Page Banner

United States Department of Agriculture

Agricultural Research Service

Related Topics

Research Project: Molecular Mechanisms of Photoperception, Signaling and Gene Regulation by the Phytochrome Family

Location: Plant Gene Expression Center Albany_CA

Publications (Clicking on the reprint icon Reprint Icon will take you to the publication reprint.)

A mutually assured destruction mechanism attentuates light signaling in Arabidopsis - (Peer Reviewed Journal)
Quail, P.H., Ni, W., Xu, S., Tepperman, J.M., Stanley, D.J., Maltby, D.A., Gross, J.D., Burlingame, A.L., Wang, Z. 2014. A mutually assured destruction mechanism attentuates light signaling in Arabidopsis. Science. 344:1160-1164.
Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis - (Peer Reviewed Journal)
Ni, W., Xu, S.L., Chalkley, R.J., Pham, T.N., Guan, S., Maltby, D.A., Burlingame, A.L., Wang, Z.Y., Quail, P.H. 2013. Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis. The Plant Cell. 25:2679-2698. PMCID: PMC3753391.
Last Modified: 9/29/2014
Footer Content Back to Top of Page