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ABSTRACT

Lavine, BK., Jurs, P.C., Henry, D.R., Vander Meer, RK., Pino, J.A. and McMurry, J.E., 1988. Pattern recognition
studies of complex chromatographic data sets: design and analysis of pattern recognition experiments. Chemometrics
and Intelligent Laboratory Systems, 3: 79-89.

Chromatographic fingerprinting of complex biological and environmental samples is an active research area with a
large and growing literature. Multivariate statistical and pattern recognition techniques can be effective methods for the
analysis of such complex data. However, the classification of complex samples on the basis of their chromatographic
profiles is complicated by two factors: (1) confounding of the desired group information by experimental variables or
other systematic variations, and (2) random or chance classification effects with linear discriminants. Several interesting
projects involving these effects and methods for dealing with the effects are discussed.

Complex chromatographic data sets often contain information dependent on experimental variables as well as
information which differentiates classes. The existence of these types of complicating relationships is an innate part of
fingerprint-type data. ADAPT, an interactive computer software system, has the clustering, mapping, and statistical
tools necessary to identify and study these effects in realistically large data sets.

In one study, pattern recognition analysis of 144 pyrochromatograms from cultured skin fibroblasts was used to
differentiate cystic fibrosis carriers from presumed normal donors. Several experimental variables (donor gender,
chromatographic column, etc.) were observed to contribute to the overall classification process. Notwithstanding these
effects, discriminants were developed from the chromatographic peaks that assigned a given pyrochromatogram to its
respective class (cystic fibrosis carrier versus normal) largely on the basis of the desired pathological difference. In
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another study gas chromatographic profiles of cuticular hydrocarbon extracts obtained from 170 red fire ant samples
were analyzed using pattern recognition methods. Clustering according to the biological variables of social caste and

colony was observed.

Previously, Monte-Carlo simulation studies have been carried out to assess the probability of chance classification
for nonparametric linear discriminants. The level of expected chance classification as a function of the number of
observations, the dimensionality, class membership distribution, and covariance structure of the data were examined.
These simulation studies established limits on the approaches that can be taken with real data sets so that chance

classifications are improbable.

INTRODUCTION

Profiling of complex biological materials with
high-performance chromatographic methods is an
active research area with a large and growing
literature [1-10]. Such chromatographic experi-
ments often yield chemical profiles containing
hundreds of constituents. These chromatograms
can be viewed as chemical fingerprints of the
complex samples. Objective analysis of the pro-
files depends upon the use of multivariate statisti-
cal methods. In this regard pattern recognition
techniques have been found to be of utility.

Pattern recognition methods have been used to
distinguish between inividuals in a particular dis-
eased state and normal individuals [7-10]. These
methods attempt to classify a sample according to
a specific property (e.g., diabetic vs. normal) by
using measurements that are indirectly related to
that property. Measurements related to the prop-
erty in question are made. An empirical relation-
ship is then derived from a set of data for which
the property of interest and the measurements are
known (a training set). Such a relationship or
classification rule may be used to infer the pres-
ence or absence of this property in objects that are
not part of the original training set.

For pattern recognition analysis, each chro-
matogram is represented as a point, X =
(x15 X3, X35.++, Xj,..., X,) Where component x; is
the area of the jth peak. A set of chromatograms
is represented by a set of points in a d-dimen-
sional Euclidean space. The expectation is that the
points representing chromatograms from one class
will cluster in one limited region of the space
separate from the points corresponding to the
other class. Pattern recognition is a set of methods
for investigating data represented in this manner
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in order to assess the degree of clustering and
general structure of the data space. The four main
subdivisions of pattern recognition methodology
are mapping and display, discriminant develop-
ment, clustering and modelling [11-14] and many
were used in the two example studies below.

CLASSIFICATION

An assumption in pattern recognition is that
the ability to categorize the data into the proper
classes is meaningful. Successful classification is
thought to imply that a relationship between the
measurements or features and the property of
interest exists. However, classification based on
random or chance separation can be a serious
problem. For example, the probability, P, of for-
tuitously obtaining 100% correct classification for
a two class problem using a nonparametric linear
discriminant can be calculated from the following
equation

d
P=2Y CN'/2" for N>d+1
i=0 (1)

P=1 for N<d+1

where C=(N-D!/[(N—-1-il!], N is the
number of objects in the data set, and d is the
dimensionality or number of descriptors per ob-
ject [16,17]. Fig. 1 shows a plot of P versus the
ratio of the number of objects to the number of
descriptors per object (n/d) for n=50. The only
assumption made concerning the data is that they
be in general position, that is none of the d+1
data points should be contained in a (d—1)-
dimensional hyperplane. When n/d is large, the
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Fig. 1. Probability of dichotomization (complete linear sep-
aration) of fifty patterns as a function of n/d.

probability of achieving complete separation due
to chance is small. As the number of descriptors
approaches the number of objects used in the
study, the probability of such an occurrence in-
creases. When n/d=2, the probability of com-
plete separation is one-half. Such classifications
arise due to chance and are not due to any rela-
tionship between the objects in the data set. A
linear discriminant function developed with an
inappropriately small n/d will probably have no
predictive ability beyond random guessing.

If n/d> 3, the probability of complete sep-
aration due to chance is small [18,19]. However,
classification rules using linear discriminants are

often developed from training sets that are not’

linearly separable. Recently, Lavine [20] has re-
ported Monte-Carlo simulation studies assessing
the degree of fortuitous classification for such
situations. Fig. 2 shows the cumulative probability
of achieving any degree of separation due to chance
for evenly-divided classes for several different val-
ues of n/d. The descriptors were uncorrelated,
and the number of descriptors per pattern was set
at five. At n/d =10 (50 patterns, 5 descriptors),
the probability is 0.5 that 66.7% of the patterns
will be correctly classified. At n/d=4 (20 pat-
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CLASSIFICATION SCORE

Fig. 2. Probability of achieving any degree of separation due to
chance for several different values of n/d. A: 4:1; B: 6:1; C:
10:1; D: 20:1.

terns, 5 descriptors), the probability is 0.5 that
79% of the objects will be correctly classified due
to chance. For each study, the apparent separabil-
ity of the data increased as the n/d ratio de-
creased, even though there was no information
contained within the descriptors and no possible
relationship between the random patterns. Fur-
thermore, the range of classifications in these stud-
ies also increased as the n/d ratio decreased.
These results were obtained by using Gaussian
distributed variables. Studies using uniformly dis-
tributed random numbers yielded essentially iden-
tical results.

If n/d=4 (20 patterns, 5 descriptors, equal
class size), the probability of achieving complete
separation due to chance is approximately 3%.
However, Stuper and Jurs [18] have previously
reported in the literature that the probability of
complete separation due to chance is small (< 1%)
if n/d > 3. How can we explain this discrepancy?
In Table 1, the probability that a dichotomy cho-
sen at random will be linearly implementable was
computed using eq. 1. The n/d ratio for each
entry in the table is 3. As the number of descrip-
tors increases, the probability of achieving com-
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TABLE 1

The probability that a dichotomy chosen at random is linearly
implementable

Number of Number of Linear
descriptors patterns separability (%)
4 12 27.44
5 15 21.19
10 30 6.80
20 60 0.92
30 90 0.14

plete separation due to chance decreases. The
three to one rule is, therefore, only applicable for
those studies involving a large number (e.g., 30-40)
of descriptors. For studies involving only a few
descriptors (e.g., 5-10) a larger n/d ratio will be
necessary to achieve the same.

The probability of achieving complete sep-
aration due to chance is dependent not only upon
the n/d ratio but also upon the dimensionality of
the data. It follows that for studies involving
nonseparable training sets, the degree of sep-
aration will also be dependent upon both of these
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Fig. 3. Cumulative probability of achieving any degree of
separation due to chance for several different descriptor values
at a fixed n/d ratio of 3. A: 4 descriptors; B: 10 descriptors;
C: 20 descriptors; D: 30 descriptors.
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factors. Monte-Carlo simulation studies were per-
formed to address this issue. Fig. 3 shows the
cumulative probability of achieving any degree of
separation due to chance for several different de-
scriptor values at a fixed n/d ratio of 3. The
patterns used to develop these curves were ran-
dom, and equal class sizes were used. As the
dimensionality of the uncorrelated data increased,
the mean classification success rate also increased.
However, the range of classifications expected
from chance decreased. These results suggest the
following: for a fixed value of n/d, the degree of
separation in the data due to chance approaches a
limiting value as the number of descriptors per
pattern increases. This is contrary to what has
been previously reported [21].

The influence of the class membership distribu-
tion upon chance classification was also investi-
gated, and unequal class sizes lead to even higher
success rates due to chance. Furthermore, depend-
encies among the descriptors can affect the classi-
fication process. Fig. 4 is a plot of the results that
were obtained in two Monte-Carlo simulation
studies for 72 patterns. The first study involved
uncorrelated random data, and the second study
involved correlated random data. For each study,

100.
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Fig. 4. Effects of the dependence structure of the data on
random classification results. A: uncorrelated random data; B:
correlated random data.
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the number of descriptors per random pattern was
set at five, and the classes were evenly divided.
The correlation matrix used to generate the ran-
dom data vectors was obtained from a study in-
volving red fire ants. The purpose of that study

was to separate red fire ants of one colony from -

another (colony E vs. colony R in this case) on the
basis of their cuticular hydrocarbon profiles. It is
apparent from the plot that the degree of sep-
aration due to chance is greater for correlated data
than uncorrelated data.

Change classification can be a serious problem
in linear discriminant analysis of chromatographic
fingerprint data. The degree of separation in the
data due to chance is dependent upon several
factors (e.r number of descriptors, n/d radio,
etc.) Furthermore, our studies show that these
factors do not act independently of one another.
This complicates the interpretation of results that
are obtained in discriminant analysis studies in-
volving nonseparable training sets. Therefore, we
recommend the following procedure for assessing
the significance of classification scores obtained in
real studies. For a given classification problem,
100 data sets consisting entirely of random num-
bers should first be generated. The statistical
properties of the simulated data (i.e., dimensional-
ity, number of objects, class membership distribu-
tion, and covariance structure) should be identical
to that of the real training set. Next, the separabil-
ity of each random data set should be assessed.
The number of occurrences of several degrees of
separation (e.g., at least 70% of the patterns were
correctly classified, or at least 80% of the patterns
were correctly classified, etc.) should be noted,
and the fraction of the total number of occur-
rences (cumulative probability) for each degree of
separation should be plotted against the per-
centage of patterns correctly classified. This curve
as well as the mean classification success rate for
the random data sets can then be used for com-
parisons.

As an example, if the classification score ob-
tained in a real study was 80% but the mean
classification success rate for the simulated ran-
dom data was only 55% and the probability of
achieving 65% correct classification due to chance
was zero, the score obtained in the real study

would be judged to be significant. On the other
hand, if the classification score obtained in a real
study was only 60% but the mean classification
success rate for the random data was again 55%
and the probability of achieving 60% correct clas-
sification was greater than 1%, the score obtained
from this particular study would be judged not to
be significant.

A second complicating aspect of the classifica-
tion of complex samples on the basis of their
chromatographic profiles is the confounding of
the desired group information by experimental
variables or other systematic variations. If the
basis of classification for patterns in the training
set is other than the desired group difference,
unfavorable classification results for the predict-
ion set will be obtained despite a linearly sep-
arable training set. The existence of these types of
complicating relationships is an inherent part of
fingerprint-type data. We will discuss several cur-
rent projects involving these effects and methods
for dealing with them.

CYSTIC FIBROSIS HETEROZYGOTES VS. NORMAL
SUBJECTS

The first study involves the application of
pyrolysis—gas chromatography (Py—-GC) and pat-
tern recognition methods to the problem of identi-
fying carriers of the cystic fibrosis (CF) defect
[22]. The biological samples used in this experi-
ment were cultured skin fibroblasts grown from 24
samples obtained from parents of children with
CF and from 24 presumed normal donors. A
typical CF heterozygote pyrochromatogram is
shown in Fig. 5. The pyrolyzed fibroblasts were
analyzed on fused silica capillary columns with
temperature programming. For each subject, tri-
plicate pyrochromatograms were taken.

The 144 pyrochromatograms were standardized
using an interactive computer program [23]. Each
pyrochromatogram was divided into 12 intervals
defined by 13 peaks that were always present. The
retention times of the peaks within the intervals
were scaled linearly for best fit with respect to a
reference pyrochromatogram. This peak matching
procedure yielded 214 standardized retention time
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Fig. 5. A representative pyrochromatogram from the cystic fibrosis study. The peak identities are those assigned using the
peak-matching software. The major peaks are those with assignments that are multiples of 100.

windows. Each pyrochromatogram was also nor-
malized using the total area of the 214 peaks. This
set of chromatographic data — 144 pyrochro-
matograms of 214 peaks each — was autoscaled
so that each Py—GC peak had a mean of zero and
a standard deviation of one within the entire set of
pyrochromatograms.

To apply pattern recognition methods to this
overdetermined data set, the necessary first step
was feature selection. The number of peaks per
chromatogram must be reduced to at least one-
third the number of independent pyrochromato-
grams in the data set, so at most 16 peaks could be
analyzed at one time. For the final results of the
analysis to be meaningful, this feature selection
must be done objectively, that is, without using
any class membership information.

For experiments of the type that we are consid-
ering here it is inevitable that there will be rela-
tionships between sets of conditions used in gener-
ating the data and patterns that result. One must
realize this in advance when approaching the task
of analyzing such data. One must isolate the in-
formation pertinent to the pathological alteration
characteristic of CF heterozygotes from the large
amount of qualitative and quantitative data due to
experimental conditions that is also contained in
the complex capillary pyrochromatograms.
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We have observed that experimental variables
(cell culture, batch number, passage number, donor
gender, and column identity) can contribute to the
overall classification process. For example, a deci-
sion function or classification rule was developed
from the 12 peaks comprising interval three. The
CF pyrochromatograms were linearly separable
from the pyrochromatograms of the presumed
normal donors. However, when the points from
this 12-dimensional space were mapped onto a
plane that best represents the pattern space (the
plane defined by the two largest principal compo-
nents), groupings related to column identity were
observed. Furthermore, classifiers could be de-
veloped from these 12 peaks that yielded favorable
classification results for many of the experimental
variables.

Notwithstanding the effects of the experimental
variables described above, a discriminant or deci-
sion function has been developed from the Py—-GC
peaks that separates the pyrochromatograms of
CF heterozygotes from those of presumed normal
subjects, by and large, on the basis of valid chem-
ical differences. The development of such a dis-
criminant is described in detail below.

The 65 peaks that were present in at least 90%
of the pyrochromatograms were used as a starting
point for the analysis. We assessed the ability of
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each of these 65 peaks alone to discriminate be-
tween pyrochromatograms with respect to gender,
passage number, and column identity. Twelve
peaks that had larger classification success rates
for the CF vs. normal than for any other dichot-
omy were selected for further analysis. This proce-
dure identifies those peaks that contain the most
information about CF vs. normal as opposed to
the experimental variables. We were attempting to
simultaneously minimize both the probability of
chance separation and that of confounding with
unwanted experimental details. A classification
rule developed from the 12 peaks using the k-
nearest neighbor procedure correctly classified 90%
of the pyrochromatograms in the data set. Vari-
ance features selection [24], combined with the
linear learning machine [25] and the adaptive
least-squares method [26] was used to remove 6 of
the 12 peaks found to be least relevant to the
classification problem. A discriminant that mis-
classified only eight of the pyrochromatograms
(136 correct of 144, 94%) was developed using the
final set of only six peaks.

The contribution of the experimental parame-
ters to the overall dichotomization power of the
decision function based on six peaks was assessed
by reordering experiments. The set of pyrochro-
matograms was first reordered in terms of donor
gender, and classification results indistinguishable
from random were obtained. Similar studies were
done for passage number and column identity,
and comparable results were obtained. The results
of the reordering tests suggest that the decision
function based on the six Py—-GC peaks incorpo-
rates mainly chemical information to separate the
pyrochromatograms of the CF heterozygotes from
those of the normals.

The ability of the decision function to classify a
simulated unknown sample was tested using a
procedure known as internal validation. Twelve
sets of pyrochromatograms were developed by
random selection where the training set contained
44 triplicates and the validation set contained the
remaining 4 triplicates. Any particular triplicate
was only present in one validation set of the 12
generated. Discriminants developed for the train-
ing sets were tested on the pyrochromatograms
that were held out. The average correct classifica-

tion for the held-out pyrochromatograms was 87%.
This same internal validation test was repeated
except that members of the held-out sets included
triplicate samples analyzed on the same column or
grown in the same batch of growth medium. The
average correct classification for the held-out py-
rochromatograms in this set of runs was 82%.
Although the classification success rate of the
decision function was diminished when we took
into account these confounding effects, favorable
results were still obtained.

RECOGNITION OF ANTS BY CASTE AND COLONY

Chemical communication among social insects
can be studied with chromatographic methods.
The data generated in such studies can be complex
and may require multivariate statistical or pattern
recognition methods for interpretation. Presently,
we are analyzing gas chromatographic profiles of
high molecular weight hydrocarbon extracts ob-
tained from the cuticles of 170 red fire ant
(Solenopsii invicta) samples. We are using pattern
recognition methods to seek relations with social
caste and colony. Each sample contains the hydro-
carbons extracted with hexane from the cuticles of
100 individual ants. The hydrocarbon fraction
analyzed by gas chromatography was isolated from
the concentrated hexane washings by means of a
silicic acid column. Evidence regarding the role of
cuticular hydrocarbons in nestmate recognition
came from a study of the myrmecophilous beetle
[27]. A gas chromatographic trace of the cuticular
hydrocarbons from a . invicta sample is shown in
Fig. 6. The hydrocarbon extract was analyzed on a
glass column packed with 3% OV-17 using tem-
perature programming,.

Five major hydrocarbon compounds were iden-
tified and quantified by gas chromatography-mass
spectrometry analysis: heptacosane (n — C,;Hyg),
13-methylheptacosane, 13,15-dimethylheptaco-
sane, 3-methylheptacosane, and 3,9-dimethyl-
heptacosane in the order of elution from the OV-17
column used. An internal standard was used for
quantification. Each chromatogram was normal-
ized using the weight of the collected ants.

Several questions have been addressed in this
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Fig. 6. Gas chromatographic trace of cuticular hydrocarbons
from S. imwicta. Peaks: a: heptacosane; b: 12-methylheptaco-
sane; ¢: 13,15-dimethylheptacosane; d: methylheptacosane; e:
3,9-dimethylheptacosane.

study: (1) Are the hydrocarbon patterns character-
istic of individual colonies? (2) Does the overall
colony hydrocarbon pattern change with time? (3)
Are the hydrocarbon patterns significantly differ-
ent for the social castes? In this study, ant samples
were obtained from five different colonies
(E, J, P, Q, R), three different social castes (for-
agers, reserves, and broods), and for four different
time periods (the first three in the spring and
summer, the fourth in the winter).

The first step was to use mapping and display
methods [12,14] to examine the structure of the
data. Methods used included principal compo-
nents mapping and nonlinear mapping. In Figs. 7
and 8 the results of principal component mapping
experiments for colonies J and Q are shown. Col-
ony J includes samples from time periods one
through three, whereas colony Q is represented by
ants from all four time periods. Colony J has 9
and colony Q has 12 members from each social
caste. Pattern groupings according to time period
and caste can be seen in Figs. 7 and 8. The first
two principal components account for 96.2% and
97% respectively of the total cumulative variance
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in the two plots shown. Mapping experiments of
this nature were also carried out for samples from
a particular caste or time period, and pattern
groupings with respect to colony identity, social
caste, and temporal period were observed.

Discriminant analysis studies were also per-
formed. In one study the data set was divided into
three categories according to the social caste of the
pooled ant sample. Linear discriminants were de-
veloped using the areas of the five GC peaks. The
hydrocarbon patterns of the foragers were found
to be very different from the broods and reserves.
In fact, information necessary to discriminate for-
agers from broods and reserves was primarily en-
coded in the concentration pattern of the first GC
peak. A similar study was undertaken for time
period, and the fourth time period was found to
be very different from time periods one, two, and
three. During time period four the ants are in a
state of hibernation, whereas time periods one,
two, and three correspond to the spring and
summer months.

The hydrocarbon profiles were also found to be
characteristic of the individual colonies. Linear
decision surfaces were developed from the five GC
peaks using an iterative least-squares method. The
purpose was to separate one colony from another
or one colony from all other colonies. (These
dichotomies reflect the choices facing the red fire
ant.) The results of these discriminant analysis
experiments are summarized in Table 2. The first
row of the table shows that colony E could be
separated from colony J by a discriminant that
achieved 98% correct classifications (62 correct
out of 63 samples) and that colony E could be
separated from all the remaining colonies by a
discriminant that achieved 95% correct classifica-
tions (162 correct out of 170).

In order to assess the significance of these
classification scores, Monte-Carlo simulation stud-
ies were performed. The purpose was to estimate
the degree of separation in the data due to chance.
For these studies data sets comprised of random
numbers were generated. Both Gaussian and uni-
form distributions were employed. Results from
these Monte-Carlo experiments are summarized in
Table 3. As an example, for the colony E vs.
colony J classification study, 100 data sets consist-
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TABLE 2

Percentage of chromatograms correctly classified by colony for several two-way classifications

Colony Number in colony Colony in second group (%)
E J P Q R All

E 36 - 98 100 100 100 95
J 27 - 100 100 100 98
P 36 - 100 100 99
Q 35 - 73 85
R 36 - 82
TABLE 3
Expected classification success rates for random data
Colony Number in colony Colony in second group (%)

E J P Q R All
E 36 - 67.9 65.8 65.1 64.5 75.5
J 27 - 67.7 67.7 67.6 83.0
P 36 - 64.8 64.6 76.7
Q 35 - 64.2 76.0
R 36 - 76.6

ing entirely of random numbers were generated.
The statistical properties of the simulated data
(i.e. dimensionality, number of patterns, class
membership distribution, and covariance struc-
ture) were identical to those of the colony E-col-
ony J training set. The separability of each ran-
dom data set was assessed using an iterative least-
squares method. The mean classification success
rate for the 100 data sets was computed and
compared to the classification score obtained in
the colony E-colony J study. Since the mean
classification score of the simulated data was only
67.9% (versus 98% for the real training set), the
classification score obtained in the colony E—col-
ony J study was judged to be significant.

It is clear from the results of these Monte-Carlo
experiments that the classification scores obtained
in the linear discriminant analysis experiments
listed in Table 2 are, by and large, significant. The
only exceptions are those found in the following
studies: colony Q versus colony R, colony Q versus
all remaining colonies, and colony R versus all
remaining colonies.

Multivariate statistical methods such as multi-
variate analysis of variance and stepwise logistic

88

regression have also been employed in this study.
The results obtained using these techniques sup-
port the conclusions drawn from the pattern re-
cognition experiments. In summary, GC traces
representing ant cuticle extracts could be related
to colony identity, social caste, and time period
using pattern recognition methods.
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