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Precious groundwater resources across the United States have been 
contaminated due to decades-long nonpoint-source applications of 
agricultural chemicals. Assessing the impact of past, ongoing, and 
future chemical applications for large-scale agriculture operations 
is timely for designing best-management practices to prevent 
subsurface pollution. Presented here are the results from a series of 
regional-scale vulnerability assessments for the San Joaquin Valley 
(SJV). Two relatively simple indices, the retardation and attenuation 
factors, are used to estimate near-surface vulnerabilities based on the 
chemical properties of 32 pesticides and the variability of both soil 
characteristics and recharge rates across the SJV. Th e uncertainties 
inherit to these assessments, derived from the uncertainties within 
the chemical and soil data bases, are estimated using fi rst-order 
analyses. Th e results are used to screen and rank the chemicals based 
on mobility and leaching potential, without and with consideration 
of data-related uncertainties. Chemicals of historic high visibility in 
the SJV (e.g., atrazine, DBCP [dibromochloropropane], ethylene 
dibromide, and simazine) are ranked in the top half of those 
considered. Vulnerability maps generated for atrazine and DBCP, 
featured for their legacy status in the study area, clearly illustrate 
variations within and across the assessments. For example, the 
leaching potential is greater for DBCP than for atrazine, the leaching 
potential for DBCP is greater for the spatially variable recharge 
values than for the average recharge rate, and the leaching potentials 
for both DBCP and atrazine are greater for the annual recharge 
estimates than for the monthly recharge estimates. Th e data-related 
uncertainties identifi ed in this study can be signifi cant, targeting 
opportunities for improving future vulnerability assessments.

Data Related Uncertainty in Near-Surface Vulnerability Assessments 
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Everything should be made as simple as possible, but not simpler.
—attributed to Albert Einstein

Th ere’s no such thing as a fr ee lunch.
—Milton Friedman

The challenge of assessing groundwater vul-
nerability at the regional scale due to nonpoint-source 
agrochemical applications is not a trivial one (Corwin 

et al., 1997, 1999). Th e use of simple mobility–leaching indi-
ces to generate assessments of subsurface vulnerability provides 
information that can be useful within the decision-management 
arena. Th ese assessments rest on chemical, soil, and recharge data 
that are sparse and, therefore, contain uncertainty.

Th e ~12,000-km2 San Joaquin Valley (SJV) is the regional-
scale system of interest in this study. Located at the southern 
end of California’s Central Valley (Fig. 1), the SJV is a structural 
basin fi lled with thousands of meters of sedimentary material 
creating a nearly fl at alluvial plain (Loague et al., 1998b). Th e 
soils on the more fertile eastern side of the SJV are derived from 
the granitic Sierra Nevada, with large areas of wind-deposited 
sands underlain by deep coarse-textured alluvial material 
(National Research Council, 1993). Th e sediments of the SJV 
tend to be interlayered gravel, sand, silt, and clay derived from 
the surrounding mountains and deposited in alluvial-fan, 
fl oodplain, fl ood basin, lacustrine, and marsh environments 
(Domagalski, 1998). As a direct result of large-scale irrigation 
infrastructure and agrochemical use, the SJV has produced 
a signifi cant fraction of the food grown in North America for 
decades. Th e availability of precious groundwater resources in 
the SJV is well documented (e.g., Belitz, 1988; Faunt, 2009). 
Th e impacts from agrochemicals to groundwater quality within 
the SJV have received considerable attention (e.g., Holden, 
1986; Smith, 1989; Domagalski and Dubrovsky, 1992; National 
Research Council, 1993; Barbash and Resek, 1996; Burow et al., 
1998a,b, 1999, 2007).

Th ere are now excellent regional-scale examples that illustrate 
the spatial variability of information and response for the near 
surface (e.g., Lemieux et al., 2008; Gleeson et al., 2011a,b). Th e 
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methods used to assess the fate and transport of pesticides within 
the variably saturated subsurface, ranging from simple models to 
comprehensive physics-based models, are oft en reviewed (e.g., 
Jury and Fluher, 1992). An early approach to assess groundwater 
vulnerability across large areas was the standardized DRASTIC 
system (Aller et al., 1987). Past assessments of groundwater 
vulnerability for the SJV include the index-based approaches 
reported by Meeks and Dean (1990) and Zhang et al. (1995), the 
discriminate and logistic regression analyses reported by Teso et 
al. (1988, 1995, 1996), the transfer function approach reported 
by Stewart and Loague (2004), and physics-based simulations 
of fl ow and transport reported by Loague et al. (1998a,b) and 
Burow et al. (1999).

Th e two-fold objective of the work reported here is (i) to 
produce near-surface vulnerability maps for the entire SJV 
for a suite of targeted chemicals and (ii) to characterize the 
data-related uncertainties in these assessments. Th e signifi cant 
diff erence between this study and past work is the quantitative 
characterization of the impact data-related uncertainties and 
alternative water-balance derived recharge estimates have on 
near-surface vulnerability assessments for 32 agrochemicals 
within the SJV. Th e vulnerability assessments reported here 
provide food for thought but should not be taken as a conclusive 
tool for ongoing management decisions.

Materials and Methods
Retardation and Attenuation Factors

Th e attenuation factor (AF) index, proposed by Rao et 
al. (1985) to screen and rank the likelihood of agrochemical 
leaching, has been used successfully for subsurface vulnerability 
assessments for the Hawaiian island of Oahu (Loague, 1991, 
1994; Loague et al., 1989, 1990, 1996; Giambelluca et al., 1996) 
and the Canary island of Tenerife (Diaz-Diaz et al., 1998; Diaz-
Diaz and Loague, 2000b). Th e AF index used here is as follows:

FC
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0.639dRF
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where d [m] is the distance from the surface to a compliance 
depth, RF [dimensionless] is the retardation factor, θFC [m3 m−3] 
is the soil-water content at fi eld capacity, q [m d−1] is the net 
recharge, and t1/2 [d] is the chemical half-life. Th e retardation 
factor in Eq. [1] is given by

b OC OC

FC
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f Kρ
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where ρb [kg m−3] is the soil bulk density, foc [mass fraction] 
is the soil organic carbon, and Koc [mL g−1] is the chemical 
sorption coeffi  cient. Th e RF and AF indices loosely represent 
the important processes of sorption and advection, decay, and 
sorption, respectively. Neither index provides concentration 
information. Th e range of possible values for AF is between 
zero and one; RF = 1.0 for nonsorbing chemicals. Th e simpli-
fying assumptions and major limitations of the indices, relative 
to known processes of near-surface chemical transport and fate, 
were described by Kleveno et al. (1992). Th e scales used here 
to divide the AF and RF values into mobility–leaching ranges 

(aft er Khan et al., 1986) are given in Table 1. Th e assignment of 
numerical values to the various classes is subjective; therefore, 
the classes shown in Table 1 only indicate relative retardation 
and attenuation.

First-Order Uncertainty Analysis
In regional-scale assessments of subsurface vulnerability 

with, for example, the AF and RF indices, there will of course 
be uncertainty associated with error propagation (Heuvelink, 
1998). First-order analysis is a simple approach for estimating 
the uncertainties in a deterministic model due to parameter 
uncertainty (Cornell, 1972). With fi rst-order uncertainty 
analysis, the total uncertainty is determined from the component 
uncertainty contributed by each variable, Ci. Th e uncertainty in 
the ith parameter (i.e., data-related error) for RF and AF are 
given, respectively, by the following:
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Table 1. Mobility–leaching scales for the retardation factor (RF) and 
attenuation factor (AF) indices (after Khan et al., 1986).

Value Classifi cation

 RF

 =1.0 Very mobile (VM)

 >1.0 and <2.0 Mobile (M)

 ≥2.0 and <3.0 Moderately mobile (MM)

 ≥3.0 and <10.0 Moderately immobile (MI)

 ≥10.0 Very immobile (VI)

AF

 ≥0.0 and <0.001 Very unlikely (VU)

 ≥0.001 and <0.01 Unlikely (U)

 ≥0.01 and <0.1 Moderately likely (ML)

 ≥0.1 and <0.25 Likely (L)

 ≥0.25 and ≤1.0 Very likely (VL)

Fig. 1. Location of the San Joaquin Valley study area within the central 
valley of California.
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where =1 means equal in the fi rst-order sense and SPi is the 
standard deviation of the parameter Pi (i.e., ρb, foc, Koc, and θFC 
for RF; d, RF, θFC, q, and t1/2 for AF). Th e standard deviations 
(uncertainties) in RF and AF estimates are calculated, 
respectively, from the component uncertainties as

1/2
1 2

RF
1

n

i
i

S C
=
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Th e equations for the AF and RF component uncertainties are 
given by Loague et al. (1990).

A risk-averse approach is taken for estimating the data-related 
uncertainties in the RF and AF vulnerability assessments for 
the SJV. While one can easily produce RF ± SRF and AF ± SAF 
estimates, here only the RF − SRF and AF + SAF scenarios are 

considered. For this study if RF − SRF or AF + SAF is less than or 
greater than one, respectively, then the values are (subjectively) 
set to one. For this study, the standard deviations for RF and AF 
have been subtracted and added, respectively, from the mean 
values without regard to the normality and degrees of confi dence 
that can be associated with one, two, or three standard 
deviations. It is useful to think of the frequency distributions for 
these calculations as uniform and truncated based on scale limits 
(Loague et al., 1990). Th e reader is reminded that the various 
classes for RF and AF in Table 1 are arbitrary.

Data
Th e chemical, soil, and recharge information needed to 

parameterize Eq. [1–6] for the SJV is gleaned, respectively, 
from Hornsby et al. (1996), Blanke (1999), and Mills (2004). 
Th e mean and standard deviation values for Koc and t1/2 for the 
32 agrochemicals examined in this study are given in Table 2. 
Th e 32 pesticides are (or have been) used in association with 
agriculture. Th e selection of these pesticides for this study was 

Table 2. Characteristics of the 32 agrochemicals included in this study (after Hornsby et al., 1996; Diaz-Diaz and Loague, 2000a).

Chemical K
oc

† S
Koc

t
1/2

S
t1/2

——— mL g−1 ——— ——— d ———

Alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide]‡ 170 205 15 10

Aldicarb [2-methyl-2-(methylthio)-propionaldehyde O-(methylcarbamoyl)oxime]‡ 30 21 30 22

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine)‡§ 100 39 60 29

Bromacil [5-bromo-3-(sec-butyl)-6-methyluracil]‡ 32 14 60 87

Carbaryl (1-naphthyl-N-methylcarbamate)‡ 300 297 10 5

Carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl-n-methylcarbamate)‡ 22 23 50 23

Carboxin (5,6-dihydro-2-methyl-1,4-oxathiin-3-carboxanilide)‡ 260 73 3 2

Chlorothalonil (tetrachloroisophthalonitrile)‡ 1380 1276 30 25

Cyanazine (2[[4-chloro-6(ethylamino)-S-triazin-2-yl]amino]-2-methylpropionitrile)‡ 190 111 14 28

2,4-D (2,4-dichlorophenoxy acetic acid)‡ 20 12 10 4

2,4-DP [butoxyethyl ester of ( ± ) 2-(2,4-dichlorophenoxy)propanoic acid]§ 1000 285 10 1

Dalapon (2,2 dichloropropionic acid) (sodium salt)‡ 1 1 30 4

DBCP (1,2-dibromo-3-chloropropane)§ 70 26 180 44

DCPA (dimethyl 2,3,5,6-tetrachloro-1,4-benzenedicarboxylate)‡ 5000 693 100 25

Diazinon [O, O-diethyl-O-(2-isopropyl-4-methyl-6-pyrimidinyl)phosphorothiote]‡§ 1000 507 40 8

Dicamba (2-methoxy-3,6-dichlorobenzoic acid)‡§ 2 2 14 9

1,2-Dichloropropane (1,2-Dichloropropane)‡§ 50 1 700 321

Dinoseb (2-sec-butyl-4,6-dinitrophenol)‡ 30 133 30 9

Diphenamid (N,N-dimethyl-a-phenylbenzeneacetamida)‡ 210 42 30 9

Disulfoton (O,O-diethyl S-[2-(ethylthio)ethyl]phosphorodithioate)‡ 600 1008 30 25

Diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea]‡§ 480 252 90 86

EDB (1,2-dibromoethane)§ 34 43 100 53

Methomyl [S-methyl-N-((methylcarbamoyl)oxy)-thioacetamidate]‡ 72 38 30 12

Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide]‡ 200 60 90 49

Metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one]‡ 60 25 40 28

Oxamyl [methyl 2-(dimethylamino)-N-[[(methylamino)carbonyl]oxy]-2-oxoethanimimdothioate]‡ 25 6 4 5

Prometon [6-methoxy-N,N’-bis(1-methylethyl)-1,3,5-triazine-2,4-diamine]§ 150 157 500 560

Prometryn [N,N’-bis(1-methylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine]§ 400 644 60 102

Propazine [6-chloro-N,N’-bis(1-methylethyl)-1,3,5-triazine-2,4-diamine]§ 154 32 135 93

Simazine [2-chloro-4,6-bis(ethylamino)-s-triazine]‡§ 130 34 60 40

Tebuthiuron [N-[5-(1,1-dimethyl)-1,3,4-thiadizol-2-yl]-N,N’-dimethylurea]‡ 80 178 360 282

Trifl uralin [2,6-dinitro-N,N-dipropyl-4-(trifl uoromethyl)benzenemamine]‡ 8000 3608 60 21

† K
oc

, soil organic carbon/water partition coeffi  cient; S
Koc

, standard deviation for K
oc

; t
1/2

, half-life in soil; S
t1/2

, standard deviation for t
1/2

.

‡ Identifi ed by USEPA (1988) as high risk relative to groundwater contamination.

§ Detected in California groundwater (Domagalski and Dubrovsky, 1992).
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based on identifi cation by the USEPA (1988) as high risk relative 
to groundwater contamination and/or detection in California 
groundwater as reported by Domagalski and Dubrovsky (1992). 
It is worth noting that Holden (1986) reported the detection 
of 52 pesticides in California groundwater. Inspection of Table 
2 reveals that for several chemicals, considerable uncertainty 
is associated with the chemical information (e.g., coeffi  cient 
of variation values greater than one for Koc and/or t1/2). Th e 
chemicals featured for the vulnerability assessment illustrations 
(i.e., maps) in the Results section, due to their high profi les 
within the SJV (e.g., Loague et al. (1998a,b); Stewart and 
Loague, 2004), are dibromochloropropane (1,2-dibromo-
3-chloropropane), also known as DBCP, and atrazine 
(2-chloro-4-ethylamino-6-isopropylamino-S-triazine).

Th e spatial distribution of soils within the SJV is illustrated 
in Fig. 2, which was generated by fi rst digitizing and then 
combining (within a GIS framework) USDA Soil Conservation 
Service soil survey information for the study area (see Arkley, 
1962, 1964; Arroues and Anderson, 1986; Huntington, 
1971; Ulrich and Stromberg, 1962) into a comprehensive 
map at the order taxonomic level using the scaling approach 
described by Loague et al. (1989). Th e map in Fig. 2 is made 
up of 41,192 individual soil-mapping units. Th e mean and 
standard deviation values for θFC, ρb, and foc for the diff erent 
soil orders (and soil order combinations) across the study area 
are given in Table 3. Th e soil characteristics in Table 3 are based 
on more than 13,000 values gleaned from the USDA Map 
Unit Interpretation Record (MUIR) database and the fi ve soil 
surveys covering the study area. Inspection of Table 3 shows 
that there is some uncertainty within the soils information 
(e.g., coeffi  cient of variation values less than one for θFC, ρb, and/
or foc), albeit considerably less than for the chemical data. Th e 
individual steps used in the preparation of Fig. 2 and Table 3 
were described by Blanke (1999). Maps found in Blanke (1999) 
illustrate the spatial variability (and uncertainty) of θFC, ρb, and 
foc across the study area. Th e d in Eq. [1] was conservatively set 
at 1.0 m for this study, with no uncertainty.

Th ree diff erent annual recharge estimates for the study area 
were used. Th e fi rst estimate is an average value of 0.87 mm 

d−1 (with a standard deviation of 0.59 mm d−1), gleaned from 
the Fresno case study simulations reported by Loague et al. 
(1998a,b). Th e Fresno recharge estimates are for an area of 1174 
km2 over a 35-yr period (Loague et al., 1998a,b); see Fig. 1 for the 
location of the Fresno case study. Th e second and third estimates 
are for spatially variable recharge across the study area, based on a 
simple water-balance approach given by the following:

q = P + I – ET [7]

where P is precipitation [m d−1], I is irrigation [m d−1], and ET 
is evapotranspiration [m d−1]. Both annual and monthly water 
balances are generated to estimate annual recharge values. Potential 
evapotranspiration (PET) was estimated from temperature using 
the Th ornthwaite and Mather (1955) method as:

( )PET 1.6 10 '
aT I=  [8]

where T is temperature (°C), and a and I′ are empirical weights 
(see Dunne and Leopold, 1978). Th e relationship between PET 
and ET used here is (Dunne and Leopold, 1978):

AW

AWC
ET PET f

⎛ ⎞θ ⎟⎜ ⎟= ⋅ ⎜ ⎟⎜ ⎟⎜θ⎝ ⎠
 [9]

where f is an empirical weight (taken here as 1.0), θAW is the 
available soil-water content [m3 m−3], and θAWC is the available 
soil-water capacity [m3 m−3]. Th e θAW and θAWC are estimated as

AW WP( )θ = θ−θ  [10]

AWC FC WP( )θ = θ −θ  [11]

where θ is the soil-water content [m3 m−3], θWP is the soil-water 
content at the permanent wilting point [m3 m−3], and θFC is the 
soil-water content at fi eld capacity. An average value of 90% of 
θFC was used for θ in this study for the entire SJV, based on the 
conservative (risk-averse) assumption that intensive irrigation 
maintains the soil-water content close to fi eld capacity. Th e θWP 
was estimated for each soil order in the SJV on the basis of soil 

Table 3. Characteristics of the soils within the San Joaquin Valley study area.†

Soil order/combination θ
FC

‡ Sθ
FC

ρ
b

Sρ
b

f
oc

Sf
oc

——— m3 m−3 ——— ——— kg m−3 ——— ——— mass fraction ———

Alfi sols 0.251 0.052 1519 68.3 0.006 0.003

Aridisols 0.288 0.071 1438 184.8 0.008 0.005

Entisols 0.213 0.063 1566 67.6 0.006 0.003

Inceptisols 0.244 0.065 1510 57.8 0.006 0.002

Mollisols 0.276 0.87 1485 86.0 0.013 0.005

Vertisols 0.390 0.063 1362 62.6 0.011 0.003

Alfi sols/Entisols 0.232 0.058 1542 67.9 0.006 0.003

Alifi sols/Inceptisols 0.248 0.059 1514 63.1 0.006 0.002

Alfi sols/Inceptisols/Mollisols 0.257 0.068 1504 70.7 0.008 0.003

Alfi sols/Mollisols 0.264 0.069 1502 77.1 0.009 0.004

Aridisols/Entisols 0.250 0.067 1502 126.2 0.007 0.004

Entisols/Mollisols 0.245 0.075 1525 76.8 0.009 0.004

† Information originally from the USDA Map Unit Interpretation Record (MUIR) Website, which has been shut down by Natural Resources Conservation 

Service (NRCS); the information is now available from the NRCS Soil Data Mart Website at http://soildatamart.nrcs.usda.gov/ (accessed 25 Mar. 2012).

‡ θ
FC

, volumetric fraction of soil-water content at fi eld capacity; Sθ
FC

, standard deviation for θ
FC

; ρ
b
, soil bulk density; Sρ

b,
 standard deviation for ρ

b
; f

oc,
 soil 

organic carbon; Sf
oc,

 standard deviation for f
oc

.
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texture (Brady, 1984; Stewart and Loague, 2004). Estimates of 
recharge were made within a GIS framework, using spatially 
variable temperature, rainfall, and land use information. Th e 
two spatially variable estimates of annual recharge for the SJV 
are illustrated in Fig. 3. Inspection of Fig. 3 shows that the 
recharge rates are signifi cantly greater based on the annual 
water balance than for the summed monthly water balances. 
Both maps in Fig. 3 show considerable spatial variations in the 
estimated recharge. Estimating component uncertainties for the 
spatially variable recharge rates in Fig. 3 was beyond the scope 
of this study. Mills (2004) provides maps showing the spatial 
variability of P, T, θWP, PET, and PET across the SJV as used in 
the water-balance estimates.

Results
Retardation Factor

Table 4 summarizes RF estimates of near-surface vulnerability 
for 32 chemicals developed for the six soil orders in the SJV. Th e 
results in Table 4 are ranked, classifi ed, and reclassifi ed on the 
basis of mobility and data-related uncertainty. Th e uncertainty 
results are presented only for the risk-averse case (i.e., RF − SRF). 
Inspection of Table 4 reveals that relative to soil taxonomy, the 
rankings are the same, as the values of SθFC, Sρb, and Sfoc are 
relatively small across the soil orders. Th e diff erences between 
the RF and RF − SRF estimates are explained by large SKoc values. 
With consideration for the data-related uncertainties, the 
changes in the vulnerability estimates are greatest for carbaryl, 
prometryn, disulfoton, and chlorothalonil. (Th e RF and SRF 
estimates, on which the results in Table 4 are based, are provided 
in Supplemental Table S1.)

Figures 4a and 4b are near-surface vulnerability maps of 
DBCP mobility across the SJV, based on, respectively, the RF and 
RF − SRF values in Table 4. Inspection of Fig. 4a and 4b shows that 
without and with consideration for data-related uncertainties, 
the DBCP vulnerability estimates generally fall, respectively, in 
the moderately immobile and mobile classifi cations. In terms of 
subsurface vulnerability, the maps in Fig. 4a and 4b are neither 

the best nor the worst relative to spatially variable estimates. 
(Subsurface vulnerability maps for the SJV, based on RF and RF 
− SRF estimates, for each chemical listed in Table 2 are provided 
in Supplemental Fig. S1–S32.)

AF with Average Recharge
Table 5 summarizes AF estimates of near-surface 

vulnerability for 32 chemicals developed for the six soil orders 
in the SJV. Th e results in Table 5 are ranked, classifi ed, and 
reclassifi ed on the basis of leaching potential and data-related 
uncertainty. Th e uncertainty results are presented only for 

Fig. 2. Locations of the six soil orders (and their combinations) within 
the San Joaquin Valley study area.

Fig. 3. (a) Annual recharge estimates based on an annual water balance for the San Joaquin Valley study area. (b) Annual recharge estimates based 
on monthly water balances for the San Joaquin Valley study area.
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the risk-averse case (i.e., AF + SAF). Th e rankings in Tables 
5 diff er signifi cantly from those in Table 4 (i.e., advection, 
decay, and sorption [AF] versus sorption [RF]). Inspection 
of Table 5 reveals that relative to soil taxonomy, the rankings 
are nearly the same without and with consideration of data 
related uncertainties, as the values of SθFC, Sρb, and Sfoc are 
relatively small across the soil orders. Th e diff erences between 
the AF and AF + SAF estimates are explained by large values 
of SKoc and St1/2. With consideration for the data-related 
uncertainties, the changes in the vulnerability estimates are 
greatest for tebuthiuron, prometon, and bromacil. (Th e AF 
and SAF estimates, on which the results in Table 5 are based, are 
provided in Supplemental Table S2.)

Figures 4c and 4d are near-surface vulnerability maps 
of DBCP leaching potentials across the SJV, based on, 
respectively, the AF and AF + SAF values in Table 5. Inspection 
of Fig. 4c and 4d shows that without and with consideration 

for data related uncertainties, the DBCP vulnerability 
estimates generally fall, respectively, in the very unlikely to 
moderately unlikely and unlikely to likely classifications. In 
terms of subsurface vulnerability, the maps in Fig. 4c and 4d 
are neither the best nor the worst relative to spatially variable 
estimates. (Subsurface vulnerability maps for the SJV, based 
on AF and AF + SAF estimates with an average recharge 
rate, for each chemical listed in Table 2 are provided in 
Supplemental Fig. S1–S32.)

AF with Spatially Variable Recharge
Figures 5 and 6 are near-surface vulnerability maps of DBCP 

and atrazine leaching potentials across the SJV, respectively, 
based on AF and AF + SAF estimates. Th e vulnerability estimates 
in Fig. 5 and 6 were developed with two spatially variable 
recharge scenarios. Th e uncertainty results are presented only 
for the risk-averse case (i.e., AF + SAF). Comparing the three 

Table 4. Ranking, classifi cation, and uncertainty of retardation factor (RF) estimates for the soils within the San Joaquin Valley study area for 32 
chemicals. (See Table 2 for full chemical names.)

Chemical
Soil order

Alfi sols Aridisols Entisols Inceptisols Mollisols Vertisols

Dalapon 1,† M,‡ VM§ 1, M, VM 1, M, VM 1, M, VM 1, M, VM 1, M, VM

Dicamba 2, M, VM 2, M, VM 2, M, VM 2, M, VM 2, M, VM 2, M, VM

2,4-D 3, M, M 3, M, M 3, M, M 3, M, M 3, MM, M 3, M, M

Carbofuran 4, M, VM 4, M, VM 4, M, VM 4, M, VM 4, MM, VM 4, M, VM

Oxamyl 5, M, M 5, MM, M 5, MM, M 5, MM, M 5, MM, M 5, M, M

Aldicarb 6, MM, M 6, MM, M 6, MM, M 6, MM, M 6, MI, M 6, MM, M

Dinoseb 7, MM, VM 7, MM, VM 7, MM, VM 7, MM, VM 7, MI, VM 7, MM, VM

Bromacil 8, MM, M 8, MM, M 8, MM, M 8, MM, M 8, MI, M 8, MM, M

EDB 9, MM, VM 9, MM, VM 9, MM, VM 9, MM, VM 9, MI, VM 9, MM, VM

1,2-Dichloropropane 10, MM, M 10, MI, M 10, MI, M 10, MI, MM 10, MI, MM 10, MM, MM

Metribuzin 11, MI, M 11, MI, M 11, MI, M 11, MI, M 11, MI, MM 11, MI, MM

DBCP 12, MI, M 12, MI, M 12, MI, M 12, MI, MM 12, MI, MM 12, MI, MM

Methomyl 13, MI, M 13, MI, M 13, MI, M 13, MI, M 13, MI, MM 13, MI, M

Tebuthiuron 14, MI, VM 14, MI, VM 14, MI, VM 14, MI, VM 14, MI, VM 14, MI, VM

Atrazine 15, MI, MM 15, MI, MM 15, MI, MM 15, MI, MM 15, MI, MI 15, MI, MM

Simazine 16, MI, MM 16, MI, MM 16, MI, MI 16, MI, MI 16, VI, MI 16, MI, MI

Prometon 17, MI, VM 17, MI, VM 17, MI, VM 17, MI, VM 17, VI, VM 17, MI, VM

Propazine 18, MI, MI 18, MI, MI 18, MI, MI 18, MI, MI 18, VI, MI 18, MI, MI

Alachlor 19, MI, VM 19, MI, VM 19, MI, VM 19, MI, VM 19, VI, VM 19, MI, VM

Cyanazine 20, MI, MM 20, MI, MM 20, MI, MM 20, MI, MM 20, VI, MI 20, MI, MI

Metolachlor 21, MI, MI 21, MI, MI 21, MI, MI 21, MI, MI 21, VI, MI 21, MI, MI

Diphenamid 22, MI, MI 22, MI, MI 22, MI, MI 22, MI, MI 22, VI, MI 22, MI, MI

Carboxin 23, VI, MI 23, VI, MI 23, VI, MI 23, VI, MI 23, VI, MI 23, VI, MI

Carbaryl 24, VI, VM 24, VI, VM 24, VI, VM 24, VI, VM 24, VI, VM 24, VI, VM

Prometryn 25, VI, VM 25, VI, VM 25, VI, VM 25, VI, VM 25, VI, VM 25, VI, VM

Diuron 26, VI, MI 26, VI, MI 26, VI, MI 26, VI, MI 26, VI, VI 26, VI, VI

Disulfoton 27, VI, VM 27, VI, VM 27, VI, VM 27, VI, VM 27, VI, VM 27, VI, VM

2,4-DP 28, VI, VI 28, VI, VI 28, VI, VI 28, VI, VI 28, VI, VI 28, VI, VI

Diazinon 29, VI, MI 29, VI, MI 29, VI, VI 29, VI, VI 29, VI, VI 29, VI, VI

Chlorothalonil 30, VI, VM 30, VI, VM 30, VI, VM 30, VI, VM 30, VI, VM 30, VI, M

DCPA 31, VI, VI 31, VI, VI 31, VI, VI 31, VI, VI 31, VI, VI 31, VI, VI

Trifl uralin 32, VI, VI 32, VI, VI 32, VI, VI 32, VI, VI 32, VI, VI 32, VI, VI

† Ranking of RF estimates, from most to least vulnerable.

‡ Classifi cation of RF estimates: very mobile (VM), mobile (M), moderately mobile (MM), moderately immobile (MI), very immobile (VI); the leaching scale 

is given in Table 1.

§ Classifi cation of RF − S
RF

 estimates: very mobile (VM), mobile (M), moderately mobile (MM), moderately immobile (MI), very immobile (VI); the leaching 

scale is given in Table 1.
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diff erent recharge scenarios for DBCP clearly indicates that the 
vulnerability estimates are greater for the spatially variable rates 
(see Fig. 5aI and 5aII) than for the average rate (see Fig. 4c). 
Inspection of Fig. 5 and 6 shows that the vulnerability for DBCP 
is greater than for atrazine, driven by the chemical characteristics 
(see Table 2). As should be expected, the leaching potential for 
DBCP and atrazine is greater for the higher recharge rates (see 
Fig. 3).

Inspection of Fig. 5 shows that without and with consideration 
for data-related uncertainties, respectively, the DBCP 
vulnerability estimates generally fall within the moderately likely 
to the very likely and likely to very likely classifi cations. Inspection 
of Fig. 6 shows that without and with consideration for data-
related uncertainties the atrazine vulnerability estimates generally 
fall within the very unlikely to moderately likely classifi cations. In 
terms of subsurface vulnerability, the maps in Fig. 5 and 6 are 
neither the best nor the worst for the spatially variable estimates. 
(Subsurface vulnerability maps for the SJV, based on AF and 
AF + SAF estimates for spatially variable recharge estimates, for 
each chemical listed in Table 2 are provided in Supplemental Fig. 
S33–S64.)

Discussion
Th e simplicity of using mobility–leaching indices for 

regional-scale nonpoint-source vulnerability assessments as 
demonstrated here is extremely seductive relative to exhaustive 
numerical simulations driven by the coupled nonlinear partial-
diff erential equations of variably saturated fl uid fl ow and solute 
transport (e.g., Stewart and Loague, 2003, 2004). Th e regional-
scale assessments presented here clearly show that there are 
diff erences in the estimated vulnerabilities due to variability 
in the chemical and soil properties, variability in the recharge 
estimates, and the uncertainty within the databases. Th is 
study provides a quantitative characterization of data-related 
uncertainty impacts for applications of the RF and AF indices. 
Note that Ugalde (2000) investigated the impact of correlation 
between soil variables (i.e., ρb, foc, θFC) on the uncertainty in 
RF estimates for aldicarb and carboxin for the SJV, fi nding the 
diff erences (between the no cross and cross correlation) to be 
<10%. Th ere is no question that the indices used here are laced 
with model error by the simplifi cation and omission of important 
processes. McGrath et al. (2009), by comparison, described a 
leaching index that includes consideration for rainfall variability 
and preferential fl ow. Th ere are always tradeoff s between model 
complexity, model error, and data requirements (Loague and 
Corwin, 1996; Loague et al., 1996).

As demonstrated here, uncertainties within the chemical 
and soil databases can play a key role in clarifying the usefulness 
of regional-scale nonpoint-source vulnerability assessments. 
Improvements to the chemical and soil databases would reduce 
uncertainty in the vulnerability assessments for the SJV. Th is 
study also makes clear that the amount and spatial distribution 
of recharge greatly aff ects estimates of leaching potential. Th e 
diff erences between average recharge rates and spatially variable 
recharge estimates can be signifi cant. Future eff orts designed to 
characterize the vulnerability associated with nonpoint sources 
of agrochemical contamination should focus fi rst on securing 

the best possible estimate of spatially variable recharge and the 
underlying component uncertainties.

Th e near-surface vulnerability assessments reported here 
for a 1-m depth should not be used to assess the vulnerability 
of groundwater resources at much greater depths (e.g., ~ 25 m 
in parts of the study area). As it was not possible to rigorously 
evaluate the assessments reported here against actual chemical 
occurrences, they are off ered from a “what-if ” perspective. It is 
interesting to note, however, that four of the fi rst fi ve ranked 
chemicals in Table 5 (1,2-dichloropropane, prometon, DBCP, 
and ethylene dibromide [EDB]) have all been detected in the 
groundwater within the SJV (Bennett et al., 2006; Burton and 
Belitz, 2008; Landon and Belitz, 2008), which lends some 
qualitative support the assessments. Th ere are problems making 
comparisons of this type in judging model performance. For 
example, simazine, oft en detected in groundwater within the 
SJV is ranked 16th in Table 5, whereas tebuthiuron (ranked 
second) is rarely detected.

An unavoidable limitation of the assessments presented here 
is the subjectivity of the classifi cation schemes in Table 2. In 
general, the relative ranking of chemical leaching potentials is 
more useful than the classifi cations. It is possible, due to large 
applications rates (which are not considered in the assessments 
reported here), that some compounds are capable of leaching 
past the root zone despite being strongly sorbed within 
the near surface (e.g., diuron and simazine). An interesting 
question to consider relative to the observed versus predicted 
comparisons is whether the dominate underlying processes 

Fig. 4. DBCP vulnerability maps, in the form of (a) RF, (b) RF − S
RF

, (c) 
AF, and (d) AF + S

AF
 estimates, for the San Joaquin Valley study area. 

For AF, the estimates are based on average annual recharge values. 
RF, retardation factor; S

RF
, standard deviation in RF; AF, attenuation 

factor; S
AF

, standard deviation in AF.



1434 Journal of Environmental Quality 

match. For example, relative to regional-scale groundwater 
quality data, one must determine if the contamination is from 
a point or nonpoint source (e.g., spills or dumping versus 
label-recommended applications). Loague and Abrams (1999) 
discussed this problem for EDB hotspots. In an ideal world, 
the sampling scheme would be designed a priori to properly 
test model performance. Clearly, comprehensive ground 
truth information, from within the near surface for this study, 
is invaluable for judging model performance (see Loague 
and Green, 1990, 1991). With information on near-surface 
occurrences, one could design and establish more rigorous (site 
specifi c) classifi cation schemes to characterize vulnerability 
assessments of the type reported here.

It is always better to regulate than it is to remediate. Assuming 
that shortfalls in the chemical and soil databases can be satisfi ed, 
and improvements made for the water-balance derived recharge 
estimates, revised assessments of subsurface vulnerability, in the 
spirit of those reported here, may be useful to those charged with 

regulating the future use of agriculture chemicals in the SJV. 
Furthermore, the areas and chemicals shown to have the greatest 
potential for mobility and leaching, on the basis of a simple 
screen–rank approach, could be targeted for future measure 
and model investigations, driven by risk-adverse motives, with 
detailed fi eld observations and comprehensive physics-based 
simulation (forensic or predictive) focused on worst-case 
scenarios and optimal remediation strategies (see Diaz-Diaz and 
Loague, 2001).
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Table 5. Ranking, classifi cation, and uncertainty of attenuation factor (AF) estimates for the soils within the San Joaquin Valley study area for 32 
chemicals. (See Table 2 for full chemical names.)

Chemical
Soil order

Alfi sols Aridisols Entisols Inceptisols Mollisols Vertisols

1,2-Dichloropropane 1,† VL,‡ VL§ 1, VL, VL 1, VL, VL 1, VL, VL 1, L, VL 1, VL, VL

Tebuthiuron 2, L, VL 2, ML, VL 2, L, VL 2, L, VL 2, ML, L 2, ML, VL

Prometon 3, ML, VL 3, ML, L 3, ML, VL 3, ML, VL 3, U, ML 3, ML, L

DBCP 4, ML, ML 4, U, ML 4, ML, L 4, ML, ML 4, VU, U 4, U, ML

EDB 5, ML, ML 5, U, ML 5, ML, ML 5, ML, ML 5, VU, U 5, VU, U

Dalapon 6, VU, U 6, VU, U 6, U, ML 6, U, U 6, VU, U 6, VU, U

Bromacil 7, VU, ML 8, VU, U 8, U, ML 8, VU, ML 8, VU, VU 8, VU, U

Carbofuran 8, VU, U 7, VU, U 7, U, ML 7, VU, U 7, VU, VU 7, VU, U

Propazine 9, VU, U 9, VU, VU 9, VU, U 9, VU, U 10, VU, VU 9, VU, VU

Aldicarb 10, VU, VU 10, VU, VU 10, VU, VU 10, VU, VU 11, VU, VU 10, VU, VU

Dinoseb 11, VU, VU 11, VU, VU 11, VU, VU 11, VU, VU 12, VU, VU 11, VU, VU

Atrazine 12, VU, VU 13, VU, VU 13, VU, VU 13, VU, VU 14, VU, VU 13, VU, VU

Dicamba 13, VU, VU 12, VU, VU 12, VU, VU 12, VU, VU 9, VU, VU 12, VU, VU

Metribuzin 14, VU, VU 14, VU, VU 14, VU, VU 14, VU, VU 13, VU, VU 14, VU, VU

Metolachlor 15, VU, VU 15, VU, VU 15, VU, VU 15, VU, VU 15, VU, VU 15, VU, VU

Simazine 16, VU, VU 16, VU, VU 16, VU, VU 16, VU, VU 16, VU, VU 16, VU, VU

Methomyl 17, VU, VU 17, VU, VU 17, VU, VU 17, VU, VU 17, VU, VU 17, VU, VU

2,4-D 18, VU, VU 18, VU, VU 18, VU, VU 18, VU, VU 18, VU, VU 18, VU, VU

Diuron 19, VU, VU 19, VU, VU 19, VU, VU 19, VU, VU 19, VU, VU 19, VU, VU

Prometryn 20, VU, VU 20, VU, VU 20, VU, VU 20, VU, VU 20, VU, VU 20, VU, VU

Diphenamid 21, VU, VU 21, VU, VU 21, VU, VU 21, VU, VU 21, VU, VU 21, VU, VU

Alachlor 22, VU, VU 23, VU, VU 23, VU, VU 23, VU, VU 23, VU, VU 23, VU, VU

Oxamyl 23, VU, VU 22, VU, VU 22, VU, VU 22, VU, VU 22, VU, VU 22, VU, VU

Cyanazine 24, VU, VU 24, VU, VU 24, VU, VU 24, VU, VU 24, VU, VU 24, VU, VU

Disulfoton 25, VU, VU 25, VU, VU 25, VU, VU 25, VU, VU 25, VU, VU 25, VU, VU

Diazinon 26, VU, VU 26, VU, VU 26, VU, VU 26, VU, VU 26, VU, VU 26, VU, VU

Carbaryl 27, VU, VU 27, VU, VU 27, VU, VU 27, VU, VU 27, VU, VU 27, VU, VU

Chlorothalonil 28, VU, VU 28, VU, VU 28, VU, VU 28, VU, VU 28, VU, VU 28, VU, VU

DCPA 29, VU, VU 29, VU, VU 29, VU, VU 29, VU, VU 28, VU, VU 29, VU, VU

Carboxin 30, VU, VU 30, VU, VU 30, VU, VU 30, VU, VU 28, VU, VU 30, VU, VU

Trifl uralin 31, VU, VU 30, VU, VU 31, VU, VU 31, VU, VU 28, VU, VU 30, VU, VU

2,4-DP 31, VU, VU 30, VU, VU 31, VU, VU 31, VU, VU 28, VU, VU 30, VU, VU

† Ranking of AF estimates, from most to least vulnerable.

‡ Classifi cation of AF estimates: very likely (VL), likely (L), moderately likely (ML), unlikely (U), very unlikely (VU); the leaching scale is given in Table 1.

§ Classifi cation of AF + S
AF

 estimates: very likely (VL), likely (L), moderately likely (ML), unlikely (U), very unlikely (VU); the leaching scale is given in Table 1.
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