Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Multifunctional Farms and Landscapes to Enhance Ecosystem Services

Location: Pasture Systems & Watershed Management Research

Project Number: 8070-21000-008-00
Project Type: Appropriated

Start Date: Dec 17, 2012
End Date: Dec 16, 2017

Objective:
1: Identify, through experimentation and plant growth and habitat modeling, pasture-based dairy and livestock production systems and management practices that improve food security by enhancing productivity, improving long-term environmental sustainability, and increasing flexibility to adapt to changing environmental and climatic conditions. We will initially delineate current land-use practices for grazing lands in the eastern US and investigate how land use might change in the future (sub-objective 1.A). Primary land use practices to be considered are pasture-based animal agriculture and bioenergy feedstock production systems. Sub-objective 1B will characterize potential changes in forage species distribution and dairy cow grazing behavior in response to climate change (adaptation), and evaluate plant and animal management strategies to mitigate climate change. Sub-objective 1.C will identify conservation practices and animal management strategies that improve nutrient utilization efficiency and reduce sediment and nutrients movement off-farm. 2: Develop best management practices and identify management systems that improve productivity and environmental sustainability of bioenergy production as part of multifunctional agricultural systems. Objective 2 focuses on bioenergy cropping systems and will identify management systems that increase soil C sequestration and reduce N loss and net GHG emissions (sub-objective 2.A) and evaluate the effects of miscanthus production at the commercial scale on C sequestration and GHG intensity (sub-objective 2.B). Sub-objective 2B will also include a life-cycle inventory assessment to profile the energy and GHG emissions associated with miscanthus production. Objective 3. Improve dairy industry production capacity and environmental sustainability to meet the demands of existing and emerging markets, and improve dairy industry resilience to abiotic and biotic stressors while maintaining producer economic viability. Using a comprehensive, systems approach along with existing/new databases and models to identify opportunities and support Livestock GRACEnet, LTAR and Climate Hub efforts to improve the environmental performance of dairy systems across the Northeast, Midwest, and West. The following research focus areas will be prioritized: a) Improve nutrient use efficiency across dairy production, emphasizing the conservation of nitrogen and phosphorus in local and regional crop production and reduction of off-farm nitrogen and phosphorus losses, especially through novel/greater use of forage crops and innovative practices. b) Improve carbon sequestration and reduce greenhouse gas emissions from dairy cattle, production facilities and land application of manure. c) Improve the understanding of pathogen transport and control through water and/or bioaerosol pathways.

Approach:
This research will provide the necessary information for developing decision-support tools that bring together diverse forage production systems, innovative animal management strategies and novel biofuel production practices to build multifunctional farms and landscapes. The purpose is to provide guidance on optimizing the placement and management of pasture and bioenergy crops in ways that are appropriate to the landscape context and that will increase productivity and enhance ecosystem services of farming enterprises. We will initially delineate current land-use practices for grazing lands in the eastern US and investigate the production and environmental consequences of potential future management changes. Primary land-use practices to be considered are pasture-based animal agriculture and bioenergy feedstock production systems. We will provide information on plant and animal adaptation to climate change and on the effectiveness of greenhouse gas (GHG) mitigation strategies for grazing animals, pasturelands, and biofuel feedstock production systems. We will provide farm scale life cycle inventory (LCI) data on miscanthus and identify water quality and GHG impacts of switchgrass and miscanthus production on marginal lands We will also assess the effects of grazing management and manure application strategies on nutrient movement and water quality as part of the pasture component of the national Grazing Lands Conservation Effects Assessment Project (CEAP). Results will fill gaps in our knowledge of management practices that increase resilience to climate change, improve conservation of soil and water resources, and reduce GHG emissions. Successful completion of this project will 1) increase farm productivity, 2) improve adaptation to climate change and 3) provide targeted conservation practices to enhance ecosystem services.

Last Modified: 12/22/2014
Footer Content Back to Top of Page