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Abstract
Urban vegetation provides many highly valued ecosystem services but also requires extensive
urban water resources. Increasingly, cities are experiencing water limitations and managing
outdoor urban water use is an important concern. Quantifying the water lost via
evapotranspiration (ET) is critical for urban water management and conservation, especially in
arid or semi-arid regions. In this study, we deployed a mobile energy balance platform to
measure evaporative fraction throughout Riverside, California, a warm, semi-arid, city. We
observed the relationship between evaporative fraction and satellite derived vegetation index
across 29 sites, which was then used to map whole-city ET for a representative mid-summer
period. Resulting ET distributions were strongly associated with both neighborhood population
density and income. By comparing 2014 and 2015 summer-period water uses, our results show
7.8% reductions in evapotranspiration, which were also correlated with neighborhood
demographic characteristics. Our findings suggest a mobile energy balance measurement platform
coupled with satellite imagery could serve as an effective tool in assessing the outdoor water use
at neighborhood to whole city scales.
5 The US Department of Agriculture (USDA) prohibits discrimina-
tion in all its programs and activities on the basis of race, color,
national origin, age, disability, and where applicable, sex, marital
status, familial status, parental status, religion, sexual orientation,
genetic information, political beliefs, reprisal, or because all or part
of an individual’s income is derived from any public assistance
program. (Not all prohibited bases apply to all programs.) Persons
with disabilities who require alternative means for communication
of program information (Braille, large print, audiotape, etc.) should
contact USDA’s TARGET Center at (202) 720–2600 (voice and
TDD). To file a complaint of discrimination, write to USDA,
Director, Office of Civil Rights, 1400 Independence Avenue, S.W.,
Washington, DC 20250-9410, or call (800) 795–3272 (voice) or
(202) 720–6382 (TDD). USDA is an equal opportunity provider and
employer.Mention of trade names or commercial products in this
publication is solely for the purpose of providing specific
information and does not imply recommendation or endorsement
by the US Department of Agriculture.

© 2017 IOP Publishing Ltd
1. Introduction

Urban vegetation provides a wealth of ecosystem
services to local residents including cooling, foods, and
aesthetic appeal with many connections to immediate
health concerns and improved well-being (Pataki et al
2013, Jenerette et al 2011, Fuller et al 2007, Alaimo et al
2008). In light of the benefits, policy goals for many
cities are to expand urban vegetation density, primarily
as trees (Pincetl 2010). However, the water require-
ments for providing vegetation-based ecosystem
services can be large and pose a fundamental tradeoff
for their use in water-limited environments (Jenerette
et al 2011, Pataki et al 2011a). Uncertainties in outdoor
water use restrict the abilities of models to quantify or
forecast urban water demands, hydrologic dynamics,
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and the effect of policies for managing water resources
(Bhaskar et al 2015, Vahmani and Hogue 2014, Shaffer
et al 2015, Pataki et al 2011a). With increasing
droughts and competition for water among urban,
agricultural, and in-stream uses, considering the water
requirements embodied within ecosystem services is
essential.

In semi-arid and arid environments outdoor
urban water use can be large and intense, potentially
exceeding 50% of total water use at the household scale
(Mini et al 2014) and with evapotranspiration (ET)
rates that can approach reference ET (Litvak et al
2017a). High variability in outdoor urban water use is
also expected and may exceed an order of magnitude
difference among neighborhoods (Jenerette et al
2011). Nevertheless, few direct estimates of outdoor
water magnitude are available. Individual agency
reporting of water deliveries are typically used for
verification of urban water use (Mini et al 2015).
Reported data are frequently an aggregate measure
that removes spatial variation and has sources of
uncertainty such as leakage from aging pipes.
However, self-reported ‘bottom-up’ data do not
provide information specific to outdoor versus indoor
water use but require an assumed fraction of total
water deliveries that is not well characterized. Direct
measurements of ET, the water flux most connected to
outdoor water use, have been obtained from small
plots using chamber measurements and from indi-
vidual trees using sap flux measurements (Bijoor et al
2014, Litvak et al 2017b). Scaling these measurements
to parcel, neighborhood, or whole cities remains a key
research challenge. Alternatively, fixed towers using
eddy covariance basedmicrometeorological approaches
have measured outdoor water fluxes at individual
neighborhood scales (Grimmond and Christen 2012).
Limited work conducted in hot, arid regions has
suggested relatively low ET fluxes, although these may
better reflect specific site characteristics rather than
whole city distributions (Roth 2007, Chow et al 2014).
Direct estimatesofoutdoorurbanwaterflux that resolve
variation within neighborhoods and across whole cities
are needed to better understand urban ecohydrology
andallow improvedmanagementofwater resourcesand
ecosystem services.

One prominent management policy implemented
in response to droughts is water restrictions (Kenney
et al 2008, Maggioni 2015, Milman and Polsky 2016).
As a recent example, in 2015 following a historically
unprecedented drought in California, a gubernatorial
executive order mandated an average 25% reduction
in water use by all urban water supply agencies (Reese
et al 2015). A primary focus of this restriction was
outdoor water use associated with irrigation practices
(Boxall et al 2015). However, the effectiveness of water
restriction mandates and conservation programs at
reducing actual outdoor water use is difficult for water
managers to assess on an individual parcel to
neighborhood scale (Mini et al 2015). Evaluations
2

of water restrictions on water use have suggested
mixed effectiveness (Mini et al 2015). An empirical
evaporation based assessment of water restriction
effectiveness on reducing outdoor water use and its
spatial distributions would provide independent
evaluation of water use, its sensitivity to restrictions,
and sources of variation within a city.

Urban demographic characteristics at neighbor-
hood scales can have a large influence on the spatial
distribution of both vegetation and likely outdoor
water use (Jenerette et al 2013, Jenerette et al 2016).
Given the positive correlation between vegetation and
neighborhood socioeconomic status, higher neigh-
borhood incomes have also been connected to greater
water uses and increasing water uses during hotter and
drier periods (Syme et al 2004, Balling et al 2008,
Ouyang et al 2016). In response to water restrictions,
data from water deliveries also suggested both
increased lot size and income were associated with
greater reductions in water use and supported a
hypothesis that water reductions are related to
opportunities to reduce water conservation (Mini
et al 2015, Renwick and Archibald 1998). While
income–outdoor water use relationships and sensitiv-
ity to water restrictions have been hypothesized, tests
of these relationships with direct measurements of
outdoor water use are still needed.

In this study, we use a mobile micrometeorological
platform to measure regional ET at numerous
locations across an urbanized landscape in Riverside,
California (CA), USA. Riverside is an inland city
representative of recent urbanization in southern
California away from cooler summer coastal con-
ditions (Tayyebi and Jenerette 2016). We evaluated
relationships between in-situ energy balance measure-
ments and remote sensing-based vegetation greenness
indices using the regional evaporative fraction energy
balance (REFEB) approach (Anderson and Goulden
2009). With the resulting models, we mapped the
spatial variation in ET for August in 2014 and 2015,
prior to and following mandatory 25% water
restrictions, across urban land covers and neighbor-
hoods that differed in vegetation density. We examined
spatial variation in water reductions and evaluated
relationships between outdoor water use and demo-
graphic variation among neighborhoods. Through
these analyses, we provide the first spatially distributed
measurements of urban ET, generate a tool for rapid
mapping of ET distributions, test the effectiveness of
water restrictions on reducing ET, and evaluate how
water use and associated policy interventions are
linked to demographic characteristics.
2. Methods
2.1. Experimental design and data collection
The study area is in the city of Riverside, located in
semi-arid southern California, USA (figure 1). This
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Figure 1. Spot evaporative fraction (EF) measurements (n= 29) across Riverside, CA on a base map composed of NDVI and city
roads (www.dot.ca.gov/hq/tsip/gis/datalibrary/). The color of each point location presents the mean measured EF value from EC.
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region is characterized by a Mediterranean climate of
alternating cool-wet winters and hot-dry summers
with little to no rain. Annual rainfall is ∼280 mm, with
2014 and 2015 having less than 220 mm year�1 during
the drought (see supplementary table S1 available at
stacks.iop.org/ERL/12/084007/mmedia). Irrigated, ur-
ban vegetation in the study area provides substantial
summertime cooling (Shiflett et al 2017). The
domestic water usage in Riverside mainly relies on
imported water or senior groundwater rights to nearby
basins. Summer flow of the Santa Ana River, a
significant riparian area on the north side of the city,
primarily originates from effluent discharges of
upstream municipal wastewater treatment facilities
such as the Rapid Infiltration and Extraction facility,
the Rialto Wastewater Treatment Plant. Average
summer stream flow of the Santa Ana River is about
1.17 m3 s−1, which is reduced approximately 34%
relative to the average winter stream flow of 1.78
m3 s−1 (table S1).

In total, 29 locations were selected using three
criteria: (1) site accessibility, including public and road
access for the mobile platform; (2) coverage of the
main landscapes, including neighborhoods (NB) with
low or high vegetation density, industrial/commercial
district (ICD) and public green spaces (e.g. parks and
golf courses) or agricultural area (GSA) and (3)
relatively uniform distribution of the sites. A mobile
tower attached to a trailer was moved to sampling
sites around the city in order to collect observations.
An open-path infrared gas analyzer (IRGA) (LI7500,
LI-COR, Lincoln, Nebraska, USA) was installed
with a three dimensional sonic anemometer (CSAT3,
3

Campbell Scientific, Logan, Utah, USA) on the tower
to record water vapor concentration, wind speed, and
virtual air temperature at 10 Hz. Other meteorological
sensors, including temperature and relative humidity
probes (HMP45C, Vaisala, Helsinki, Finland) and a
four-component net radiometer (NR01, Hukseflux
Delft, Netherlands), were also mounted on the tower.
The tower, while temporarily parked at each site, was
extended up to 12 meters high to obtain an adequate
flux footprint depending upon vegetation height. We
collected data for approximately one hour; IRGA and
sonic anemometer measurements were separated into
10-minute intervals for the EF calculation; other
meteorological measurements were collected every 10
minutes concurrently. Under clear sky conditions,
daily sampling was conducted between 10:30 to 16:30
Pacific Daylight Time (PDT) to minimize daily
variation of evaporative fraction (EF) (Shuttleworth
and Wallace 1985, Anderson and Goulden 2009). The
sampling period occurred from July 28th to August
28th, 2015.

2.2. EF calculation from micrometeorological
measurements
EF, defined as the ratio of latent heat to available
surface energy, uses an inherent connection between
ET and available surface energy to map the regional
distribution of ET (Anderson and Goulden 2009,
Anderson et al 2012). EF was measured using the
REFEB approach (Anderson and Goulden 2009).
REFEB relies on using high frequency temperature (T)
and specific humidity (q) observations to calculate the
Bowen ratio (B) at a single height using the regression
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method of DeBruin et al (1999) as shown in
equation 1:

B ¼ g
T 0

q0
ð1Þ

where g is the psychrometric constant and T0 and q0 are
the fluctuations of T and q determined from Reynolds
averaging. EF can be obtained from B as shown in
equation 2:

EF ¼ 1

1þ B
ð2Þ

In practice, the one hour measurement interval from
each site was separated into 10-minute intervals,
which follows the regression period length used by
Anderson and Goulden (2009). For each period, a
regression between the variance of temperature (T0)
and specific humidity (q0) was conducted to retrieve
the slope and calculate B and EF. Also following
Anderson and Goulden (2009), we used the correla-
tion between T and q (rTq) as a data quality indicator
and discarded data points with rTq less than 0.25.

2.3. Calculation of ET
Along with the mobile tower, we installed two eddy
covariance (EC) stations, one in an industrial district
and another at an agricultural orchard site, as low and
high end-points in vegetation coverage to monitor the
diurnal pattern of EF and to test self-preservation of EF.
Based on the two-endpoints of EC measurements,
variation of EF at low-vegetation sites was less than 10%
compared to the midday measured EF (figure S1). As
Lhomme and Elguero (1999) pointed out, good EF
measurements can be obtained ‘in the central hours of
the day, and preferably about three hours before or after
noon’ under clear sky conditions. Here, we chose a time
window spanning from 10:30 to 16:30 PDT based on
vegetation cover at each site to maximize the measure-
ments of EF in a single day. Then we averaged the
calculated EF within about an hour (four to seven
individualEFmeasurements) to represent theEFat each
site. This has shown to be effective for other regional ET
studies where low diurnal variation in EF did not affect
regional ET calculations (Anderson and Goulden 2009,
Isaac et al 2004).

We retrieved an empirical model between mea-
sured EF and normalized differential vegetation index
(NDVI) using ordinary least squares linear regression.
The NDVI map was calculated from the surface
reflectance product (C1 higher-level) of Landsat 8
OLI/TIRS images (Band 4 and Band 5) downloaded
via the US Geological Survey Earth Explorer (http://
earthexplorer.usgs.gov). The surface reflectance prod-
uct was atmospherically corrected to allow interannual
comparison of NDVI and the estimates of ET. Since
NDVI could decline with drought (Tadesse et al 2014,
Vicente-Serrano et al 2013) during our sampling
period (July 28th to August 28th), we used the
available surface reflectance products (July 31st,
4

August 16th and September 1st) acquired from July
31st to September 1st 2015 and linearly interpolated
the calculated NDVI across the sampling period to
match the collected EF at each sampling date. A 50 m
buffer was generated around the coordinates of each
site. Then we extracted NDVI values within each
buffer and used the mean NDVI to represent
vegetation greenness at each site. After matching the
calculated NDVI and measured EF at each site and
date, we further applied a 1000-iteration bootstrap-
ping to regress the NDVI and EF to obtain more
robust parameter estimates. Based on the empirical
relationship between measured EF and calculated
NDVI, we implemented this model to obtain the
spatial EF distribution in Riverside.

Finally, EF was extrapolated to calculate the latent
heat (LE) fluxes following the energy balance equation:

LE ¼ EF � A ¼ EF � ðRn � GÞ ð3Þ
where the A denotes the available energy, Rn is the net
radiation and G is the ground heat flux (all in units of
W m�2). At daily to monthly scale, we expect G was
negligible (Cleugh et al 2007, Mu et al 2007). The Rn is
obtained from NASA’s Clouds and the Earth’s Radiant
Energy System (CERES) monthly average total flux
surface product (EBAF–surface). Anderson and
Goulden (2009) have shown that CERES combined
with NDVI driven EF was able to observe monthly ET
with minimal discrepancy. We chose the all sky solar
radiation in August 2015 (188.65 Wm�2) as a
surrogate to calculate the latent heat flux from
equation (3) since the all sky net radiation covers
all the periods for each month and provides better ET
estimates at monthly scale (Wielicki et al 1996). The
latent heat flux (LE, Wm�2) was converted to
evaporation (ET, mm day�1) using the latent heat
of vaporization at 20 °C (2.45 MJ kg�1). Applying the
same relationship between EF and NDVI, we also
quantified the ET difference between August 2014 and
2015, and further explored inter-annual effects of
dynamic vegetation greenness on ET variation, via the
NDVI from Landsat 8 OLI/TIRS images (August 13th)
and the Rn in August of 2014 (198.94 Wm�2) under
the all sky condition from CERES.

To investigate potential socioeconomic correla-
tions with ET, we retrieved the population and annual
income per capita across 204 city blocks in Riverside
from the 2010 United States Census using the Census
Bureau’s Factfinder website (http://factfinder.census.
gov). The modelled ETand the ET difference between
2014 and 2015 were averaged by block, and a simple
linear regression model between ET or ET difference
and population or income was applied.
3. Results

A substantially higher daytime EF value (0.69 ± 0.09,
mean± SD) was consistently observed at the vegetation
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Figure 2. The relationship between EF and greenness (NDVI) and the estimated difference of ET between August 2015 and 2014. (a)
Presents an ANOVA comparison of EF among different landscape types, i.e. industrial or commercial district (ICD), neighborhood
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dominated, irrigated orchard EC tower compared to
the impervious surface dominated industrial tower
(0.36 ± 0.05) (figure S1). These continuous measure-
ments at the two land cover endpoints showed
consistent meteorological conditions during all of our
distributed measurements. At the 29 discrete sampling
locations from ICD, NB and GSA land, we obtained a
total of 185 valid EF measurements with 10-minute
measured intervals. EF was significantly higher in the
more vegetated GSA rather than in the less vegetated
ICD and NB (p< 0.0001 ANOVA; figure 2(a)).
Among these sites we found a strong relationship
between EF and satellite-derived NDVI in our study
(R2= 0.71 ± 0.11, p< 0.0001, figure 2(b)). The NDVI
derived from the 50m buffer ranged from 0.10 to 0.71
but had a higher variability in NB (0.33 ± 0.10) and
GSA (0.57± 0.11) than ICD (0.15± 0.06) land covers.
Based on the empirical regression model, NDVI
explained 71% ± 11% of the EF variation in our study
region (figure 2(b)). This further suggests ET
increased by about 1.1 mm day�1 with the increase
in greenness (NDVI) from ICD (0.15) to GSA (0.57)
under a net radiation of 100 W m�2.
5

Using the relationship between EF and NDVI
and CERES net radiation, we developed ET maps
across Riverside for August 2015 (figure S2) and 2014.
These maps show high mean ET (3.77 ± 0.20 mm
day�1) over golf courses (3.77 ± 0.20mm day−1) and
agricultural regions (2.99± 0.44mm day�1) at 2015.
As expected, relatively low ETwas found in areas with
limited vegetated or primarily impermeable surface.
The average ET difference between 2014 and 2015 is
0.16± 0.23mm day�1, with an average 7.8% decrease
in 2015 compared to 2014 (figure 2(c)). Well-vegetated
regions (NDVI above 0.6) had the largest absolute
reductions, with reduced ETof 0.29 ± 0.27 mm day�1,
which is about 75% higher than the average ET
reduction.

We found clear patterns among ET, population
density, and socioeconomic status. ET was negatively
correlated to population density across 204 blocks in
Riverside but was positively correlated to the annual
income per capita at each block (figure 3). This is
consistent with Riverside’s most expensive housing
being co-located with golf courses and the agricultural
greenbelt in the western part of the city. Furthermore,
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the ET difference between 2014 and 2015 shows a
similar pattern (figure 4), demonstrating the change in
ET between 2014 and 2015 ([2014–2015]/2014 �
100%) from blocks with lower population is larger
than the blocks with high population, but there is no
significant correlation between ET difference and
annual income per capita.
4. Discussion

We quantified the relationship between field EF
measurements and satellite-based vegetation indices
in Riverside, CA thereby providing the first empirical
estimates of the spatial distribution of outdoor urban
water use. Compared to water provider data that
supplies a bottom-up and spatially aggregated estimate
of total water use, our analyses provide a top-down
and spatially distributed estimate of outdoor water
use. Our approach combines in-situ measurements of
whole ecosystem water fluxes with satellite based
vegetation greenness indices. In non-urban environ-
ments vegetation indices can predict up to 70% of EF
6

variation (Wang et al 2006, Anderson and Goulden
2009) and here we show similar predictive skill in the
highly heterogeneous urban environment. On average,
the summer rainfall in Riverside during the dry season
(June, July and August) is only 0.25 mm day�1 (table
S1), which contributes about 13% of the ET of
Riverside, with an average ET of 1.8 mm day�1 from
the prediction using REFEB approach. The remaining
87% of ET is directly from municipal water use-
derived riparian ET (Townsend-Small et al 2013). The
REFEB approach can provide valuable information for
modeling urban water use and evaluating the
effectiveness of policies for water reductions.

The spatial distribution of water use in Riverside,
CA was consistent with hypotheses for the influences
of population density and socioeconomic distribu-
tions. Higher population density neighborhoods had
lower ET reflective of more developed areas and less
green space for irrigation. Higher income regions
used extensively more water, reflective of a luxury
effect (Hope et al 2003, Jenerette et al 2011), and
higher greenness is considered a desirable housing
aspect which can command higher prices (Astell-Burt
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et al 2014). This luxury effect in water use is
consistent with previous assessment from Los
Angeles, CA using water delivery data (Mini et al
2015). Conversely, less greenness is associated with
higher levels of multifamily housing, which is linked
to both higher population density and lower income
levels. We found clear relationships between ET and
socioeconomic factors, i.e. population and annual
income (figure 3). The interannual ET difference is
also significantly correlated with population at the
block scale (figure 4(a)). Recognition of socioeco-
nomic effects on urban vegetation distribution has
increasingly become an environmental justice con-
cern (Wolch et al 2014) and we also show here
important consequences for water distributions,
although these relationships are need further evalua-
tion across a range of arid and semi-arid regions.

During August between 2014 and 2015 we
observed a 7.8% reduction in ET across the entire
city. Our observation falls within the reported
reduction in total water use by the city of Riverside
of 12.5% between August 2014 and 2015 (California
State Water Resources Control Board). This difference
suggests outdoor water reductions shared a consider-
able proportion of total reductions. In part the
outdoor water use reductions associated with water
restrictions were related to socioeconomic variation
among neighborhoods with the greatest absolute
reductions occurring in high income neighborhoods.
Nevertheless, the distribution of water reductions was
proportional with pre-restriction use and also consis-
tent with population density and socioeconomic
patterns. However, the interannual variation of net
radiation could also result in interannual difference in
ET estimates and such data from satellite data have
potentially substantial uncertainties. Compared to
2014, the net radiation from CERES observations in
2015 decreased ∼5% from 198.9–188.7 Wm�2. To
estimate the percentage of change in CERES Rn that
could be due to water restrictions we compared
incoming solar irradiance from spatial CIMIS (Hart
et al 2009) for downtown Riverside and MODIS
7

albedo and skin temperature for the extent of Riverside
using the Oak Ridge National Laboratory subset tool
(ORNL DAAC 2008a, ORNL DAAC 2008b). Incom-
ing solar irradiance actually increased from 2014 to
2015 (293.8–297.3 Wm�2) slightly while albedo and
surface temperature also increased minimally, 0.0015
and 0.019 K respectively. In contrast, urban vegetation
decreased, consistent with a landscape effect of the
urban water restriction mandate in year 2015.
Potential interactions between Rn and vegetation also
result from changes in surface reflectance that could
result in lower net radiation with browning vegetation.
Vegetation independent estimates of net radiation that
can more appropriately quantify urban energy balance
variation remain an important research need in
estimating regional ET using the REFEB approach.

To better identify the interactions between changes
in vegetation and net radiation we explored their
interactive influence on regional ET variation. NDVI
difference between 2014 and 2015 showed a clear land
surface change across the two years (figure 5(a)), with
a lower NDVI in 2015 at vegetated regions (NDVI >
0.4) or impermeable surfaces (NDVI < 0.1) and a
higher NDVI at limited vegetated regions or bare soils
(NDVI between 0.1 and 0.4). We compared the ET
change across varying vegetation levels in 2014 and
2015 and found a clear decrease of ET within more
densely vegetated regions (figure 5(b)). To evaluate the
effects from the interannual Rn variation on ET, we
used the sameRn as 2014, i.e. 198.9Wm�2, to calculate
the ET in 2015. This analysis provided an indication of
the magnitude of ET reduction due to vegetation
changes alone (figure 5(b)). At the whole-city scale, in
vegetated regions (NDVI > 0.4) changes in NDVI
contributes 83.3% of the ET difference between 2014
and 2015 (ΔET= 2014–2015) on average, with a mean
ΔET of 2313.6m3 day�1 by including Rn and NDVI
effects, but a mean ΔET of 1442.4m3 day�1 by only
accounting for NDVI (figure 5(c)) using the same Rn

in the two years. Hence, at least 6.5% of ET reduction
in vegetated regions accounted for the average 7.8%
reduction in ET across the whole city.
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Vegetation is a key component of cities throughout
the world (Forman and Wu 2016). The ecosystem
services derived from vegetation within a city are
directly connected to human well-being through
multiple ecosystem services. However, the provision-
ing of ecosystem services within a city has a key
tradeoff in the associated need for water (Jenerette et al
2011, Pataki et al 2011a). In cities located in arid or
semi-arid areas, like Riverside in semi-arid southern
California, evaluating the water use associated with
vegetation is a key research need. For example, a recent
state regulation in California that reduces turf grass
area to a maximum of 25% of landscaped area in new
developments (Reese et al 2015) may have a long-term
impact on water savings accordingly. Our findings
reflect differences in peak summer ET among the
different sites and provide support for the role of
mandated water restrictions to reduce outdoor water
usages. Nevertheless, reducing the percentage of
vegetation cover also has consequences for reduced
availability of ecosystem services and potential feed-
backs to water use. A recent study suggested that
increasing vegetation cover could decrease the urban
heat island and also decrease plant water requirements
in urban regions (Zipper et al 2017). In addition to the
amount of vegetation coverage, species differences can
also influence water use (Pataki et al 2011b) and better
species information may help refine outdoor water use
estimates. Managing urban water use and ecosystem
services require new data sources that can readily
estimate spatial and temporal dynamics of urban water
use. Our results show how a mobile energy balance
measurement platform can be coupled with satellite
greenness to obtain empirical maps of outdoor water
use and assess the effectiveness of outdoor water
interventions at the whole city scale.
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