Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Spatial Modeling of Agricultural Watersheds: Water and Nutrient Management and Targeted Conservation Effects at Field to Watershed Scales

Location: Agricultural Systems Research Unit

Project Number: 5402-13660-008-00
Project Type: Appropriated

Start Date: Feb 09, 2012
End Date: Feb 08, 2017

Objective:
Objective 1. Develop and apply new watershed modeling tools to evaluate the long-term effects of innovative cropping, limited water, and nitrogen management on water quantity, water quality, and crop production in selected agricultural sub-basins in Colorado. [Contributes to Problem Area #1, Effective Water Management in Agriculture, Problem Statements 1.1.3 and 1.4.2 of the new National Program (NP) 211 Action Plan (FY 2011 – 2015)] Objective 2. Using data from Colorado and the Midwest, improve model components to quantify and assess spatially targeted agricultural conservation effects on water quantity and quality. [Contributes to Problem Area #4, Improving Watershed Management and Ecosystem Services in Agricultural Landscapes, Problem Statement 4.1 of the new National Program (NP) 211 Action Plan (FY 2011 – 2015)] Objective 3. Simulate the combined effects of projected climate change on crop production, water use, and nitrate transport, and assess potential cropping system adaptations at field to sub-basin scales in Colorado. [Contributes to Problem Area #4, Improving Watershed Management and Ecosystem Services in Agricultural Landscapes, Problem Statement 4.3 of the new National Program (NP) 211 Action Plan (FY 2011 – 2015)]

Approach:
As population increases and climate changes, we face global crises of conserving and managing water quantity and quality for agricultural and urban demands. Distributed agro-hydrologic modeling tools are needed to address complex system interactions in space and time for different soils and climates. Impacts of water and nutrient management and of targeted conservation practices within and adjacent to fields must be assessed in terms of water quantity and quality at designated watershed outlets. This project focuses on developing simulation tools for evaluating and proposing solutions to critical emerging problems in diverse agricultural systems over scales ranging from approximately 50 to 50,000 ha under current and future conditions. The component-based AgroEcoSystem-Watershed (AgES-W) model, developed in the Object Modeling System (OMS) framework, explicitly simulates the hydrologic and agronomic responses from spatially distributed land use, management, and weather conditions across inter-connected ecosystem response units (ERUs). AgES-W will be enhanced for: 1) routing water and nutrients across a watershed, 2) diverse cropping system responses to water deficits, 3) model uncertainty analyses and scaling, and 4) plant responses to atmospheric CO2. New OMS tools will include ERU delineation, sensitivity analysis, spatial visualization, statistical analyses of outputs, and web-based cloud computing. Selected conservation practices will be evaluated under existing and projected climates in the semi-arid West (Colorado), and spatially targeted conservation will focus on the sub-humid Midwest (Iowa), resulting in new agricultural adaptation strategies. These case studies address agricultural water and nutrient management issues in the American West and Midwest, while providing component-based modeling tools globally.

Last Modified: 4/15/2014
Footer Content Back to Top of Page