Page Banner

United States Department of Agriculture

Agricultural Research Service

Related Topics

Research Project: New and Emerging Viral and Bacterial Diseases of Ornamental Plants: Detection, Identification, and Characterization

Location: Floral and Nursery Plants Research Unit

Project Number: 8020-22000-032-00
Project Type: Appropriated

Start Date: Apr 09, 2012
End Date: Apr 08, 2017

Objective:
The objectives of this project are 1) Characterize viruses of major significance to ornamental and nursery crops, including uncharacterized or emerging viruses affecting key ornamental crops and develop corresponding diagnostic testing methods; 2) Determine the genome organization of selected important ornamental viruses and utilize full-length infectious clones to determine the genes or gene products involved in replication, systemic movements, and pathogenicity; and 3) identify, detect, and gain a better understanding of genetic relationships and molecular basis of pathogenicity to facilitate effective control of bacterial diseases of major significance to ornamental and agronomic crops. The long-term objective of this project is to develop effective means for the detection and identification of new and emerging plant viral and bacterial diseases of ornamentals, thus allowing growers to select pathogen-free or pathogen-indexed plants for propagation. Improved detection and differentiation methods for these pathogens will enable state and federal regulatory officials to make timely and appropriate recommendations in safeguarding the movement of horticultural and agricultural products into the United States. Understanding viral and bacterial genome structures and functions, their mechanisms of pathogenicity and resistance, and conferring virus and bacterial resistance in plants will lead to the development of better disease control measures and increases in both productivity and quality of ornamental plants for industry and the consumer.

Approach:
Characterize viruses of major significance to ornamental and nursery crops, including uncharacterized or emerging viruses affecting key ornamental crops, and develop corresponding diagnostic testing methods. The overall approach is to develop knowledge, tools, and reagents that will aid U.S. floriculture companies to establish effective virus testing protocols and improve clean stock production for new vegetatively propagated annuals and perennials. Based on the knowledge and tools developed while identifying and characterizing new viruses, new virus-specific and broad-spectrum polyclonal and/or monoclonal antibody reagents, purification protocols, molecular nucleic acid hybridization probes, PCR primers, and improved associated protocols will be developed. A Universal Plant Virus Microarray, currently being developed cooperatively under an NRI grant, will add new capabilities in identifying newly emerging viruses to the appropriate family and genus, thus significantly aiding selection of appropriate methods for further characterization. Research will initially focus on those "new" currently uncharacterized or emerging viruses affecting key ornamental crops recently identified as significant to the floral and nursery industry. Determine the genome organization of selected important ornamental viruses and utilize full-length infectious clones to determine the genes or gene products involved in replication, systemic movement, and pathogenicity. Infectious clones of selected viruses will be modified by gene exchange and site-directed mutagenesis. Interactions between viral gene products, and between viral and host proteins, using yeast two-hybrid, bimolecular fluorescence complementation, and GST-pull down assays will be examined. Virus-induced gene silencing (VIGS) and/or protein over-expression will also be utilized. Identify, detect, and gain a better understanding of genetic relationships and molecular basis of pathogenicity to facilitate effective control of bacterial diseases of major significance to ornamental and agronomic crops. Research will be conducted on Xylella fastidiosa genome characterization, and specific detection and identification of ornamental strains, as well as genetic relationships among ornamental and non-ornamental strains of X. fastidiosa. Using high throughput sequencing and comparative genomics, a better understanding of their molecular basis of pathogenicity will be retained. Current detection and identification methods for the select agent pathogen Ralstonia solanacearum race 3 biovar 2 will be improved using comparative genomics to develop, for example, a multiplex PCR.

Last Modified: 10/25/2014
Footer Content Back to Top of Page