Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Development and Application of Genetic, Genomic, and Bioinformatic Resources in Maize

Location: Plant, Soil and Nutrition Research

Publications (Clicking on the reprint icon Reprint Icon will take you to the publication reprint.)

Tassel-Gbs: a High Capacity Genotyping by Sequencing Analysis Pipeline - (Peer Reviewed Journal)
Glaubitz, J.C., Casstevens, T.M., Lu, F., Harriman, J., Elshire, R.J., Sun, Q., Buckler Iv, E.S. 2014. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One. 9(2):e90346.
A modern ampelography: A genetic basis for leaf shape and venation patterning in grape     Reprint Icon - (Peer Reviewed Journal)
Chitwood, D.H., Ranjan, A., Martinez, C.C., Headland, L.R., Thiem, T., Kumar, R., Covington, M.F., Hatcher, T, Naylor, D.T., Zimmerman, S., Downs, N., Raymundo, N., Buckler IV, E.S., Maloof, J.N., Aradhya, M.K., Prins, B.H., Li, L., Myles, S., Sinha, N.R. 2013. A modern ampelography: A genetic basis for leaf shape and venation patterning in grape. Plant Physiology. 164(1):259-272.
Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits - (Peer Reviewed Journal)
Morris, G.P., Rhodes, D.H., Brenton, Z., Ramu, P., Thayil, V.L., Deshpande, S., Hash, T.C., Acharya, C., Mitchell, S.E., Buckler IV, E.S., Yu, J., Kresovich, S. 2013. Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits. Genes, Genomes, Genetics. 3(11):2085-2094.
Genomic prediction in maize breeding populations with genotyping-by-sequencing - (Peer Reviewed Journal)
Crossa, J., Beyene, Y., Segman, K., Perez, P., Hickey, J.M., Chen, C., De Los Campos, G., Burgueno, J., Windhausen, V.S., Buckler IV, E.S., Jannink, J., Lopez Crua, M.A., Babu, R. 2013. Genomic prediction in maize breeding populations with genotyping-by-sequencing. Genes, Genomes, Genetics. DOI: 10.1534/g3.113.008227.
Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform - (Peer Reviewed Journal)
Charles, C., Mitchell, S., Elshire, R.J., Buckler IV, E.S., El-Kassaby, Y.A. 2013. Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform. Tree Genetics and Genomes. 9(6):1537-1544.
Natural variation in maize aphid resistance is associated with 2,4-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-One Glucoside Methyltransferase activity - (Peer Reviewed Journal)
Meihls, L.N., Handrick, V., Glauser, G., Barbier, H., Kaur, H., Haribal, M.M., Lipka, A.E., Gershenzon, J., Buckler IV, E.S., Erb, M., Kollner, T.G., Jander, G. 2013. Natural variation in maize aphid resistance is associated with 2,4-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-One Glucoside Methyltransferase activity. The Plant Cell. 25(6):2341-2355.
Population genomic and genome-wide association studies of agroclamatic traits in sorghum     Reprint Icon - (Peer Reviewed Journal)
Morris, G.P., Ramu, P., Deshpande, S.P., Hash, T.C., Shah, T., Upadhyaya, H.D., Riera-Lizarazu, O., Brown, P., Acharya, C.B., Mitchell, S.E., Harriman, J., Glaubitz, J.C., Buckler IV, E.S., Kresovich, S. 2013. Population genomic and genome-wide association studies of agroclamatic traits in sorghum. Proceedings of the National Academy of Sciences. 110(2):453-458.
Picara, An Analytical Pipeline Providing Probabilistic Inference About a Priori Candidates Genes Underlying Genome-Wide Association Qtl in Plants - (Peer Reviewed Journal)
Charles, C., Declerck, G., Tian, F., Spooner, W., Mccouch, S., Buckler IV, E.S. 2012. PICARA, an analytical pipeline providing probabilistic inference about a priori candidates genes underlying genome-wide association QTL in plants. PLoS One. 7(11): e46596.
Last Modified: 9/10/2014
Footer Content Back to Top of Page