationship between Kk � P�
k HT

k(HkP�
k HT

k � Nk)�1, [25]
ECbk, Sk, and �k.

hk � h[x̂�
k ], [26]

Updating Forecasts with the Kalman Filter
Hk � dh

dx�
x�x̂�

k

[27]
The measurement Eq. [21] can be written more compactly

as

Parameter Estimationzk � h[xk ] � vk [22]

where zk � [�k,ECbk]T. If a measurement zk is available and The unknown parameters that need to be quantified are
assuming E[wj(vk )T] � 0, the projected state and error esti- the noise covariances,
mates are updated according to the extended KF (Gelb, 1974;
Lewis, 1986) Mk � �M

�
k 0

0 MS
k
� [28]

x̂�
k � x̂�

k � Kk (zk � hk ) [23]
and

P�
k � (I � KkHk )P�

k (I � KkHk )T � KkNkKT
k [24]

where superscripted pluses and minuses indicate updated and Nk � �N
�
k 0

0 NS
k
� [29]

projected quantities, respectively, I is an identity matrix, and
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as well as the Rhoades et al. (1976) model parameters, a, b, the surface layers did not show an increased water con-
and ECs. tent, we decided for modeling purposes to assume that

First, we assume that N�
k and NS

k are zero, implying that the no irrigation occurred during this time (recall we calcu-
measurements of �k and ECbk are exact. This seems to be a lated Ik based on measured changes in total water stor-
reasonable first approximation given that our measurements age, Fig. 1C). As will be seen, this will have implications
are likely to be much more accurate than our simulation equa- for our modeling results.tions, which contain numerous simplifications and approxima-

The ECb data (Fig. 1B) mirrored the water contenttions. Specifying zero measurement error means that the state
data, increasing during irrigation and decreasing duringupdate Eq. [23] sets the estimate of the current system state
soil drying, indicating that ECb is affected by the waterto be equal to the value indicated by the measurement, and
content of the soil as well as the salinity of the soil.the error update Eq. [24] sets the estimation error to zero.

Of interest, then, is how long we can forecast the system state Equation [18] assumes that the water content compo-
without the estimation error becoming unacceptably large. In nent of ECb can be separated from the salinity compo-
other words, how far into the future can we project the system nent giving us a measurement of soil solution electrical
state before we need a new measurement to reset the simula- conductivity (ECw ).
tion model? Figure 3A compares the measured profile-averaged

Next we assume that Mk is constant (M�
k � M� and MS

k � water content with �k, as calculated by Eq. [15] and [23]
MS ). The value of M� was set equal to the variance of the (the KF). The calculations were done assuming that aresiduals in Fig. 2, divided by L2. The result was M� �7.7 � water content measurement was made every 7 d10�5. An examination of the residuals in Fig. 2 as a function

(weekly). These measurements are shown as open dia-of time indicated some short-range temporal correlation in
monds in Fig. 3A. Because we updated the forecast atthe residuals from Site 1 but not for Sites 2 and 3. The KF
these points (using Eq. [23]), the modeled and measuredequations require wk to be uncorrelated in time. We assume
water contents coincide on these days and the error barsthe small temporal correlations in the Site 1 data are insignifi-
are zero (recall we have assumed zero measurementcant when combined with data from all three sites (as we did
error). The other water content data shown in the figurein Fig. 2). MS was subsequently determined by maximizing

the likelihood function (Bras and Rodriquez-Iturbe, 1985): are not used in the calculations and are shown only for
comparison purposes. The error bars on the predicted
water contents are equal to � √P11k, where�(MS) � �nm ln(2
) � �

n

k�1

ln|Nk � HkP�
k HT

k|
Pk � �P11k P12k

P21k P22k
�, [31]

� �
n

k�1

(zk � hk )T (Nk � HkP�
k HT

k)�1 (zk � hk )
and Pk is calculated by Eq. [16] and [24]. As expected,[30] the estimation error increases as the forecast gets further
away from a measurement update.where m � 2 is the number of state variables and n is the

number of measurements used in the fitting. We used the first
n � 60 d of measurements from Site 1 for the fitting, and the
fitted value was MS � 6 � 10�4 mg2 cm�2.

Lastly, we use transmission coefficient parameters a � 1.38
and b � �0.09 (Rhoades et al., 1976) and assume the conduc-
tivity of the solid phase is negligibly small (ECs � 0).

RESULTS AND DISCUSSION

We now consider the measured data in Fig. 1 more
carefully. The profile-averaged water content increased
during irrigation and decreased between irrigations due
to drainage and ET. The apparent rate of water deple-
tion from the soil profile decreased as time progressed
in an irrigation cycle, presumably due to increased resis-
tance to root water uptake and surface evapotranspira-
tion from dry soil. Records maintained by the water
district indicate that the field was irrigated during Days
208 through 216, with the irrigation volume being
roughly two-thirds that applied during the previous irri-
gation (which encompassed Days 196–197). However,
our three sites, which were located at the tail end of
the field, apparently received only minimal amounts of
water, if any, because the only increase in the total
profile stored during this time was a slight increase of
about 1 cm near Day 215. However, the water content
in the surface layers (10 and 30 cm) did not increase on
this day. Rather, the small increase was due to increasing

Fig. 4. Estimated (A) daily groundwater flux and (B) salt flux.water contents at the 90- and 110-cm depths. Because
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In general, the predicted values are close to the mea- 4A shows the daily water flux, Gk at the bottom of the
root zone, as computed in the KF calculations. Figuresured values, with the measured values falling within

the predicted confidence intervals. The poorest results 4B shows the corresponding computed daily salt flux,
GkC*k .are found on Days 215 through 225, where relatively

large differences between measured and predicted val- Simultaneous with our forecasting and updating of
�k and Sk, we can estimate ECw asues are observed. The poor performance during this

time period is partly, but not entirely, due to the ambigu-
ECwk �

Sk

K�k

[32]ous irrigation data that were discussed above. Poor per-
formance is also seen after approximately Day 219,
where the forecast water content decreases more rapidly This estimate of ECw is shown in Fig. 5, where �k and
than the measured water content. This discrepancy may Sk are the KF calculations shown in Fig. 3 (weekly mea-
be due to an overestimation of ETa and/or an underesti- surement updates). Also shown is the measured value
mation of the rate of upward groundwater flow by Eq. of ECw, which is given by (see Eq. [18])
[9]. Nevertheless, the maximum difference between the

ECwk �
ECbk � ECs

�k (a�k � b)
[33]forecast and measured water content during the period

of relatively poor performance is only 0.023 (m3 m�3 ),
comparing the water content range of 0.24 to 0.41 in where �k and ECbk are the daily TDR measurements.
the field. As expected, the general trend is that ECw increases as

Figure 3B shows the profile-averaged resident salt water is extracted by plant roots (increasing the soil
concentration, Sk (mg cm�3 soil), as calculated by the water salt concentration) and decreases during irriga-
KF equations. The timing of the measurement updating tion (the salt concentration is diluted). Overall, there is
is the same as in Fig. 3A. The concentration changes in good agreement between the daily measured values and
response to the loss of salt by leaching and the addition the weekly forecast values, with the maximum differ-
of salt by irrigation and upward groundwater flow. Al- ence being less than 1 dS m�1.
though there are no measurements shown on the Fig. Similarly, an estimate of ECe is given by (see Rhoades,
3B, we can infer that the model is not tracking the data 1986, Eq. [10])
very well. Note that over much of the figure the model

ECek �
Sk

K�bSP/100
, [34]forecast between measurements shows an increasing salt

concentration, whereas the trend of the measurement
updates is decreasing or constant, leading to the saw- where SP � 62 is the soil saturation percentage and

�b � 1.29 g cm�3 is the soil bulk density. Figure 5 showstooth appearance of portions of the plot. The higher
salt loading predicted by the model may be due to an ECwk, where Sk is again the KF calculation from Fig. 3

that is based on weekly measurement updates. Figureoverestimation of either the groundwater salt concen-
tration or the rate of upward groundwater flow. Figure 5 also shows the daily measured values (see Rhoades,

Fig. 5. Time domain reflectometry measured and Kalman filter (KF) estimated soil water electrical conductivity (ECw ) and electrical conductivity
of saturated extract (ECe ) with weekly measurement update.
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Fig. 6. (A) Time domain reflectometry measured and Kalman filter estimated profile-averaged soil water content (WC) and its estimation error
and (B) Kalman filter estimated salt concentration (mg cm�3 soil) and its estimation error with biweekly measurement update. The diamond
symbol indicates the biweekly water content measurement used to update the filter.

1986, Eq. [10]), m�1, which is in good agreement with values shown in
Fig. 5.

ECek �
ECwk �k

�bSP/100
. [35] Figure 6 is directly analogous to Fig. 3 except the

model forecasts now span 2 wk and the measurement
updates are biweekly. The 2-wk interval coincideswhere ECwk is given by Eq. [33] and �k is the daily TDR
roughly with the irrigation cycle used by the farmer.measurement. The modeled and measured ECek are in
The error bars continue to grow over the course of thegood agreement. ECe is the measure of root zone salinity
2-wk forecasts. The measured water contents fall withinthat is used by agronomists, extension experts, and farm-
the prediction error bars, except for Days 215 throughers to quantify the effects of salt on crop growth. Figure
225. Following the measurement update at Day 225,5 shows that ECe was essentially constant, indicating that
the modeled water content tracks the measured waterthe irrigation and shallow groundwater management
content fairly well. The modeled resident salt concentra-practices used at the experimental site did not increase
tions in Fig. 3 and 6 show the same general trend, withsoil salinity during the 1997 growing season. No reduc-
the plot again exhibiting something of a sawtooth ap-tions in cotton yield would be expected with an average
pearance. The computed water and salt fluxes were veryroot-zone ECe of 3.6 to 4 dS m�1, and none were ob-
similar to those in Fig. 4 and are not shown. Figure 7served. The measured EC of a saturation extract made

from a soil sample taken near Site 1 was ECe � 3.6 dS shows the estimated and measured ECw and ECe using
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Fig. 7. Time domain reflectometry measured and Kalman filter (KF) estimated soil water electrical conductivity (ECw ) and electrical conductivity
of saturated extract (ECe ) with biweekly measurement update.

the biweekly measurement updates. The results are sim- ther testing of the proposed salinity dynamics model is
warranted.ilar to those seen in Fig 5. Overall, the modeled water

and salinity dynamics were not substantially different The forecast increases in ECw seem to be realistic
especially when ECe is relatively constant throughoutfor the 1- or 2-wk update interval.
the season. Under our field conditions ECe changed
very slowly and ECw could be estimated from Eq. [35]SUMMARY AND CONCLUSIONS
by the use of water content information. Thus, forecast-

In this study, a state-space model for profile-averaged ing of both soil water content and ECw could be done
water content and salt concentration were developed with periodic measurements of soil water content, and
based on mass balance and an empirical relationship one single measurement of soil ECe. In situations where
that specifies the water flux at the bottom of the root soil water salinity above some threshold is detrimental
zone as a function of the profile-averaged water content. to crop production, ECw forecasts could be used to
The water balance equation considers irrigation, precip- schedule irrigation timing and/or amount to alleviate
itation, evapotranspiration, and root-zone drainage to salinity stress. Such an approach could be especially
and recharge from shallow groundwater. The salt bal- beneficial for high cash value crops that exhibit a high
ance equation considers dissolved salts in irrigation wa- sensitivity to soil water salinity. Forecast of field soil
ter, soil water, and groundwater. Based on our model, water and salinity regimes can provide irrigation manag-
forecasts of state variables (profile-averaged water and ers flexibility in irrigation scheduling and help prevent
salt contents) and the estimation error covariances at yield decline due to water and/or salinity stresses.
future times were obtained using daily ET and irrigation
data as inputs. The forecasts were updated by Kalman REFERENCES
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Predicting Temperature and Heat Flow in a Sandy Soil by Electrical Modeling

Dardo O. Guaraglia, Jorge L. Pousa,* and Leonardo Pilan

ABSTRACT 1984; Parton, 1984; Kemp et al., 1992). These models
predict maximum, minimum, and daily mean soil tem-A model based on an electrical analogy between a soil column and
peratures rather well. However, calculation of meanan electrical transmission line was developed to predict temperature
values during normalizing or filtering processes resultsand heat flow as functions of depth and time in a sandy soil, taking

into account changes in soil thermal conductivity and volumetric heat in loss of high frequency information. According to the
capacity due to variations in water content. The model was excited Nyquist theorem (Schwartz and Shaw, 1975), at least
alternatively by both measured soil temperature at the 1-cm depth two input samples per hour are needed to reproduce
and solar radiation [Sr(t )], and solved with available electrical analysis a bandlimited random hourly soil temperature. Thus,
software. The results were compared with field data collected during models identified from input/output filtered data are
a 35-d field experiment carried out in the Lido beach, Venice, Italy. not able to recover high frequency information becauseA very simple transfer function was identified for using measured

this information was not taken into account in the sys-Sr(t) as the input signal. This transfer function turned out to vary
tem (model) identification process. It can be concludedinversely with Sr(t ). When the model is excited by temperature, and
that these models are valid for predicting low frequencysoil water content corrected every 5 d, the root mean square error
soil temperature fluctuations, but they do not seem to(RMSE) for the calculated temperature at the 5-cm depth is less than

1�C. When it is excited by Sr(t ), the RMSE at the 1-cm depth is less be the most adequate ones for predicting hourly temper-
than 2�C. Hourly temperatures at different depths were found to ature variations. Pikul (1991) and Katul and Parlange
depend strongly on surface phenomena, and to a lesser extent on other (1993) use a surface energy balance approach for pre-
factors like soil water content below the top layers. dicting hourly surface temperature. Both models require

information on air temperature, relative humidity, wind
speed, and net radiation, in addition to rainfall (Pikul,

Many physical models have been developed in con- 1991) and soil heat flux (Katul and Parlange, 1993).
nection with agricultural studies to predict soil Persaud and Chang (1983, 1984) state that tempera-

temperature with depth and time. Some of them require ture changes in the soil profile are mainly due to the
measurements of soil temperature at or near the soil transference of heat energy produced at the soil surface
surface (Wierenga and de Wit, 1970; Hanks et al., 1971). from incident Sr(t). Gupta et al. (1981) report that soil
Other models use soil and air temperatures normalized

Abbreviations: c, specific heat (J kg�1 �C�1); Ce, electrical capacitancewith respect to daily maximum and minimum, and aver-
(F); Ct, heat capacity per unit area of a soil layer (J �C�1 m�2); f,aged over a given period of time to obtain temperature
frequency (Hz); G, electrical conductance (��1 ); GT(t ), functioncurves for predicting purposes (Gupta et al., 1981, 1982,
equivalent to an electrical conductance (W m�2 �C�1 ); I1(t ), heat flow

1983, 1984), or are based on averaged or filtered air and at the surface and within the top centimeter of soil (W m�2 ); I2(t ),
soil temperature information (Persaud and Chang, 1983, heat flow transmitted below the 1-cm depth (W m�2 ); L, electrical

inductance (H); R-C, ladder of resistances and capacitances for model-
ing soil below the 1-cm depth; r, correlation coefficient; Re, electri-
cal resistance (�); Rt, thermal resistance per unit area of a soil layerDardo O. Guaraglia, CONICET, Dep. de Hidráulica, Facultad de
(�C m2 W�1 ); RT(t ), time dependent transfer function for the surfaceIngenierı́a, UNLP, La Plata, Argentina. Jorge L. Pousa, CONICET,
and top centimeter of soil (W�1 m2 �C); RMSE, root mean squareLab. de Oceanografı́a Costera, Facultad de Ciencias Naturales y Mu-
error; Sr(t ), solar radiation (W m�2 ); t, time (s); T1(t ), soil temperatureseo, UNLP, Casilla de Correo 45, (1900) La Plata, Argentina. Leo-
at depth of 1 cm (�C); Z, electrical impedance (�); �T, temperaturenardo Pilan, CNR, Istituto per lo Studio della Dinamica delle Grandi
difference across a soil layer (�C); �z, thickness of a surface-parallelMasse, Venezia, Italia. Received 31 July 2000. *Corresponding author
soil layer (m); �, soil water content (m3 m�3 ); �, thermal diffusivity(dguaragl@volta.ing.unlp.edu.ar).
(m2 s�1 ); �, thermal conductivity (W m�1 �C�1); �, density (kg m�3 );
�c, volumetric heat capacity (J m�3 �C�1 ); �, heat flux density (W m�2 ).Published in Soil Sci. Soc. Am. J. 65:1074–1080 (2001).




