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ABSTRACT 1995), sand deposition (Kitchen et al., 1996), and mois-
ture content (Kachanoski et al., 1988; Sheets and Hen-The correlation structure between apparent soil electrical conduc-
drickx, 1995). Additionally, there are articles document-tivity (ECa) and various soil properties can often appear radically

dissimilar in different field surveys. Ideally, some type of methodology ing the use of conductivity survey information for yield
for survey data validation should be developed that can predict the mapping (Jaynes et al., 1995), determining salt loading
expected correlation structure between ECa survey data and various and field irrigation efficiency (Rhoades et al., 1997),
soil properties, given information about the soil properties themselves. estimating leaching and salt loading (Corwin et al., 1996,
In this paper, we review an existing model for ECa and hypothesize that 1999; Rhoades et al., 1999a), estimating deep drainage
this model can be used to accurately predict the expected correlation (Triantafilis et al., 1998), and designing optimal salinity
structure between ECa data and multiple soil properties of interest

sampling and monitoring strategies (Lesch et al., 1995b,(such as soil salinity, saturation-paste percentage, and soil water con-
1998). A comprehensive review of the various methodstent). Our objective is twofold: (i) to demonstrate how this model
of soil salinity assessment via electrical conductivitycan be employed to produce the expected correlation structure and
measurements is given in Rhoades et al. (1999b) and(ii) to extend this ECa model to handle survey data collected under

low water content situations by dynamically adjusting the model’s Hendrickx and Kachanoski (2002), and the use of con-
assumed water content function. This adjustment can be estimated ductivity survey information for precision-farming ap-
using acquired ECa signal and soil sample data, and its statistical plications is discussed in Rhoades et al. (1999b) and
significance can be determined for each specific survey situation. We Corwin and Lesch (2003).
demonstrate both of these techniques using acquired electromagnetic Particular interest in any given ECa survey is often
induction signal data and measured soil properties of interest from focused toward ensuring that the acquired ECa data
12 different field salinity surveys performed in California and Colo-

correlate well with the prespecified target soil variable.rado and in Alberta, Canada. Results from these 12 surveys suggest
For example, in a soil salinity survey, one generallythat the ordinary model is able to accurately predict the expected
attempts to maximize the correlation between salinitycorrelation structure between conductivity and soil property when
and ECa by minimizing the corresponding variation inthe water content is near field capacity and that the dynamically

adjusted model is able to substantially improve the accuracy of the soil texture and water content using different area subs-
predicted correlation structure when the water content is significantly tratification schemes (for minimizing texture variation)
below field capacity. or timing strategies (for minimizing water content varia-

tion). In spite of these efforts, considerable variation is
sometimes observed in the observed correlation be-

Within the last decade, the collection of spatial tween salinity and ECa. Indeed, as indicated by the
soil electrical conductivity data has played an in- above-mentioned references, ECa often correlates to

creasingly important role in precision-farming research. some degree with several different soil properties. Fur-
The collection of such data typically focuses on the thermore, the strength of these observed correlation
assessment of spatial variation in one or more soil prop- estimates can vary widely from one survey to the next.
erties, as inferred by the observed spatial variation in To a certain extent, these apparent inconsistencies have
the ECa survey data. Depending on the specific survey resulted in some unfortunate confusion in the general
application, the target variable of interest is usually soil soils literature with respect to how well different soil
salinity, soil texture, and/or soil water content although properties are expected to correlate with ECa data.
sometimes information about additional soil properties Rhoades et al. (1989) developed a model for ECa

may also be ascertained (i.e., organic matter, clay con- based on data collected across the arid southwestern
tent, sodium adsorption ratio, B, etc.). United States. This model was developed to predict the

There are numerous technical articles that document effects that soil salinity, soil texture, bulk density (�b),
the relationships between ECa and various soil physico-
chemical properties, including soil salinity (Williams and Abbreviations: CalcECa, calculated soil electrical conductivity; DPPC,
Baker, 1982; Rhoades et al., 1989; Slavich and Petterson, dual-pathway parallel conductance (model); Dy-DPPC, dynamic wa-
1990; Hendrickx et al., 1992; Rhoades, 1992, 1996a, ter content partitioning (model); ECa, apparent soil electrical conduc-

tivity; ECe, electrical conductivity of the saturated soil extract; ECwc,1996b; Lesch et al., 1995a;), clay content (Williams and
specific electrical conductivity of the continuous soil water phase; ECws,Hoey, 1987; Cook et al., 1992), depth to clay layers
specific electrical conductivity of the series-coupled soil water phase;(Doolittle et al., 1994), nutrient status (Suddeth et al., EM, electromagnetic induction; EMavg, average electromagnetic induc-
tion; SP, saturation percentage; �g, gravimetric soil water content;
�w, volumetric soil water content; �wc, volumetric soil water contentUSDA-ARS George E. Brown, Jr., Salinity Lab., 450 West Big Springs
in the continuous liquid pathway; �ws, volumetric soil water content inRd., Riverside, CA 92507-4617. Received 29 Mar. 2002. *Correspond-
the series-coupled pathway; �b, bulk density; �wc, adjusted volumetricing author (slesch@ussl.ars.usda.gov).
soil water content of continuous liquid pathway; �ws, adjusted volumet-
ric soil water content of series-coupled pathway.Published in Agron. J. 95:365–379 (2003).
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and soil water content have on soil conductivity signal model is then incorporated into a data validation proce-
dure designed to be performed on measured ECa anddata. This model was originally intended to be used

primarily for the prediction of soil salinity [expressed soil sample survey data. This procedure produces the
expected correlation levels between the acquired con-as electrical conductivity of the saturated soil extract

(ECe)], given measurements of both the soil conductivity ductivity data and measured soil properties of interest
and hence simultaneously addresses the expected ECa–and remaining primary soil properties (texture, �b, and

water content). However, because this model is capable soil variable question raised in the introduction. Finally,
the original model introduced by Rhoades and his col-of simultaneously describing multiple soil property ef-

fects, we hypothesized that it might be successfully used leagues is extended to handle data collected under low
water content survey conditions.to explain the diverse variation in observed ECa–soil

property correlation estimates.
The purpose of this paper is twofold. First, we de- A Review of the Dual-Pathway Parallel

scribe how the ECa model developed by Rhoades et al. Conductance Model
(1989) can be used to accurately predict the expected

Rhoades et al. (1989) introduced a model describingcorrelation structure between ECa data and multiple
the expected electrical conductivity of a mixed soil–soil properties of interest for an arbitrary survey process.
water system, based on the partitioning of the systemThe methodology that is developed to predict this corre-
into three separate current-flow pathways acting in par-lation structure serves both as a useful procedure for
allel. These pathways are illustrated in Fig. 1 and aresurvey data validation and, in a broader sense, a quanti-
as follows: (i) a conductance pathway traveling throughtative technique for understanding how different soil
alternating layers of soil particles and soil solution, (ii) aproperties influence (and hence correlate with) the ac-
conductance pathway traveling through the continuousquired ECa data. Furthermore, this technique is shown
soil solution, and (iii) a conductance pathway travelingto be generally reliable, provided the relative soil water
through or along the surface of soil particles in directcontent (across the survey area) is not significantly be-
and continuous contact. Conceptually, the first pathwaylow field capacity.
can be thought of as a solid-liquid, series-coupled ele-Second, we show how this ECa model can be extended
ment. Likewise, the second and third pathways repre-to handle survey data collected under low water content
sent continuous liquid and solid elements, respectively.situations by dynamically adjusting the assumed water

Mathematically, this model can be written as:content partitioning function specified in the model.
This partitioning function can be estimated using ac-

ECa � � (�ss � �ws)2 � ECws � ECss

(�ss � ECws) � (�ws � ECss)
� �quired ECa survey and soil sample data, and its statistical

significance can be determined for each specific survey
(�sc � ECsc) � (�wc � ECwc) [1]situation. Under especially low water content situations,

this adjustment can result in a substantial improvement where
in the accuracy of the predicted correlation structure.

�ws � volumetric soil water content in theWe demonstrate these results using data from 12 differ-
series-coupled pathwayent salinity surveys performed over the last 10 yr in

�wc � volumetric soil water content in theCalifornia and Colorado and in Alberta, Canada.
continuous liquid pathway

�ss � volumetric content of the surfaceTHEORY
conductance soil phaseIn the following section, a model for ECa, originally

�sc � volumetric content of indurated soliddeveloped by Rhoades et al. (1989), is reviewed. This
phase

ECws � specific electrical conductivity of the
series-coupled soil water phase

ECwc � specific electrical conductivity of the
continuous water phase

ECss � electrical conductivity of the surface
conductance soil phase

ECsc � electrical conductivity of the indurated
soil phase (Rhoades et al., 1999b)

As reported by Rhoades et al. (1989), experimental
work demonstrated that the conductance contributed
by the indurated solid phase was negligible, i.e.,

�sc � ECsc ≈ 0

Additionally, because volumetric soil water content
(�w) � �ws � �wc, Eq. [1] can be reduced to:Fig. 1. The three theoretical current-flow pathways within a mixed

soil–water system, as originally described by Rhoades et al. (1989):
(1) the series-coupled pathway, (2) the continuous liquid pathway, ECa � � (�ss � �ws)2 � ECws � ECss

(�ss � ECws) � (�ws � ECss)
� �

and (3) indurated solid phase pathway.
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�ws � 0.639 � �w � 0.011 [7d](�w � �ws) � ECwc [2]
ECs � 0.019 � SP � 0.434 [7e]which essentially represents a dual-pathway parallel

for �w � 0.0305 and SP � 25. (In practical applications,conductance (DPPC) current flow system. Hence, Eq.
when �w 	 0.0305 and/or SP 	 25, then �ws is defined[2] will be hereafter referred to as the DPPC model.
to be equal to �w and/or ECs is set equal to 0.041,An important relationship inherent in the DPPC
respectively.) Rhoades et al. (1989) also suggested thatmodel is that the combined soil electrical conductivity
the �b could be reasonably estimated from the SP in(ECw) of both the continuous solution (ECwc) and soil–
most field survey conditions using the following linearwater interface (ECws) may be expressed as:
relationship:

�w � ECw � (�ws � ECws) � (�w � ECwc) [3]
�b � 1.73 � 0.0067 � SP [8]

Additionally, the expected relationship between ECw Hence, in a practical survey application, Eq. [6] canand soil salinity (ECe) is assumed to be be solved provided one obtains either accurate field
estimates or, preferably, laboratory measurements of�w � ECw ≈ (ECe � �b � SP)/100 [4]
ECe, SP, and �g. For the remainder of this paper, we willwhere SP represents the saturation percentage of the refer to such a solution as the calculated ECa (CalcECa).

soil. This latter relationship is only strictly valid for It should be noted that Eq. [6] is designed to produce
chloride-salt systems. However, this approximation has an estimate of the CalcECa referenced to 25
C for the
been found to work reasonably well for most mixed specific depth zone that the soil properties are sampled
chemistry systems, as shown by Rhoades et al. (1989, from. This estimate should correspond on a one-to-one
1999b). Solving Eq. [3] for ECw yields basis to a direct ECa measurement acquired from the

same depth zone (after applying an appropriate temper-ECw � � � ECws � (1 � �) � ECwc [5]
ature compensation). For example, there should be a

where � � �ws/�w. However, in Rhoades et al. (1989), one-to-one correspondence between this estimate and
an additional assumption of solution conductivity equi- a conductivity measurement acquired using an insertion
librium was made, i.e., ECw � ECws � ECwc. Rhoades four-electrode probe (Rhoades et al., 1989). However,
and colleagues argued that this assumption should be this estimate will not generally exhibit a one-to-one
reasonable, provided the field water content was at or correspondence with an indirect measurement of ECa,
near field capacity. such as conductivity signal data acquired using a nonin-

Given the additional assumption of equilibrium, the vasive electromagnetic induction (EM) meter (like the
DPPC model further simplifies to: Geonics EM-38 m).1 There are numerous reasons for

this: (i) EM signal data meters obtain a nonlinear, depth-
ECa � � (�s � �ws)2 � ECw � ECs

(�s � ECw) � (�ws � ECs)
� � [6] weighted ECa signal response that is not isolated to a

particular depth zone; (ii) the Geonics meter in particu-
lar begins to exhibit a partial breakdown in the low(�w � �ws) � ECw
induction number approximation (between apparent

where the parameters �ss and ECss are abbreviated as and true conductivity) when the true terrain conductiv-
�s and ECs, respectively. This is the nonlinear form of ity exceeds 100 mS/m; and (iii) variations in the macro
the DPPC equation commonly presented in many of surface geometry of the soil environment (such as those
the technical salinity articles by Rhoades (1992, 1996b). induced by a typical bed-furrow structure) tend to ex-

The original purpose of Eq. [6] was to provide a prac- hibit a pronounced effect on the magnitude of the near
tical means of estimating soil salinity levels, given mea- surface–weighted ECa signal readings (McNeill, 1980;
surements of both ECa data and secondary soil proper- Lesch et al., 1995a; Rhoades et al., 1999b). (The mea-
ties that influence ECa (i.e., soil properties other than surement scales are also different: The EM-38 signal is
salinity). According to Eq. [6], the five parameters that expressed in mS/m, and the CalcECa is typically ex-
combine together to determine ECa are �w, �s, �ws, ECs, pressed in dS/m.) Nonetheless, the correlation between
and ECw. According to Rhoades et al. (1989), these five the CalcECa and measured EM signal response should
theoretical parameters could be suitably related to the be quite high, provided a large enough depth zone is
following four measurable soil properties: ECe (soil sa- sampled (� about 1 m) and the position of the instru-
linity), SP, gravimetric soil water content (�g), and �b, ment relative to the bed-furrow environment is kept
using the following assumed relationships and/or empir- constant throughout the survey process (Lesch et al.,
ical, approximating equations: 1995a).

Assumed relationships: Definition and Application of a DPPC
Correlation Analysis�w � �g � (�b/100) [7a]

The original DPPC equation was designed to be usedECw � (ECe � �b � SP)/(100 � �w) � ECe � (SP/�g)
as an ECe prediction model, given measurements of ECa[7b]

1Mention of trademark or proprietary products in this manuscript�s � �b/2.65 [7c] does not constitute a guarantee or warranty of the property by the
USDA and does not imply its approval to the exclusion of other
products that may also be suitable.Empirical, approximating equations:
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and either measurements or estimates of the remaining zone [d]. There are two ways to ascertain this value: (i)
measure it directly or indirectly using some type of sur-primary soil properties (SP, �w, and �b). However, this

equation can also be used in a different, yet equally vey instrument (EM) or (ii) calculate it from the associ-
ated primary soil property measurements using an ap-important manner. Assuming that the underlying model

is valid, Eq. [6] can be used in a general-purpose valida- propriate model (CalcECa). Both of these approaches
are subject to some degree of error (ε1 and ε2). Fortion procedure for survey data, as described below.

Consider a typical field-scale salinity survey con- example, errors can occur with respect to the survey data
due to instrument miscalibration, signal attenuation, orducted using some type of soil conductivity instrument

(such as a Geonics EM-38 meter). Suppose that this signal penetration below the depth zone [d] of interest.
Likewise, errors may enter into the modeling processprocess is performed similar to the methodology de-

scribed in Lesch et al. (1995a, 1995b); i.e., a large number due to unrealistic or improper modeling assumptions or
less-than-adequate modeling approximations, etc. How-of EM survey sites are acquired across the field, and

then a few select sites are identified for calibration soil ever, in an ideal situation, we expect these errors to be
small and hence the EM and CalcECa data to be highlysampling. Additionally, assume that the soil sample data

from these calibration sites are then analyzed for ECe, correlated. Mathematically, this can be written as:
SP, and �g. Based on this sample data, what can we infer

Corr(EM, CalcECa) � 
 where the limit(
) → 1about the expected correlation between these measured
soil properties and the EM-38 signal data? as ε1, ε2 → 0

Obviously, the correlation between the EM signal
In turn, the CalcECa data will exhibit some specificdata and any measured soil property can be directly
degree of correlation with each of the defining primarycalculated. However, as alluded to in the introduction,
soil properties that determine it. These correlation val-these correlation estimates can change quite radically
ues can be expressed as:from one field to the next and therefore often appear

inconsistent and/or inconclusive. Clearly, a more desir- Corr(CalcECa, ECe) � �1
able approach would be to examine the soil property

Corr(CalcECa, SP) � �2data directly and then try to derive a general relationship
relating these data observations to the acquired signal Corr(CalcECa, �g) � �3
data.

Additionally, this CalcECa may well correlate with someIn essence, this is exactly what the DPPC equation is
other soil property (Q) that does not directly determinedesigned to do. It takes as input a set of primary (i.e.,
it. This can occur if the secondary soil property happensdefining) soil properties and produces as output a calcu-
to correlate with one or more of the primary soil proper-lated conductivity (CalcECa). If this equation can be
ties; thus, an induced correlation is said to be present.used produce an accurate estimate of the true (un-
This secondary correlation can be expressed as:known) ECa, then it should also be highly correlated

with the measured ECa (i.e., the EM sensor readings, Corr(CalcECa, Q) � �1
acquired at the same calibration locations). Therefore,

However, given these correlation estimates, the ex-if this is indeed the case, then the expected correlation
pected values of the correlation estimates between thebetween the EM data and any particular primary soil
EM signal data and each soil property can be shownproperty should be quite similar to the observed correla-
to betion between the CalcECa and that same soil property.

This correlation concept is shown graphically by the E[Corr(EM, ECe)] � 
 � �1 [9a]
path diagram displayed in Fig. 2. In this diagram, ECa,[d]

E[Corr(EM, SP)] � 
 � �2 [9b]represents the true ECa of the soil within a specific depth
E[Corr(EM, �g)] � 
 � �3 [9c]

E[Corr(EM, Q)] � 
 � �1 [9d]

(a proof of this result is given in Appendix A.1). In
other words, the expected correlation between the EM
signal data and a specific soil property is simply the
product of the CalcECa–soil variable correlation
multiplied by the EM–CalcECa correlation.

Two important conclusions can be immediately de-
duced from the above results. First, the partitioning of
the correlation structure lends itself naturally to an ideal
data validation strategy, herein referred to as a DPPC
correlation analysis. In a DPPC correlation analysis,Fig. 2. Path diagram showing the correlation relationships between

measured primary [electrical conductivity of the saturated soil ex- each of the correlation estimates described above are
tract (ECe), saturation percentage (SP), and gravimetric soil water calculated, in addition to each observed EM–soil prop-
content (�g)] and secondary (Q ) soil properties, calculated soil erty correlation estimate. If an accurate ECa model iselectrical conductivity (CalcECa), measured electromagnetic induc-

employed and the errors associated with the EM signaltion survey data, and true soil electrical conductivity (ECa,[d]) for
depth zone [d]. data are minimal, then two results should occur. First,
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 should be reasonably close to 1. Second, each observed uid pathway, respectively, and � is defined to be a func-
tion of the apparent water content. We have found thatEM–soil property correlation estimate should be rea-

sonably close to its expected estimate (as defined above). good results are obtained if � is referenced to the water
content relative to an estimate of the approximate fieldWhen these two results do indeed occur, the overall

survey process is said to exhibit a high degree of internal capacity (Rhoades et al., 1989). More specifically, as-
suming that the water content at field capacity (�fc) candata validity and consistency.

Second, as the correlation between CalcECa and EM be approximated as:
approaches unity, the expected EM–soil property corre-

�fc � (SP � �b)/200 [13]lation estimates reduce to the observed CalcECa–soil
then the scaled water content relative to field capacityproperty correlation estimates. This implies that when
(�w) can be defined as:an accurate soil conductivity model is used, the expected

EM–soil property correlation estimates can be approxi-
�w � �w/�fc � 2(�g/SP) [14]mated by multiplying the observed CalcECa–soil prop-

In turn, � can be defined to be a suitable function oferty estimates by some reasonable 
 value (i.e., 0.9,
�w. One simple, appealing equation that can be used to0.95, etc.). This is an important point; i.e., this methodol-
define � is the logistic function:ogy can be used to estimate an expected correlation

between EM and soil property in any given field (pro- G(�) � ln[�/(1 � �)] � �0 � �1(�w) [15]
vided some soil sample data has been collected) before

where �0 and �1 represent hyperparameters that controlan EM survey is undertaken.
the shape of the logistic curve. Note that the use of this
function restricts � to lie in the (0,1) interval, with theModification of the DPPC Equation for Low
hyperparameters essentially controlling the degree ofWater Content Situations
apparent water content partitioning.

Water contents substantially in excess of field capacity Based on the approach described above, a new ver-
are not typically of concern in most practical field survey sion of the DPPC model can be derived (by replacing
applications because EM or four-electrode surveys are �ws and �wc with �ws and �wc in Eq. [6]), herein referred
not easily conducted across wet fields. However, survey to as a dynamic water content partitioning model (Dy-
data sometimes do get collected across fields with water DPPC). This Dy-DPPC model can be expressed as:
contents significantly below field capacity. In practice,
this can occur due to unavoidable timing or scheduling ECa � � (�s � �ws)2 � ECw � ECs

(�s � ECw) � (�ws � ECs)
� � �wc � ECwconflicts and/or misinformation about recent irrigation

[16a]events. Additionally, unforeseen excessive variation in
field water content levels can be encountered in some or equivalently as
fields due to poor irrigation uniformity.

In general, we have found the DPPC correlation anal- ECa � � (�s � �w � � � �wc)2 � ECw � ECs

(�s � ECw) � [(�w � � � �wc) � ECs]
� �

ysis procedure just described to provide a reliable data
validation methodology in most salinity survey studies. � � �wc � ECw [16b]
However, we have also found that this methodology can
perform poorly under unusually dry survey conditions. where the �ws and �wc parameters have been replaced
We believe that this poor performance normally occurs with the relationships shown in Eq. [11] and [12]. The
due to the attenuating effect (i.e., the drop-off) in ECa effect of incorporating this � parameter into the ordinary
induced by the depletion of the water within the series- DPPC model is made clear by Eq. [16b]. First, as � →
coupled soil water pathway. Hence, a need to extend 0, the slope term of Dy-DPPC model reduces to 0 (im-
the previously derived DPPC model to handle low water plying that the apparent conductivity signal strength will
content situations clearly exists. Furthermore, a more be significantly reduced as the soil dries out). Second,
robust model should prove useful for determining the as � → 1, this Dy-DPPC model reduces exactly to the
specific degree of water content influence on conductiv- ordinary DPPC model (implying that � can be condi-
ity signal data collected under low water content situ- tioned to have no effect when the soil is at or near
ations. field capacity).

The ordinary DPPC model can be made more robust As defined above, the Dy-DPPC model depends criti-
for low water content situations by redefining the �ws, cally on the value of �, which from Eq. [15], is defined
�wc, and �w water content–partitioning relationship as to be:
follows:

� �
exp[�0 � �1(�w)]

1 � exp[�0 � �1(�w)]
[17]�w � �ws � �wc [10]

where where �0 and �1 represent empirical fitting parameters.
Figure 3 displays two hypothetical � curves, and each�wc � � � �wc [11]
curve is designed to produce a value of � � 0.5 when

�ws � �w � � � �wc [12] the scaled water content also equals 0.5 (�w � 0.5). The
different shapes of these curves are controlled by theand �ws and �wc are the adjusted volumetric soil water

contents of series-coupled pathway and continuous liq- magnitude of the �1 parameter, as indicated in Fig. 3.
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parameters, and then the acquired survey and soil sam-
ple data can be used to estimate these values via a
suitable optimization approach. The approach used here
is simply a detailed grid search over the assumed param-
eter space (as described in the Methods section). Such
an optimization approach does not produce any stan-
dard error estimates for �0 and �1. However, when the
correlation is found to increase (over the correlation
estimate produced using the ordinary DPPC model cal-
culations), an approximate F test can still be constructed
to determine if the increase in the correlation estimate
is statistically significant (details concerning this test are
given in Appendix A.2).

METHODS

Field Survey Information

Survey data from 12 fields are discussed in this paper. These
12 fields have been chosen from a larger database (of 100�
fields) compiled by the Salinity Laboratory over the last de-
cade and represent the range of conditions typically encoun-

Fig. 3. Two hypothetical dynamic water content–repartitioning pa- tered when performing soil salinity surveys.
rameter (�) curves which could be used to re-partition the relative Table 1 lists the field ID codes, survey area size, and basic
volumetric soil water content volumes of series-coupled pathway soil taxonomy of each survey area. Table 2 lists the types of
(�ws) and continuous liquid pathway (�wc) content in the dynamic conductivity and soil variable information collected acrosswater content–partitioning DPPC model (Dy-DPPC). �w, scaled

these 12 fields. Only Geonics EM-38 conductivity signal datawater content relative to field capacity.
is analyzed although the analysis methods presented here are
applicable to any EM and/or insertion four-electrode ECaThe 0.5 curve midpoint values are produced by the �0 signal data. The primary soil properties considered are salinityparameter, specifically by setting �0 � �0.5�1. Figure 4 (ECe, dS/m); SP (%); the estimated �w (ratio: estimated from

shows the corresponding water content repartitioning the SP and �g); and in one field, the �b (g/cm3). Some secondary
effects on the �ws/�w and �wc/�w ratios induced by these soil properties were also measured in a few of the fields; these
assumed � functions and contrasts these with �ws/�w and secondary properties include the sodium adsorption ratio, B
�wc/�w ratios assumed in the ordinary DPPC model. (g/L), and percentage clay (%).

Basic EM-38 and soil sample summary statistics are givenIt is impossible to determine in advance the exact
in Tables 3a and 3b for each field. These statistics include thevalues of �0 and �1 in any particular survey situation.

However, reasonable bounds can be placed on these
Table 1. Basic soil taxonomy associated with the 12 field survey

projects.

Field ID
code Field size Soil classification

ha
CV-W96 16 Gilman fine sandy loam, wet; Gilman silt loam,

wet; Indio very fine sandy loam, wet:
(Typic Torrifluvents)

CV-K93 16 Salton silty clay loam: (Aquic Torriorthents);
Indio very fine sandy loam, wet:
(Typic Torrifluvents)

BWD-623 130 Panoche silty clay: (thermic Xerorthents)
CV-T2 14 Salton silty clay loam: (Aquic Torriorthents);

Indio very fine sandy loam, wet:
(Typic Torrifluvents)

BWD-T1 65 Panoche silty clay: (thermic Xerorthents)
WL-99 32 Lethent clay loam: (Typic Natrargid)
IID-113 16 Imperial-Glenbar silty clay loams, wet:

(Vertic Torrifluvents);
Meloland very fine sandy loam, wet:

(Typic Torrifluvents)
ACA-7 454 Nine mile series: (Entic Haplustols);

Whitney soil series (Typic Haplustolls)
IID-34 28 Holtville silty clay, wet: (Typic Torrifluvents)
PV-01 24 Holtville silty clay; Ripley silty clay loam;

Gilman silty clay loam: (Typic Torrifluvents)
IID-14 47 Meloland very fine sandy loam, wet; Meloland

and Holtvile loams, wet; Vint loamy very
fine sand, wet: (Typic Torrifluvents)Fig. 4. The degree of (top) �ws/�w and (bottom) �wc/�w relative per-

CO-4 38 Limon silty clay, fine: (Ustertic Torriorthents);centage water content partitioning induced by the two � curves
Apishapa silty clay, fine: (Verticshown in Fig. 3, in contrast to the assumed �ws/�w and �wc/�w Haplaquepts)curves used in the ordinary DPPC model.
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Table 2. Type of survey and soil sample data acquired for the 12 field survey projects.

Variable Abbreviation Units

Conductivity data
EM-38 signal data EMv, EMh mS/m

Primary soil variables
Salinity ECe dS/m
Saturation percentage SP %
Gravimetric water content �g %
Volumetric water content �w ratio, estimated in all cases except BWD-T1
Bulk density �b g/cm3 (collected at BWD-T1)

Secondary soil variables
Sodium adsorption ratio SAR ratio (collected at CV-T2, WL-99, CO-4)
Boron B mg/L (collected at WL-99)
Percentage clay % clay % (collected at BWD-T1)

calculated mean, standard deviation, minimum and maximum sake of brevity, only the 0- to 1.2-m bulk average data have
been analyzed (as reported in Tables 3a and 3b).reading for each measured variable, along with the number

of samples acquired. The number of EM-38 readings in all Table 3c shows how the 12 fields were divided into two
separate groups (A and B), based on each field’s calculatedbut one case ranges from 100 to �4000 while the number of

soil sample sites ranges from 12 to 40. This oversampling of soil water content relative to field capacity (100 � �w). The
six Group A fields shown in Table 3a represent surveys whereEM signal data is typical of soil salinity surveys; the goal

is to use the abundant, rapidly acquired EM data to infer the relative water content data appears to be at or near field
capacity. In contrast, the six Group B fields all exhibited rela-information about the much more difficult to acquire (i.e.,

expensive and time consuming to sample) soil data. In most tive water content levels significantly below the calculated
field capacity. We will show (in the Results section) that thecases, the sampling strategies for the selection of soil sampling

sites were developed from model-based site selection tech- soil water content relative to field capacity represents a criti-
cally important parameter when performing a DPPC correla-niques similar (or identical) to those described in Lesch et al.

(1995b). Additionally, in all but one case, soil samples were tion analysis.
Some additional details concerning each field survey projectcollected to a depth of 1.2 m at 0.3-m increments. For the

are given in Table 4. As indicated, 10 of the survey projects
were performed within California, but fields CO-4 and ACA-7Table 3a. Basic field EM-38 and soil sample summary statistics:
were located in Colorado and in Alberta, Canada, respectively.Group A surveys.
Unless indicated otherwise, EM-38 and soil sample data were

Field ID Standard
collected by George E. Brown, Jr., Salinity Laboratory staff.code Variable† N Mean deviation Min. Max.

CV-W96 EMv 121 40.17 16.74 14.0 109.0 Table 3b. Basic field EM-38 and soil sample summary statistics:
EMh 121 24.12 13.58 5.0 74.0 Group B surveys.ECe 16 2.326 1.423 0.845 6.641
SP 16 40.39 2.86 36.47 45.79 Field ID Standard
�w 16 0.236 0.042 0.178 0.322 code Variable† N Mean deviation Min. Max.

CV-K93 EMv 139 141.99 41.41 64.0 260.0
IID-113 EMv 1929 89.13 17.53 46.0 142.0EMh 139 95.37 33.50 36.0 196.0

EMh 1929 89.57 15.49 51.0 123.0ECe 16 10.046 3.347 5.365 16.80
ECe 12 4.800 1.743 2.698 8.395SP 16 56.95 2.96 51.01 61.05
SP 12 52.08 4.35 44.90 59.23�w 16 0.378 0.018 0.334 0.408
�w 12 0.203 0.044 0.131 0.279

BWD-623 EMv 128 121.39 31.53 57.0 188.0
ACA-7 EMv 35 68.46 63.08 10.0 314.0EMh 128 83.10 22.37 33.0 134.0

ECe 35 3.298 4.140 0.430 20.51ECe 16 3.653 1.656 1.608 8.194
SP 35 52.61 11.77 36.50 83.50SP 16 50.30 14.07 33.18 85.01
�w 35 0.192 0.047 0.080 0.265�w 16 0.308 0.054 0.214 0.392

IID-34 EMv 4043 93.98 15.53 45.0 139.0CV-T2 EMv 100 172.36 52.07 76.0 344.0
EMh 4043 83.97 13.73 43.0 122.0EMh 100 130.80 49.43 52.0 276.0
ECe 12 2.916 0.778 1.858 4.815ECe 15 11.776 6.020 3.725 22.89
SP 12 57.22 6.39 46.05 65.98SP 15 63.32 2.13 59.68 66.73
�w 12 0.238 0.051 0.145 0.308�w 15 0.325 0.018 0.301 0.361

SAR 15 23.23 12.33 5.548 40.19 PV-01 EMv 1766 103.58 40.41 30.0 304.0
EMh 1766 75.72 28.60 17.0 207.0B 15 1.435 0.649 0.520 2.569
ECe 12 3.038 2.491 1.187 10.46BWD-T1 EMv 100 133.64 19.10 88.0 192.0
SP 12 67.80 17.16 43.77 92.17EMh 100 85.20 12.62 56.0 124.0
�w 12 0.276 0.050 0.181 0.326ECe 16 2.666 1.400 0.900 5.688

SP 16 55.42 7.30 40.59 67.35 IID-14 EMv 4474 100.16 19.91 45.0 165.0
EMh 4474 68.24 13.51 29.0 109.0�w 16 0.380 0.034 0.291 0.420

�B 16 1.346 0.057 1.256 1.438 ECe 12 3.701 2.437 1.512 10.38
SP 12 48.98 9.91 32.80 60.70% clay 16 35.27 6.02 23.77 44.49
�w 12 0.216 0.063 0.100 0.272WL-99 EMv 384 488.22 99.83 256.4 795.3

EMh 384 292.80 70.61 144.6 519.4 CO-4 EMv 93 147.18 83.93 20.0 328.0
EMh 93 107.14 62.77 12.0 264.0ECe 40 20.191 5.030 12.83 36.60

SP 40 59.79 7.81 45.83 78.94 ECe 15 10.423 4.323 3.873 17.19
SP 15 63.41 17.75 35.23 90.54�w 40 0.342 0.036 0.274 0.415

SAR 40 50.90 13.06 30.00 88.78 �w 15 0.229 0.046 0.148 0.300
SAR 15 20.31 8.63 8.26 34.89B 40 17.81 4.01 11.67 29.08

† See Table 2 for variable definitions and units.† See Table 2 for variable defiinitions and units.
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Table 3c. Scaled water content summary statistics (% basis): All of the relevant, individual DPPC correlation estimates
Groups A and B (note: percentage water | field capacity calcu- were then calculated. Finally, the predicted EM–soil variable
lated as 100 � �w, where �w � scaled water content relative correlation estimates were computed using the correlation
to field capacity). product relationship (Eq. [9a] through [9d]), and approximate

95% confidence intervals for each of these predictions wereField ID Standard
code Mean deviation Min. Max. constructed (using the 95% confidence interval formula de-

scribed in Appendix A.3).Group A surveys
As explained previously, the Dy-DPPC model (Eq. [16b])CV-W96 79.85 9.87 65.25 102.49

depends on both the ordinary (prespecified) DPPC modelCV-K93 98.65 7.23 85.56 111.34
parameters and an additional � parameter, which itself is mod-BWD-623 90.35 7.52 69.29 101.18

CV-T2 78.68 4.67 70.98 86.10 eled as a function of the observed scaled water content. The
BWD-T1 103.62 4.34 98.55 111.00 assumed g(�) logistic function (Eq. [17]) describes this rela-
WL-99 87.69 8.53 68.88 103.50 tionship and in turn depends on two new, unknown parameters

Group B surveys (�0 and �1).
IID-113 56.25 10.58 37.12 71.87 Optimized estimates for �0 and �1 were obtained for the
ACA-7 56.18 15.66 23.80 87.26 Dy-DPPC model by maximizing the observed ln(CalcECa)–IID-34 61.44 9.95 44.55 77.93

ln(EMavg) correlation estimate over a prespecified (�0, �1) pa-PV-01 66.51 5.67 56.88 74.48
rameter space. This was performed directly, i.e., by employingIID-14 63.30 13.96 36.23 81.27

CO-4 58.72 13.24 37.52 82.93 a detailed grid search over a range of suitable �0 and �1 values
and then choosing the pair of (b0, b1) values that produced
the maximum correlation estimate. Bounds for the search gridAdditionally, in all but one case, the EM-38 signal data consists
were specified by constraining the curve midpoint value to lieof both horizontal and vertical readings, and soil variable
within an interval of 0.25 to 0.75 and restricting the slopeinformation (as reported in Tables 3a, 3b, and 3c) represents
parameter to lie within the interval of 2 to 25 [implying thatthe arithmetic average of four 30-cm samples acquired from
�1 � (2,25) and �0 � (�0.75�1,�0.25�1)]. The first range re-a 0- to 1.2-m sampling depth.
flected the assumption that � might potentially assume a value
of 0.5 anywhere within a water content range of 25 to 75%Data Analysis field capacity. In a similar manner, the �1 range endpoints
were selected to reflect a potentially wide adjustment in theIn 11 of the 12 survey projects, both horizontal and vertical
slope of the � curve.conductivity readings were acquired at each sample site.

When optimized (b0, b1) values were determined, the statis-Hence, these readings had to first be combined into a single,
tical significance of the improved ln(CalcECa)–ln(EMavg) cor-average EM value before the CalcECa–conductivity correla-
relation estimate was judged using the F score test results. Intion estimate could be computed. Additionally, because both
these analyses, a significance level of � � 0.1 was used tothe EM signal conductivity readings and soil chemical data
indicate significant vs. nonsignificant improvement. If the im-exhibited highly right-skewed (i.e., lognormal) data distribu-
provement in the primary correlation estimate was found totions, all of these data were log-transformed before the corre-
be statistically significant, a new DPPC correlation analysislation analyses were performed. (This log transformation
was performed using the optimized Dy-DPPC model in placehelped stabilize the correlation estimates and correct for the
of the ordinary DPPC model.nonlinear EM signal response in fields with readings above

All of the statistical quantities pertaining to the above analy-100 mS/m.)
ses (DPPC correlation estimates, F tests, and 95% correlationThe 12 ordinary DPPC correlation analyses were calculated
confidence intervals) were calculated using the ESAP-Cali-as follows. First, in all fields except BWD-T1, the �b was
brate software program, Version 2.21, and verified using SASestimated using Eq. [8]. Next, the CalcECa data vector was
Version 8.1 (SAS Inst., 1999).computed using the ordinary DPPC model (Eq. [6]), after

calculating the values of the appropriate model parameters
RESULTSusing Eq. [7a] through [7e]. The EM signal data, computed

CalcECa data, and all soil chemical data were then log-trans- Ordinary DPPC Correlation Analysis Results
formed, and the average EM signal level was defined to be

Table 5a lists the DPPC results from the six Groupln(EMavg) � 0.5[ln(EMv) � ln(EMh)], where EMv and EMh

are EM-38 vertical and horizontal signal data, respectively. A correlation analyses, corresponding to the six fields

Table 4. Additional survey details concerning all 12 field survey projects.

Field ID code General location Sampling date Crop type† Survey type Data source‡ Notes§

CV-W96 Coachella, CA 1996 Wheat Grid survey a
CV-K93 Coachella, CA 1993 Fallow Grid survey a
BWD-623 Broadview, CA 1991 Cotton Grid survey a, b
CV-T2 Coachella, CA 1997 Sorghum Grid survey a, c(2)
BWD-T1 Broadview, CA 1996 Cotton Grid survey a, c(1)
WL-99 Westlands, CA 1999 Fallow Grid survey d
IID-113 Imperial, CA 2000 Alfalfa Transect survey e
ACA-7 Pine Coulee, AB, Canada 1998 Oat Point samples f 1
PV-01 Palo Verde, CA 2001 Fallow Transect survey g 2
IID-14 Imperial, CA 2001 Alfalfa Transect survey e
CO-4 Pleblo, CO 1995 Alfalfa Grid survey h

† Wheat, Triticum aestivum L.; cotton, Gossypium hirsutum L.; sorghum, Sorghum bicolor (L.) Moench; alfalfa, Medicago sativa L.; oat, Avena sativa L.
‡ a, Corwin and Lesch (2003); b, Corwin et al. (1999); c, Lesch et al. (2000): 1 � ESAP Version 2.01 training file no. 1 and 2 � ESAP Version 2.01

training file no. 2; d, Corwin et al. (2003); e, data collected by Imperial Irrigation district salinity assessment program (used with permission); f, data
collected by Genesis Environmental (used with permission); g, data collected by Soil and Water West (used with permission); h, archived GEBJ Salinity
Laboratory survey data (not previously published).

§ 1 � EMv data only, collected only at soil sampling locations, and sites subjectively selected off visual height and vigor of hay crop; 2 � soil samples in
this field collected in 30-cm increments down to a depth of 0.9 m only.
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Table 5a. Dual-pathway parallel conductance (DPPC) correlation analysis results: Group A surveys using ordinary DPPC model.

ith soil
Field ID code �† variable‡ �(i)§ � � �(i)¶ 95% CI# 	(i)††

CV-W96 0.895 ln(ECe) 0.966 0.865 [0.806, 0.924] 0.873
SP 0.843 0.754 [0.631, 0.878] 0.776
�w 0.814 0.729 [0.596, 0.862] 0.760

CV-K93 0.855 ln(ECe) 0.983 0.841 [0.792, 0.890] 0.891
SP 0.074 0.064 [�0.202, 0.329] �0.200

w 0.224 0.191 [�0.068, 0.451] 0.265

BWD-623 0.956 ln(ECe) 0.713 0.682 [0.576, 0.787] 0.620
SP 0.821 0.785 [0.700, 0.871] 0.835
�w 0.840 0.804 [0.722, 0.885] 0.864

CV-T2 0.944 ln(ECe) 0.995 0.940 [0.923, 0.957] 0.943
SP �0.324 �0.306 [�0.471, �0.140] �0.326
�w 0.762 0.720 [0.607, 0.833] 0.767
ln(SAR) 0.937 0.885 [0.824, 0.946] 0.891
ln(B) 0.921 0.870 [0.802, 0.938] 0.909

BWD-T1 0.949 ln(ECe) 0.855 0.812 [0.728, 0.896] 0.801
SP 0.569 0.540 [0.407, 0.673] 0.498
�w 0.613 0.582 [0.454, 0.710] 0.595
�B �0.402 �0.382 [�0.530, �0.233] �0.352
% clay 0.371 0.352 [0.202, 0.502] 0.293

WL-99 0.819 ln(ECe) 0.889 0.728 [0.644, 0.811] 0.815
SP 0.514 0.421 [0.265, 0.576] 0.223
�w 0.514 0.421 [0.265, 0.576] 0.534
ln(SAR) 0.895 0.733 [0.652, 0.814] 0.745
ln(B) 0.318 0.260 [0.088, 0.433] 0.404

† � � Corr[ln(EMavg), ln(CalcECa)], where EMavg is average electromagnetic induction and CalcECa is calculated soil electrical conductivity.
‡ See Table 2 for variable definitions.
§ �(i) � Corr[ln(CalcECa), ith soil variable].
¶ � � �(i) � predicted Corr[ln(EMavg), ith soil variable].
# 95% CI � 95% confidence interval for � � �(i).
†† 	(i) � Corr[ln(EMavg), ith soil variable].

exhibiting high relative water content levels during the to fall right on the edge of the corresponding 95% confi-
dence intervals associated with the predicted estimates,actual survey processes. Five of the six ln(CalcECa)–

ln(EMavg) correlation estimates exceed 0.85, and three which were 0.841 and 0.064, respectively. A similar pat-
tern is evident in the WL-99 data.of these values appear to be around 0.95. Additionally,

the vast majority of the predicted ln(EMavg)–soil prop- Table 5b lists the equivalent DPPC results from the
six Group B correlation analyses, corresponding to theerty correlation estimates agree well with the observed

estimates. The only notable exceptions are associated six fields exhibiting relative water content levels that
are lower than normal. In general, these results do notwith the CV-K93 and WL-99 survey data. With respect

to the CV-K93 data, the observed ln(EMavg)–ln(ECe) appear to be as good as the results shown in Table 5a.
Two of the six ln(CalcECa)–ln(EMavg) correlation esti-and ln(EMavg)–SP estimates of 0.891 and �0.200 appear

Table 5b. Dual-pathway parallel conductance (DPPC) correlation analysis results: Group B surveys using ordinary DPPC model.

ith soil
Field ID code �† variable‡ �(i)§ � � �(i)¶ 95% CI# 	(i)††

IID-113 0.480 ln(ECe) 0.880 0.423 [0.172, 0.673] 0.151
SP 0.488 0.234 [�0.227, 0.695] 0.472
�w 0.281 0.135 [�0.372, 0.642] 0.854

ACA-7 0.932 ln(ECe) 0.973 0.908 [0.879, 0.936] 0.891
SP 0.721 0.672 [0.587, 0.757] 0.689
�w 0.223 0.208 [0.089, 0.328] 0.411

IID-34 0.524 ln(ECe) 0.641 0.336 [�0.058, 0.729] �0.210
SP 0.751 0.394 [0.055, 0.732] 0.772
�w 0.633 0.331 [�0.066, 0.729] 0.905

PV-01 0.901 ln(ECe) 0.755 0.680 [0.508, 0.851] 0.525
SP 0.823 0.742 [0.593, 0.890] 0.886
�w 0.712 0.641 [0.458, 0.825] 0.794

IID-14 0.915 ln(ECe) 0.746 0.682 [0.520, 0.844] 0.689
SP 0.628 0.574 [0.385, 0.764] 0.567
�w 0.834 0.763 [0.629, 0.897] 0.797

CO-4 0.909 ln(ECe) 0.965 0.877 [0.819, 0.935] 0.912
SP 0.883 0.802 [0.698, 0.907] 0.755
�w 0.606 0.550 [0.373, 0.737] 0.728
ln(SAR) 0.966 0.878 [0.820, 0.935] 0.927

† � � Corr[ln(EMavg), ln(CalcECa)], where EMavg is average electromagnetic induction and CalcECa is calculated soil electrical conductivity.
‡ See Table 2 for variable definitions.
§ �(i) � Corr[ln(CalcECa), ith soil variable].
¶ � � �(i) � predicted Corr[ln(EMavg), ith soil variable].
# 95% CI � 95% confidence interval for � � �(i).
†† 	(i) � Corr[ln(EMavg), ith soil variable].
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Table 6. Ordinary dual-pathway parallel conductance (DPPC) vs. optimized dynamic water content partitioning (Dy-DPPC) model-
ing results.

� hyperparameters‡
Ordinary Optimized Model comparison

Field ID code DPPC �† Dy-DPPC � F score (P � F) �b0 /b1 b1

CV-W96 0.895 na
CV-K93 0.855 0.870 1.727 (0.2192)
BWD-623 0.956 0.962 1.914 (0.1900)
CV-T2 0.944 0.946 1.229 (0.3299)
BWD-T1 0.949 0.954 1.718 (0.2208)
WL-99 0.819 0.871 8.038 (0.0013) 0.63 6.50
IID-113 0.480 0.913 19.16 (0.0009) 0.59 23.25
ACA-7 0.932 0.942 3.543 (0.0411) 0.56 2.75
IID-34 0.524 0.903 15.57 (0.0017) 0.70 20.00
PV-01 0.901 0.933 3.259 (0.0922) 0.74 3.50
IID-14 0.915 0.920 1.288 (0.3273)
CO-4 0.909 0.941 4.437 (0.0387) 0.42 7.75

† � � Corr[ln(EMavg), ln(CalcECa)], where EMavg is average electromagnetic induction and CalcECa is calculated soil electrical conductivity.
‡ �b0/b1 constrained to lie between [0.25, 0.75]; b1 constrained to lie between [2.0, 25.0].

mates appear to be extremely poor (fields IID-113 and very good results when the water content is near field
IID-34, with estimates of 0.480 and 0.524, respectively). capacity but can produce less-than-adequate results
These poor primary correlation estimates suggest that when applied to survey data collected under low water
the ordinary DPPC model is incapable of reproducing content conditions. In those instances, the more robust
the observed survey–soil property correlation structure Dy-DPPC model (Eq. [16b]) should be employed.
in these two fields. Furthermore, many of the predicted Table 6 lists the optimized Dy-DPPC modeling results
ln(EMavg)–soil property correlation estimates associated for the 12 case studies previously discussed. One field
with the remaining four fields appear to be rather differ- failed to optimize (CV-W96), but the primary ln(Cal-ent from the observed estimates. Statistically significant cECa)–ln(EMavg) correlation estimates exhibited at leastdifferences show up between the predicted vs. observed

some degree of improvement in the remaining 11 fields.ln(EMavg)–�w estimates in fields ACA-7 and CO-4.
For fields IID-113 and IID-34, the improvement in theNearly significant differences are apparent in about half
ln(CalcECa)–ln(EMavg) correlation was found to be sub-of the remaining predicted vs. observed correlation esti-
stantial. Overall, the improvement in the primary corre-mates. Overall, the only survey where all of the results
lation estimate in six of the fields was judged to beseem satisfactory appears to be field IID-14.
statistically significant, according to the F-test results.

Optimized Dy-DPPC Correlation The final � hyperparameter estimates for these six fields
Analysis Results are also shown in Table 6.

Table 7 lists the new, optimized DPPC correlationThe preceding results suggest that a DPPC correlation
analysis using the ordinary DPPC model generally yields results for the six fields where the Dy-DPPC model was

Table 7. Dual-pathway parallel conductance (DPPC) correlation analysis results for surveys WL-99, IID-113, ACA-7, IID-34, PV-01,
and CO-4 using the optimized dynamic water content partitioning (Dy-DPPC) model.

Field ID ith soil
code �† variable‡ �(i)§ � � �(i)¶ 95% CI# 	(i)††

WL-99 0.871 ln(ECe) 0.872 0.760 [0.684, 0.836] 0.815
SP 0.368 0.321 [0.177, 0.465] 0.223
�w 0.696 0.606 [0.495, 0.718] 0.534
ln(SAR) 0.855 0.745 [0.664, 0.825] 0.745
ln(B) 0.494 0.430 [0.296, 0.565] 0.404

IID-113 0.913 ln(ECe) 0.203 0.185 [�0.055, 0.425] 0.151
SP 0.657 0.600 [0.415, 0.785] 0.472
�w 0.919 0.839 [0.742, 0.936] 0.854

ACA-7 0.942 ln(ECe) 0.947 0.892 [0.855, 0.929] 0.891
SP 0.723 0.681 [0.602, 0.760] 0.689
�w 0.316 0.298 [0.190, 0.406] 0.411

IID-34 0.903 ln(ECe) �0.069 �0.063 [�0.321, 0.196] �0.210
SP 0.864 0.780 [0.650, 0.910] 0.772
�w 0.993 0.896 [0.864, 0.927] 0.905

PV-01 0.933 ln(ECe) 0.570 0.532 [0.353, 0.710] 0.525
SP 0.922 0.860 [0.776, 0.944] 0.886
�w 0.859 0.801 [0.690, 0.912] 0.794

CO-4 0.941 ln(ECe) 0.950 0.895 [0.839, 0.950] 0.912
SP 0.773 0.727 [0.613, 0.841] 0.755
�w 0.783 0.737 [0.625, 0.849] 0.728
ln(SAR) 0.963 0.906 [0.858, 0.955] 0.927

† � � Corr[ln(EMavg), ln(CalcECa)], where EMavg is average electromagnetic induction and CalcECa is calculated soil electrical conductivity.
‡ See Table 2 for variable defiintions.
§ �(i) � Corr[ln(CalcECa), ith soil variable].
¶ � � �(i) � predicted Corr[ln(EMavg), ith soil variable].
# 95% CI � 95% confidence interval for � � �(i).
†† 	(i) � Corr[ln(EMavg), ith soil variable].



LESCH & CORWIN: APPLICATIONS OF THE DUAL-PATHWAY PARALLEL CONDUCTANCE MODEL 375

Table 8. Sample data associated with field IID-34. The scaled water content (�w) is used to calculate the dynamic water repartitioning
parameter (�), which in turn is used to transform the ordinary dual-pathway parallel conductance (DPPC) water content parameters
(�wc and �ws) into the dynamic DPPC water content parameters (�wc and �ws).

Ordinary DPPC model Dynamic DPPC model
Site
code EMv† EMh† ECe† SP† �w† �w � �wc �ws CalcECa‡ �wc �ws CalcECa

314 65 58 2.105 46.05 0.1451 0.443 0.006 0.0414 0.1037 0.727 0.0002 0.1448 0.379
268 73 58 3.418 49.00 0.1790 0.521 0.027 0.0536 0.1254 1.102 0.0015 0.1776 0.482
1196 81 73 4.815 53.55 0.1964 0.535 0.036 0.0599 0.1365 1.557 0.0021 0.1943 0.603
2776 95 85 2.993 65.35 0.2300 0.545 0.043 0.0720 0.1579 1.466 0.0031 0.2269 0.851
1961 65 64 3.535 53.08 0.2055 0.564 0.061 0.0632 0.1423 1.271 0.0039 0.2017 0.613
2364 94 85 1.858 51.95 0.2120 0.591 0.101 0.0655 0.1465 0.874 0.0066 0.2054 0.583
3167 106 95 3.108 59.38 0.2485 0.628 0.192 0.0787 0.1698 1.388 0.0151 0.2333 0.874
3716 90 92 2.598 65.98 0.2853 0.671 0.361 0.0920 0.1933 1.458 0.0332 0.2521 1.128
3779 107 107 2.480 62.20 0.2807 0.687 0.436 0.0903 0.1903 1.335 0.0394 0.2413 1.064
2087 105 83 2.443 58.63 0.2708 0.691 0.454 0.0868 0.1840 1.231 0.0394 0.2314 0.978
683 118 105 3.010 60.90 0.2894 0.719 0.593 0.0935 0.1959 1.459 0.0555 0.2339 1.212
3122 127 101 2.633 60.55 0.3081 0.768 0.797 0.1002 0.2078 1.375 0.0799 0.2282 1.272

† See Table 2 for variable definitions.
‡ CalcECa, calculated soil electrical conductivity.

found to produce a statistically significant improvement technique for judging the validity of the instrument and
soil sample data as a whole.in the primary correlation estimate. Five of the six

ln(CalcECa)–ln(EMavg) correlation estimates now ex- The results from a DPPC correlation analysis can
prove to be extremely useful with respect to this issue.ceed 0.9, and all but one of the predicted ln(EMavg)–soil

variable correlation estimates now agree well with the First, they provide the analyst with an objective way
to judge the general validity of the data set, via theobserved estimates. These results suggest that the opti-

mized repartitioning of the DPPC water content param- calculation of both the primary CalcECa–EM correla-
tion estimate (this value should be close to 1) and theeters substantially improves the model’s ability to cor-

rectly reproduce the observed survey–soil variable data secondary predicted EM–soil variable correlation esti-
mates (these values should closely match the corre-correlation estimates under low water content situations.

An example of the intermediate calculation details
associated with both models is shown in Table 8 for
field IID-34. This table shows the raw EM-38 and soil
sample data for each calibration sample site, along with
the intermediate calculations used to estimate both the
ordinary DPPC and the Dy-DPPC model. As shown in
Table 8, the value of the water content–partitioning
parameter (�) ranged from 0.006 to 0.797. In turn, this
has a pronounced effect on the dynamic water content
parameter estimates (�wc and �ws), which are quite dif-
ferent from the ordinary DPPC parameter estimates
(�wc and �ws).

The overall effect of this adjusted water content parti-
tioning is shown in Fig. 5a and 5b. Figure 5a shows the
apparent correlation structure between the log-calcu-
lated conductivity using the ordinary DPPC model and
the average of the log EM signal measurements (r �
0.524). Figure 5b shows the new correlation structure
between the log-calculated conductivity using the opti-
mized Dy-DPPC model and the same log EM signal
measurements (r � 0.903). This pronounced improve-
ment in the correlation structure suggests that the rela-
tively low water content levels significantly affected (i.e.,
dampened) the EM signal measurements in this field.

DISCUSSION
Most agricultural ECa surveys are done with the ex-

pressed goal of gaining information about the spatial
distribution of one or more soil properties from the
acquired conductivity data. Generally, this information
is quantified by using some type of statistical modeling

Fig. 5. Calculated soil electrical conductivity (CalcECa) vs. electro-procedure (i.e., an empirical equation that can calibrate magnetic induction (EM) correlation results in field IID-34 from
soil sample data with ECa signal data). While such an (a) ordinary DPPC model and (b) optimized, dynamic water con-

tent–partitioning DPPC model.approach has obvious advantages, it lacks an objective
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sponding observed estimates). Second, the results from model does not mitigate this concern in any practical
sense. In other words, although the Dy-DPPC modelsuch an analysis represent an excellent procedure for
was successfully used to verify that the observed highclassifying the expected degree of correlation between
EM–water content and low EM–salinity correlationsspecific soil properties and the acquired ECa data. They
were correct (in a data validation sense), this does notautomatically yield the exact correlation levels between
imply that the low EM–salinity correlation problem caneach soil property and the model-calculated conductiv-
be corrected. To achieve such a correction, one wouldity (CalcECa); multiplying each of these values by the
need fairly precise water content estimates at each andprimary CalcECa–EM correlation level yields the corre-
every survey site, e.g., either actual water content mea-sponding predicted values. Hence, provided prior soil
surements across the entire survey grid or a second set ofsample data is available and the employed DPPC model
instrument signal data that could be used to accuratelyis realistic, this procedure can be used to project the
estimate the spatial variation in soil water content. Nei-expected EM–soil variable correlation levels. This tech-
ther type of measurement data is available for any ofnique is especially useful in precision-farming applica- the 12 survey projects examined here. Hence, eventions where the target variable of interest is often some- though all 12 survey projects exhibit high internal valid-thing other than salinity (Corwin and Lesch, 2003). ity, some of the survey processes will still clearly fail to

Of course, the final accuracy inherent in a DPPC yield accurate salinity maps (e.g., fields IID-113 and
correlation analysis depends on the validity of the model IID-34).
itself. When the relative soil water content level is at From a more general data interpretation perspective,
or near field capacity, the ordinary DPPC equation gen- these DPPC correlation analysis results demonstrate
erally produces excellent results. In our surveying expe- why there is often such significant variation in the vari-
riences, fields like WL-99 represent the exception and ous EM signal data–soil variable correlation estimates
tend to occur infrequently. However, when the relative between different fields. As discussed in Corwin and
water content drops substantially below field capacity, Lesch (2003), the final correlation estimates in any spe-
the assumptions inherent in the ordinary equation can cific survey situation are strongly influenced by both
begin to break down. More specifically, these analyses the variability of each (primary) soil property and the
suggest that the projected vs. observed correlation re- degree of correlation between these properties. Addi-

tionally, the degree of dynamic water partitioning (un-sults can often be significantly improved by dynamically
der low water content situations) will also have a pro-repartitioning the �ws and �wc water content compo-
nounced effect. For example, when ECe represents thenents. The method proposed for achieving this (a logistic
dominant soil property and the soil is near field capacity,function conditioned on the scaled water content) does
the ECa–ECe correlation level is nearly always quitenot represent the only conceivable partitioning strategy,
high. High correlation levels between the ECa and otherbut we have found this approach to produce both robust
soil properties (SP, percentage clay, �w, etc.) typicallyand accurate results in practice.
only occur when these other properties simultaneouslyBased on the limited number of low water content
correlate well with salinity. However, as these otherdata sets analyzed herein, the � hyperparameter esti-
primary soil properties become more variable and lessmates (�0 and �1, shown in Table 6) appear to be quite
correlated with salinity, the ECa–ECe correlation levelvariable from field to field. This suggests that these
tends to drop off. Additionally, as the spatial variationparameters are probably field specific and perhaps influ-
in soil salinity decreases and the spatial variation in theenced by other secondary soil physicochemical proper- other primary properties increases, one or more of theseties. Additionally, a careful analysis of Eq. [3] shows other properties will eventually supercede the soil salin-

that the primary DPPC water content parameters (�ws ity as the dominant soil property. Furthermore, as shown
and �wc) are inherently confounded with the assumption herein, if the relative water content drops too far below
of conductivity equilibrium (ECw � ECws � ECwc). field capacity, then the spatial variation in water content
Hence, the variation in the � hyperparameter estimates can become the dominant factor influencing the ECa
might also reflect field-specific nonequilibrium effects data, even in the presence of large spatial variation
because this latter assumption could also be expected in salinity.
to break down under low water content situations. In general, the preceding analyses demonstrate the
Nonetheless, the minimum safe relative water content degree of potential variation that often occurs in ECa–
level appears to be fairly stable. Specifically, it appears soil property correlation estimates. A multitude of re-

sults are possible, but the final correlation levels ulti-that the repartitioning effect does not generally become
mately depend on the joint distribution and relativea serious issue unless the relative water content drops
spatial variation inherent in the primary soil properties.below 65% (Table 3c). Hence, when conducting a salin-
The simultaneous interaction of all of these propertiesity survey, we recommend that the minimum water con-
must first be quantified before an accurate projectiontent with respect to field capacity be kept above 65%
of the ECa–soil property correlation structure can bewhenever possible.
made. However, given such information, the precedingThe fact that the ordinary DPPC equation may break
results suggest that accurate projections are possibledown under abnormally low water content situations is
under a wide variety of typical surveying conditions.actually not surprising. On the contrary, this problem

is discussed in detail in Rhoades et al. (1999b), along
CONCLUSIONwith a number of important reasons for not performing

soil conductivity surveys under low water content situa- The aforementioned analyses demonstrate the use-
fulness of the DPPC modeling approach, from both ations. Additionally, the use of the modified Dy-DPPC



LESCH & CORWIN: APPLICATIONS OF THE DUAL-PATHWAY PARALLEL CONDUCTANCE MODEL 377

andspecific data validation perspective and a more general
data interpretation perspective. These results demon- Var(X) � Var(A0 � A1Y � ε1)strate how the DPPC model developed by Rhoades et

� A2
1Var(Y) � Var(ε1)al. (1989) can be used to accurately predict the expected

correlation structure between ECa data and multiple � A2
1 �2

Y � �2
1

soil properties of interest for an arbitrary survey process.
Therefore, because Var(Y) � �2

Y, �XY can be rewritten asThis methodology (referred to as a DPPC correlation
analysis) represents a useful survey data validation pro-

�XY �
A1�Y

√(A2
1 �2

Y � �2
1)

�
A1�Y

√Var(X)cedure as well as a quantitative technique for describing
how different soil properties correlate with the acquired

In a similar manner, �YZ can be rewritten asECa data. These results indicate that this technique gen-
erally works well in practice, provided the relative soil

�YZ �
B1�Y

√(B2
1 �2

Y � �2
2)

�
B1�Y

√Var(Z)
water content across the survey area is reasonably close
to field capacity.

The ordinary DPPC model can be extended to handle Now, note that
survey data collected under low water content situations
through the use of an adjusted, field-specific water con- Corr(X,Z) �

Cov(X,Z)

√Var(X), Var(Z)tent–partitioning function. A simple partitioning strat-
egy has been presented, along with a technique for esti- and Cov(X,Z) can be expanded as
mating and testing the partitioning hyperparameters for

Cov(X,Z) � Cov(A0 � A1Y � ε1, B0 � B1Y � ε2)statistical significance. Results from 12 different salinity
surveys suggest that this adjustment can induce a sub- � Cov(A1Y,B1Y) � Cov(A1Y,ε2) �
stantial improvement in the accuracy of the predicted Cov(B1Y,ε1) � Cov(ε1,ε2)correlation structure under especially low water content

� A1B1Var(Y)situations. However, low soil water content situations
should still be avoided during actual EM–salinity survey � A1B1�

2
Y

applications because there is no way to adjust for the
because the last three terms in the expansion have ex-heightened water content effect at any of the noncalibra-
pectations of 0 under the previously stated assump-tion survey sites.
tions. Hence,In a broader sense, these results demonstrate that the

correlation structure between survey conductivity data
Corr(X,Z) � � A1�Y

√Var(X)� � � B1�Y

√Var(Z)� � �XY�YZand different soil properties in any specific field can be
quite variable. This structure ultimately depends on the
joint distribution of the primary ECe, SP, and �w soil

Part A.2properties (under normal water content conditions) and
also the degree of assumed continuous vs. series-coupled An approximate F-test statistic for determining if the in-
water content partitioning (under low water content crease in the correlation coefficient is statistically significant
conditions). can be developed as follows. Let Y represent the vector of

averaged EM data, X the corresponding vector of ordinary
DPPC conductivity calculations, and W the correspondingAPPENDIX
vector of optimized Dy-DPPC conductivity calculations. (AllPart A.1 of the above mentioned data may be log-transformed; whether

A proof of the correlation product relationship can be de- or not such a transformation is employed is irrelevant to this
veloped as follows. Let X, Y, and Z represent three stochastic discussion.) Define Corr(Y,X) � r1 to be the calculated EM–
random variables with finite mean and variance, with the vari- DPPC correlation and Corr(Y,W) � r2 to be the optimized
ance of Y defined as �2

Y. Suppose that both X and Z are related EM–Dy-DPPC correlation.
to Y in a linear manner, i.e., First, note that when we calculate the r1 correlation, we are

implicitly minimizing the sum of square error term in theX � A0 � A1(Y) � ε1, where ε1 � iid N(0, �1
2) following linear regression model:

Z � B0 � B1(Y) � ε2, where ε2 � iid N(0, �2
2)

Y � �0 � �1(X)
and that the residual error components (ε1 and ε2) are

Define SSE1 to be the sum of square error estimate producedindependent. Then, if Corr(X,Y) � �XY and
by this model (having n � 2 degrees of freedom). Additionally,Corr(Z,Y) � �YZ, the expected value of Corr(X,Z) is
when we optimize the EM–Dy-DPPC correlation estimatesimply equal to the product of �XY � �YZ. To show this
(r2), we are also implicitly minimizing the sum of square errorexplicitly, note that �XY is equal to
term in the following nonlinear regression model:

�XY � Corr(X,Y) �
Cov(X,Y)

√Var(X)Var(Y)
Y � φ0 � φ1(W | �0, �1)

where �0 and �1 represent the bounded logistic function pa-and that rameters (which in turn define the value of � in the Dy-DPPC
equation). Define SSE2 to be the sum of square error estimateCov(X,Y) � Cov(A0 � A1Y � ε1,Y)
produced by this model (having n � 4 degrees of freedom).

� A1Var(Y) � Cov(ε1,Y) Furthermore, note that the Dy-DPPC equation reduces to the
ordinary DPPC equation whenever � � 1 (i.e., whenever �0� A1 � �2

Y
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and �1 are defined to be arbitrarily large); hence, these two rXZ � rXYrYZ � �√1 � r2
XY √1 � r2

YZ�Corr(e1,e2)
equations represent nested models (Bates and Watts, 1988, p.
103–104). Therefore, given a sample size of n, the following

This last formula is enlightening because it shows thatF score can be constructed:
the observed residual correlation estimate [Corr(e1, e2)]
is simply the partial correlation coefficient between theF � [(SSE1 � SSE2)/2 ]/[SSE2/(n � 4)]
x and z variables, after adjusting for the y variable.

which can used as an approximate F-test statistic with 2 and Additionally, because the distribution of the partial cor-
n � 4 degrees of freedom. Note that this essentially represents relation coefficient is well known (i.e., see Graybill,
an approximate test of (�0, �1 � �∞), which is equivalent to 1976, Chapter 11), a 95% confidence interval can be
testing for statistical significance in the correlation estimate immediately derived. Specifically, if Re � Corr(e1, e2),
improvement. then the transformed variable

Part A.3 T �
Re √n � 3

√1 � R2
eAn approximate 95% confidence interval for each predicted

EM–soil property correlation estimate can be constructed as will follow a Student t distribution under the null hy-
follows. Let x, y, and z represent the observed data vectors pothesis that Re � 0. Hence, if t0.975 is defined to be the
from three stochastic random variables with finite mean and 97.5% probability point of the Student t distribution
variance and let the variance of y be represented as sY

2. (With- with n � 3 degrees of freedom, a 95% confidence inter-
out loss of generality, let x represent ECe data, y the CalcECa val for the rXYrYZ product correlation estimate can be
data, and z averaged EM data.) Suppose again that both x calculated as
and z are related to y in a linear manner; i.e.,

rXYrYZ � �√1 � r2
XY √1 � r2

YZ� � t0.975

√n � 3 � t2
0.975

�x � �0 � �1(y) � e1, Var(e1) � m1
2

z � b0 � b1(y) � e2, Var(e2) � m2
2

Then the following relationships hold (these follow di-
Notes:rectly from the derivations presented in Proof A.1):

1. The assumption of residual independence is intu-Var(x) � �2
1s2

Y � m2
1

itively equivalent to the assumption that the DPPC
Var(z) � b2

1s2
Y � m2

2 model is correctly specified. In situations where the
Cov(x,y) � �1s2

Y DPPC model is seriously misspecified, significant resid-
ual correlation will generally be present. In turn, theCov(y,z) � b1s2

Y
observed rXZ correlation estimate will appear to be con-

and siderably outside the rXYrYZ confidence interval.
2. The above derivation also clearly depends on theCov(x,z) � Cov(�1y,b1y) � Cov(�1y,e2) �

assumption that the e1 and e2 residual errors are spatiallyCov(b1y,e1) � Cov(e1,e2) independent. In practice, if this assumption is not cor-
� �1b1Var(y) � Cov(e1,e2) rect, the derived 95% confidence intervals will underes-

timate the true 95% coverage probability. Because spa-� �1b1s2
Y � √Var(e1)Var(e2) � Corr(e1,e2) tially correlated residuals are always of some concern,

� �1b1s2
Y � m1m2Corr(e1,e2) these confidence intervals should be interpreted cau-

tiously.This is because the two middle covariance terms are
constrained to be exactly equal to 0 by the regression
model fitting procedure. Furthermore, because
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