Page Banner

United States Department of Agriculture

Agricultural Research Service

Related Topics

Research Project: Predicting Impacts of Climate Change on Agricultural Systems and Developing Potentials for Adaptation

Location: Plant Physiology and Genetics Research

Project Number: 5347-11000-010-00
Project Type: Appropriated

Start Date: Feb 02, 2010
End Date: Feb 01, 2015

Objective:
Objective 1. Assess the relative utility of experimental approaches such as FACE, SPAR, OTC and T-FACE for estimating impacts of climate change factors on plant responses. Objective 2. Strengthen physiological and genetic assumptions of ecophysiological models used for climate change research. Sub-objective 2.A: Compare and refine ecophysiological models that differ in the level of complexity used to represent key processes. Sub-objective 2.B: Refine and apply approaches for gene-based modeling of ecotypic adaptations to factors relevant to climate change research. Objective 3. Predict likely impacts of climate change and potential for adaptation of cropping systems. Objective 4. Intercompare crop and economic models and develop improvements in these models to increase their capability to utilize data from climate scenarios as part of AgMIP. (NP212 Component 3. Enable Agriculture to Adapt to Climate Change, Problem Statement 3A.

Approach:
To achieve the first objective, we will capitalize on the extensive wheat datasets from research at Maricopa over the past 20 years as well as recent advances in statistical analysis of simulation outputs. The second objective builds on progress in plant physiology and genomics that provide avenues for improving how processes are modeled, especially in relation to cultivar differences. In the third objective, the advances in modeling and understanding will be applied to irrigated production systems of the Southwest, both to assess potential impacts of climate change and to identify options for adaptation, including potentially complex interactions of crop calendars, cultivar types and irrigation and fertilizer management. By addressing strategic methodological constraints, the research will provide invaluable information for stakeholders in regional, national and international venues, helping to ensure that agriculture can adapt efficiently and effectively to climate change.

Last Modified: 9/10/2014
Footer Content Back to Top of Page