Page Banner

United States Department of Agriculture

Agricultural Research Service

Related Topics

Ronald E Hector (Ron)
Bioenergy Research
General Biological Science

Phone: (309) 681-6098
Fax: (309) 681-6427

Room 2127B
1815 N UNIVERSITY ST
PEORIA , IL 61604

Projects
Develop Technologies for Production of Platform Chemicals and Advanced Biofuels from Lignocellulosic Feedstocks
Appropriated (D)
  Accession Number: 427439

Publications (Clicking on the reprint icon Reprint Icon will take you to the publication reprint.)
Modification of the mannitol biosynthetic pathway in Aureobasidium pullulans to alter the structure of the polyol lipid liamocin -
A dynamic flux balance model and bottleneck identification of glucose, xylose, xylulose co-fermentation in Saccharomyces cerevisiae Reprint Icon -
Hohenschuh, W., Hector, R.E., Murthy, G.S. 2015. A dynamic flux balance model and bottleneck identification of glucose, xylose, xylulose co-fermentation in Saccharomyces cerevisiae. Bioresource Technology. 188:153-160.
Triacetic acid lactone production in industrial Saccharomyces yeast strains Reprint Icon -
Saunders, L.P., Bowman, M.J., Mertens, J.A., Da Silva, N.A., Hector, R.E. 2015. Triacetic acid lactone production in industrial Saccharomyces yeast strains. Journal of Industrial Microbiology and Biotechnology. 42:711-721.
Creation of a synthetic xylose-inducible promoter for Saccharomyces cerevisiae -
Hector, R.E., Card, K.A. 2014. Creation of a synthetic xylose-inducible promoter for Saccharomyces cerevisiae [abstract].
Triacetic acid lactone production from Saccharomyces cerevisiae -
Saunders, L.P., Bowman, M.J., Hector, R.E. 2014. Triacetic acid lactone production from Saccharomyces cerevisiae [abstract].
Comparisons of five Saccharomyces cerevisiae strains for ethanol production from SPORL pretreated lodgepole pine Reprint Icon -
Zhou, H., Lan, T., Dien, B.S., Hector, R.E., Zhu, J.Y. 2014. Comparisons of five Saccharomyces cerevisiae strains for ethanol production from SPORL pretreated lodgepole pine. Biotechnology Progress. 30(5):1076-1083.
Biological abatement of inhibitors in rice hull hydrolyzate and fermentation to ethanol using conventional and engineered microbes Reprint Icon -
Nichols, N.N., Hector, R.E., Saha, B.C., Frazer, S.E., Kennedy, G.J. 2014. Biological abatement of inhibitors in rice hull hydrolyzate and fermentation to ethanol using conventional and engineered microbes. Biomass and Bioenergy. 67:79-88.
Bioconversion of beetle-killed lodgepole pine using SPORL: Process scale-up design, lignin co-product, and high solids fermentation without detoxification Reprint Icon -
Zhou, H., Zhu, J.Y., Luo, X., Leu, S.-Y., Wu, X., Gleisner, R., Dien, B.S., Hector, R.E., Yang, D., Qiu, X., Horn, E., Negron, J. 2013. Bioconversion of beetle-killed lodgepole pine using SPORL: Process scale-up design, lignin co-product, and high solids fermentation without detoxification. Industrial and Engineering Chemistry Research. 52:16057-16065.
Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24 Reprint Icon -
Hector, R.E., Dien, B.S., Cotta, M.A., Mertens, J.A. 2013. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnology for Biofuels. 6:84.
Conversion of switchgrass to ethanol using dilute ammonium hydroxide pretreatment: influence of ecotype and harvest maturity -
Dien, B.S., O'Bryan, P.J., Hector, R.E., Iten, L.B., Mitchell, R.B., Qureshi, N., Sarath, G., Vogel, K.P., Cotta, M.A. 2013. Conversion of switchgrass to ethanol using dilute ammonium hydroxide pretreatment: influence of ecotype and harvest maturity. Environmental Technology. 34(13-14):1837-1848.
Simultaneous detoxification, saccharification, and ethanol fermentation of weak-acid hydrolyzates Reprint Icon -
Klasson, K.T., Dien, B.S., Hector, R.E. 2013. Simultaneous detoxification, saccharification, and ethanol fermentation of weak-acid hydrolyzates. Industrial Crops and Products. 49:292-298.
Reduction of fermentation lag phase in biofuel production using a novel activated biochar material -
Klasson, K.T., Dien, B.S., Hector, R.E. 2012. Reduction of fermentation lag phase in biofuel production using a novel activated biochar material. In: Proceedings of the U.S.-Japan Cooperative Program in Natural Resources Food and Agriculture Panel, USDA-ARS, December 8-13, 2012, Wyndmoor, Pennsylvania. pp. 1-2.
High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation -
Lan, T.Q., Gleisner, R., Zhu, J.Y., Dien, B.S., Hector, R.E. 2013. High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation. Bioresource Technology. 127:291-297.
Genetically engineered Escherichia coli FBR5: Part I. Comparison of high cell density bioreactors for enhanced ethanol production from xylose -
Qureshi, N., Dien, B.S., Liu, S., Saha, B.C., Hector, R.E., Cotta, M.A., Hughes, S.R. 2012. Genetically engineered Escherichia coli FBR5: Part I. Comparison of high cell density bioreactors for enhanced ethanol production from xylose. Biotechnology Progress. 28(5):1167-1178.
Genetically engineered Escherichia coli FBR5: Part II. Ethanol production from xylose and simultaneous product recovery -
Qureshi, N., Dien, B.S., Liu, S., Saha, B.C., Cotta, M.A., Hughes, S.R., Hector, R.E. 2012. Genetically engineered Escherichia coli FBR5: Part II. Ethanol production from xylose and simultaneous product recovery. Biotechnology Progress. 28(5):1179-1185.
Liquid chromatography-mass spectrometry investigation of enzyme-resistant xylooligosaccharide structures of switchgrass associated with ammonia pretreatment, enzymatic saccharification, and fermentation -
Bowman, M.J., Dien, B.S., Hector, R.E., Sarath, G., Cotta, M.A. 2012. Liquid chromatography-mass spectrometry investigation of enzyme-resistant xylooligosaccharide structures of switchgrass associated with ammonia pretreatment, enzymatic saccharification, and fermentation. Bioresource Technology. 110:437-447.
Plant cell walls to ethanol. -
Jordan, D.B., Bowman, M.J., Braker, J.D., Dien, B.S., Hector, R.E., Lee, C.C., Mertens, J.A., Wagschal, K.C. 2012. Plant cell walls to ethanol. Biochemical Journal. 442:247-252.
Subsite binding energies of an exo-polygalacturonase using isothermal titration calorimetry -
Mertens, J.A., Hector, R.E., Bowman, M.J. 2012. Subsite binding energies of an exo-polygalacturonase using isothermal titration calorimetry. Thermochimica Acta. 527:219-222.
Biochemical processing of reed canarygrass into fuel ethanol -
Dien, B.S., Casler, M.D., Hector, R.E., Iten, L.B., Nichols, N.N., Mertens, J.A., Cotta, M.A. 2012. Biochemical processing of reed canarygrass into fuel ethanol. International Journal of Low-Carbon Technologies. 7:338-347.
Effect of cellulosic sugar degradation products (furfural and hydroxymethylfurfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260 -
Qureshi, N., Bowman, M.J., Saha, B.C., Hector, R.E., Berhow, M.A., Cotta, M.A. 2012. Effect of cellulosic sugar degradation products (furfural and hydroxymethylfurfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260. Journal of Food and Bioproducts Processing. 90:533-540.
Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation Reprint Icon -
Hector, R.E., Mertens, J.A., Bowman, M.J., Nichols, N.N., Cotta, M.A., Hughes, S.R. 2011. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation. Yeast. 28:645-660.
Identifying enzyme resistant xylo-oligomers from processing switchgrass to bioethanol -
Bowman, M.J., Dien, B.S., Hector, R.E., Sarath, G., Cotta, M.A. 2011. Identifying enzyme resistant xylo-oligomers from processing switchgrass to bioethanol [abstract]. American Society for Mass Spectrometry. p. 66.
Dilute ammonium hydroxide pretreatment of reed canary grass and its simultaneous saccharification and fermentation to ethanol using a xylose-fermenting Saccharomyces cerevisiae strain -
Dien, B.S., Hector, R.E., Casler, M.D., Cotta, M.A. 2011. Dilute ammonium hydroxide pretreatment of reed canary grass and its simultaneous saccharification and fermentation to ethanol using a xylose-fermenting Saccharomyces cerevisiae strain [abstract]. In: Proceedings of the 33rd Symposium on Biotechnology for Fuels and Chemicals, May 2-5, 2011, Seattle, Washington. Paper No. 4-18.
Butanol productivity enhancers in wheat straw hydrolyzate: employing potential of enhanced reaction rate -
Qureshi, N., Bowman, M.J., Hector, R.E., Saha, B.C., Cotta, M.A. 2011. Butanol productivity enhancers in wheat straw hydrolyzate: employing potential of enhanced reaction rate [abstract]. In: Proceedings of the 33rd Symposium on Biotechnology for Fuels and Chemicals, May 2-5, 2011, Seattle, Washington. Paper No. 11-11.
Switchgrass alkaline pretreatment, enzymatic saccharification, and fermentation with residual oligosaccharide product analysis by mass spectrometry -
Bowman, M.J., Dien, B.S., Hector, R.E., Sarath, G., Cotta, M.A. 2011. Switchgrass alkaline pretreatment, enzymatic saccharification, and fermentation with residual oligosaccharide product analysis by mass spectrometry [abstract]. In: Proceedings of the 33rd Symposium on Biotechnology for Fuels and Chemicals, May 2-5, 2011, Seattle, Washington. Paper NO. 10-19.
Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition -
Dien, B.S., Miller, D.J., Hector, R.E., Dixon, R.A., Chen, F., McCaslin, M., Risen, P., Sarath, G., Cotta, M.A. 2011. Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresource Technology. 102(11):6479-6486.
Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion -
Hector, R.E., Dien, B.S., Cotta, M.A., Qureshi, N. 2011. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. Journal of Industrial Microbiology and Biotechnology. 38(9):1193-1202.
Cloning and Expression of Novel Bacterial Xylose Isomerases in Saccharomyces cerevisiae -
Hector, R.E., Dien, B.S., Cotta, M.A., Hughes, S.R. 2010. Cloning and expression of novel bacterial xylose isomerases in Saccharomyces cerevisiae. Biotechnology for Fuels and Chemicals Symposium. Abstract #1.
Biochemical Conversion of Reduced Lignin Alfalfa Stems Into Ethanol -
Production of Butanol (a Biofuel) from Agricultural Residues: Part II - Use of Corn Stover and Switchgrass Hydrolysates -
Qureshi, N., Saha, B.C., Hector, R.E., Dien, B., Hughes, S., Liu, S., Iten, L., Bowman, M.J., Sarath, G., Cotta, M.A. 2010. Production of butanol (a Biofuel) from agricultural residues: Part II - Use of corn stover and switchgrass hydrolysates. Biomass and Bioenergy. 34(4):566-571.
Production of Butanol (A Biofuel) from Agricultural Residues: Part I - Use of Barley Straw Hydrolysate -
Qureshi, N., Saha, B.C., Dien, B., Hector, R.E., Cotta, M.A. 2010. Production of Butanol (a Biofuel) from Agricultural Residues: Part I - Use of Barley Straw Hydrolysate. Biomass and Bioenergy. 34(4):559-565.
Enhanced Production of Carboxylic Acids by Engineering of Rhizopus -
Skory, C.D., Hector, R.E., Gorsich, S.W., Rich, J.O. 2009. Enhanced Production of Carboxylic Acids by Engineering of Rhizopus [abstract].
Novel Lactate Transporters from Carboxylic Acid-Producing Rhizopus -
Skory, C.D., Hector, R.E., Gorsich, S.W., Rich, J.O. 2009. Novel lactate transporters from carboxylic acid-producing Rhizopus [abstract]. United States-Japan Natural Resources Food and Agriculture Panel. p. 160-163.
Novel Lactate Transporters from Carboxylic Acid-Producing Rhizopus -
Skory, C.D., Hector, R.E., Gorsich, S.W., Rich, J.O. 2009. Novel lactate transporters from carboxylic acid-producing Rhizopus. United States-Japan Cooperative Program in Natural Resources. p. 160-163.
Genetic Engineering of Rhizopus for Enhancing Lactic Acid Production -
Rich, J.O., Skory, C.D. 2009. Genetic Engineering of Rhizopus for enhancing lactic acid production [abstract]. Conference on Fermentation Technology for Value Added Agricultural Products. Paper Fer406. p. 25.
Report membrane transport of lactic acid in the filamentous fungus Rhizopus Reprint Icon -
Skory, C.D., Hector, R.E., Gorsich, S.W., Rich, J.O. 2009. Report membrane transport of lactic acid in the filamentous fungus Rhizopus. KKU Research Journal. 15(9):826-831.
Analysis of a Functional Lactate Permease in the Fungus Rhizopus -
Skory, C.D., Hector, R.E., Gorsich, S., Rich, J.O. 2010. Analysis of a functional lactate permease in the fungus Rhizopus. Enzyme and Microbial Technology. 46(1):43-50.
The Saccharomyces cerevisiae YMR315W Gene Encodes an NADP(H)-Specific Oxidoreductase Regulated by the Transcription Factor Stb5p in Response to NADPH Limitation -
Hector, R.E., Bowman, M.J., Skory, C.D., Cotta, M.A. 2009. The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific Oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation. New Biotechnology. 26(3/4):171-180.
Evaluation of engineered xylose-fermenting industrial strains of Saccharomyces cerevisiae for improved ethanol production from lignocellulosic feedstocks -
Conversion of switchgrass to sugars and ethanol using dilute ammonium hydroxide pretreatment -
GMAX Yeast Background Strain Made from Industrial Tolerant Saccharomyces Cerevisiae Engineered to Convert Pretreated Lignocellulosic Starch and Cellulosic Sugars Universally to Ethanol Anaerobically -
Hughes, S.R., Tasaki, K., Moser, B., Doll, K., Butt, T., Sterner, D., Bischoff, K., Hector, R., Jones, M., and Bang, S. 2009. GMAX yeast background strain made from industrial tolerant Saccharomyces cerevisiae engineered to convert pretreated Lignocellulosic starch and cellulosic sugars universally to ethanol anaerobically [abstract]. Cambridge Healthtech Institute, Advanced Biofuels Development Summit. Abstract No. 2. p. 3.
Automated High Throughput GMAX-L Strains of Saccharomyces Cereviciae for Profitable Cellulosic Ethanol Production from Industrial Hydrosylates -
Hughes, S.R., Tasaki, K., Doll, K.M., Moser, B.R., Rich, J.O., Qureshi, N., Hector, R.E., Dien, B.S., Cotta, M.A., Bischoff, K.M., Liu, S., Bang, S., Jones, M. 2009. Automated high throughput GMAX-L strains of Saccharomyces cereviciae for profitable cellulosic ethanol production from industrial hydrosylates [abstract]. Society for In-Vitro Biology. p. 122.
Automated Yeast Transformation Protocol to Engineer S. cerevisiae Strains for Cellulosic Ethanol Production with Open Reading Frames that Express Proteins Binding to Xylose Isomerase Identified using Robotic Two-hybrid Screen -
Hughes, S.R., Rich, J.O., Bischoff, K.M., Hector, R.E., Qureshi, N., Saha, B.C., Dien, B.S., Liu, S., Jackson Jr, J.S., Sterner, D.E., Butt, T.R., Labaer, J., Cotta, M.A. 2009. Automated yeast transformation protocol to engineer S. cerevisiae strains for cellulosic ethanol production with open reading frames that express proteins binding to xylose isomerase identified using robotic two-hybrid screen. Journal of the Association for Laboratory Automation. 8:200-212.
Automated production GMAX-L strains of Saccharomyces cereviciae for profitable sustainable cellulosic ethanol production combined with valuable coproduct isolation in mixed biorefinery settings -
Hughes, S.R., Doll, K., Moser, B., Bang, S., Rich, J., Qureshi, N., Hector, R., Dien, B., Cotta, M., Bischoff, K., Liu, S., Jones, M. 2009. Automated production GMAX-L strains of Saccharomyces cereviciae for profitable sustainable cellulosic ethanol production combined with valuable coproduct isolation in mixed biorefinery settings [abstract]. LabAutomation 2009. Abstract No. 109. p. 42.
Automated Yeast Mating Protocol Using Open Reading Frames from Saccharomyces cerevisiae Genome to Improve Yeast Strains for Cellulosic Ethanol Production -
Hughes, S.R., Hector, R.E., Rich, J.O., Qureshi, N., Bischoff, K.M., Dien, B.S., Saha, B.C., Liu, S., Jackson Jr, J.S., Sterner, D.E., Butt, T.R., Labaer, J., Cotta, M.A. 2009. Automated yeast mating protocol using open reading frames from Saccharomyces cerevisiae genome to improve yeast strains for cellulosic ethanol production. Journal of the Association for Laboratory Automation. 8:190-199.
Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system -
Hughes, S.R., Sterner, D.E., Bischoff, K.M., Hector, R.E., Dowd, P.F., Qureshi, N., Bang, S.S., Grynavyski, N., Chakrabarty, T., Johnson, E.T., Dien, B.S., Mertens, J.A., Caughey, R.J., Liu, S., Butt, T.R., Labaer, J., Cotta, M.A., Rich, J.O. 2009. Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system. Plasmid Journal. 61(1):22-38.
Saccharomyces cerevisiae mass transformed with FLEXGenes results in strain capable of anaerobic fermentation of pentose and hexose sugars -
Hughes, S.R., Javers, J., Labaer, J., Butt, T., Hector, R.E., Dien, B.S., Saha, B.C., Bischoff, K.M., Kohl, S., Cotta, M.A., Rich, J.O. 2008. Saccharomyces cerevisiae mass transformed with FLEXGenes results in strain capable of anaerobic fermentation of pentose and hexose sugars [abstract]. Society of Industrial Microbiology. Session 34, S164, p. 106.
Expression of a Heterologous Xylose Transporter in a Saccharomyces cerevisiae Strain Engineered to Utilize Xylose Improves Aerobic Xylose Co-consumption -
Hector, R.E., Qureshi, N., Hughes, S.R., Cotta, M.A. 2008. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Applied Microbiology and Biotechnology. 80(4):675-684.
Saccharomyces cerevisiae engineered to convert pretreated lignocellulosic sugars anaerobically to ethanol -
Hughes, S.R., Bischoff, K.M., Hector, R.E., Dien, B.S., Saha, B.C., Javers, J., Gibbons, W., Bang, S., Nelson, R., Standish, K., Cotta, M.A., Rich, J.O. 2008. Saccharomyces cerevisiae engineered to convert pretreated Lignocellulosic sugars anaerobically to ethanol [abstract]. Cambridge Healthtech Institute, Second Generation Biofuels Development Summit, Seminar 6. p. 1.
Three-vector system for high-level functional expression of value-added co-products with xylose isomerase and xylulokinase in an industrial saccharomyces cerevisiae strain -
Hughes, S.R., Jackson Jr, J.S., Dowd, P.F., Hector, R.E., Bischoff, K.M., Sterner, D., Bang, S., Grynavyski, N., Chakrabarty, T., Johnson, E.T., Li, X., Caughey, R.J., Liu, S., Skory, C.D., Butt, T., Labaer, J., Dien, B.S., Saha, B.C., Bowen, M., Qureshi, N., Rich, J.O., Leathers, T.D., Cotta, M.A., Farrelly, P., Slininger P.J. 2008. Three-vector system for high-level functional expression of value-added co-products with Xylose Isomerase and Xylulokinase in an industrial Saccharomyces cerevisiae strain [abstract]. Cambridge Healthtech Institute, Second Generation Biofuels Development Summit. Poster #1. p. 4.
Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose increases xylose uptake and improves xylose/glucose co-consumption -
Hector, R.E., Qureshi, N., Hughes, S.R., Cotta, M.A. 2008. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose increases xylose uptake and improves xylose/glucose co-consumption [abstract]. In: Proceedings of the 30th Symposium on Biotechnology for Fuels and Chemicals, May 4-7, 2008, New Orleans, LA. p. 131.
The YMR315W gene from Saccharomyces cerevisiae codes for an alcohol dehydrogenase and is required for full resistance to oxidative stress -
Removal of Fermentation Inhibitors from Alkaline Peroxide Pretreated and Enzymatically Hydrolyzed Wheat Straw: Production of Butanol from Hydrolysate Using Clostridium beijerinckii in Batch Reactors -
Qureshi, N., Saha, B.C., Hector, R.E., Cotta, M.A. 2008. Removal of Fermentation Inhibitors from Alkaline Peroxide Pretreated and Enzymatically Hydrolyzed Wheat Straw: Production of Butanol from Hydrolysate Using Clostridium beijerinckii in Batch Reactors. Biomass and Bioenergy. 32(12):1353-1358.
Lycotoxin-1 insecticidal peptide optimized by amino acid scanning mutagenesis and expressed as a co-product in an ethanologenix Saccharomyces cerevisiae strain -
Hughes, S.R., Dowd, P.F., Hector, R.E., Panavas, T., Sterner, D.E., Qureshi, N., Bischoff, K.M., Bang, S.B., Mertens, J.A., Johnson, E.T., Li, X., Jackson Jr, J.S., Caughey, R.J., Riedmuller, S.B., Bartolett, S., Liu, S., Rich, J.O., Farrelly, P.J., Butt, T.R., Labaer, J., Cotta, M.A. 2008. Lycotoxin-1 insecticidal peptide optimized by amino acid scanning mutagenesis and expressed as a co-product in an ethanologenix Saccharomyces cerevisiae strain. Journal of Peptide Science. 14(9):1039-1050. Available: http://www3.interscience.wiley.com/cgi-bin/fulltext/119030240/PDFSTART.
Regulatory concerns associated with use of value-added recombinant proteins and peptides screened in hgh-throughput for expression in fuel ethanol yeast strains -
Hughes, S.R., Dowd, P.F., Hector, R.E., Bischoff, K.M., Rich, J.O., Cotta, M.A., Slininger, P.J., Rosentrater, K.A. 2008. Regulatory concerns associated with use of value-added recombinant proteins and peptides screened in hgh-throughput for expression in fuel ethanol yeast strains [abstract]. LabAutomation 2008, Track 5, Seminar 4. p. 5.
ENGINEERING SACCHAROMYCES CEREVISIAE FOR ETHANOL PRODUCTION FROM AGRICULTURAL WASTE PRODUCTS -
Hector, R.E., Qureshi, N., Hughes, S.R., Cotta, M.A. 2007. Engineering Saccharomyces cerevisiae for ethanol production from agricultural waste products [abstract]. Yeast Cell Biology. Paper No. 176.
BUTANOL PRODUCTION FROM WHEAT STRAW BY SIMULTANEOUS SACCHARIFICATION AND FERMENTATION USING CLOSTRIDIUM BEIJERINCKII: PART I-BATCH FERMENTATION -
Qureshi, N., Saha, B.C., Hector, R.E., Hughes, S.R., Cotta, M.A. 2008. Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I - batch fermentation. Biomass and Bioenergy. 32:168-175.
High-Throughput Fully Automated Construction of a Multiplex Library of Mutagenized Open Reading Frames for an Insecticidal Peptide Using a Plasmid-Based Functional Proteomic Robotic Workcell with Improved Vacuum System -
Hughes, S.R., Dowd, P.F., Hector, R.E., Riedmuller, S.B., Bartolett, S., Mertens, J.A., Qureshi, N., Liu, S., Bischoff, K.M., Li, X., Jackson Jr, J.S., Sterner, D., Panavas, T., Cotta, M.A., Farrelly, P.J., Butt, T. 2007. High-throughput fully automated construction of a multiplex library of mutagenized open reading frames for an insecticidal peptide using a plasmid-based functional proteomic robotic workcell with improved vacuum system. Journal of Laboratory Automation. 12(4):202-212.
Fully automated molecular biology routines on a plasmid-based functional proteomic workcell: Evaluation and Characterization of Yeast Strains Optimized for Growth on Xylose Expressing "Stealth" Insecticidal Peptides. -
Hughes, S.R., Li, X., Hector, R.E., Bischoff, K.M., Cotta, M.A., Mertens, J.A., Dowd, P.F., Johnson, E.T. 2007. Fully automated molecular biology routines on a plasmid-based functional proteomic workcell: Evaluation and characterization of yeast strains optimized for growth on xylose expressing "stealth" insecticidal peptides [abstract]. American Chemical Society. p. 108.
Adaptation to an automated platform of algorithmic combinations of advantageous mutations in genes generated using amino acid scanning mutational strategy. -
Riedmuller, S., Hughes, S.R., Hector, R.E., Bischoff, K.M., Farrelly, P., Cotta, M.A., Li, X. 2007. Adaptation to an automated platform of algorithmic combinations of advantageous mutations in genes generated using amino acid scanning mutational strategy [abstract]. PEPTALK 2007. Cambridge Healthtech Institute. Seminar 43. p. 4.
Fully automated molecular biology: Plasmid-Based Functional Proteomic Workcell Evaluation and Characterization of Yeast Strains with Optimized "Trojan Horse" Amino Acid Scanning Mutational Inserts. -
Hughes, S.R., Qureshi, N., Mertens, J.A., Cotta, M.A., Hector, R.E., Bischoff, K.M., Liu, S., Li, X-L., 2007. Fully automated molecular biology: Plasmid-based functional proteomic workcell evaluation and characterization of yeast strains with optimized "Trojan Horse" amino acid scanning mutational inserts [abstract]. PEPTALK 2007. Cambridge Healthtech Institute. Poster 509, p. 4.
ARS News Articles
Last Modified: 5/2/2016
Footer Content Back to Top of Page