Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Enhanced System Models and Decision Support Tools to Optimize Water Limited Agriculture

Location: Agricultural Systems Research Unit

Project Number: 5402-61660-007-00
Project Type: Appropriated

Start Date: Oct 01, 2013
End Date: Jul 01, 2015

Objective:
The long-term research objective of this project is to help evaluate current and proposed alternative practices for limited-water and projected global change conditions in the arid western United States. This modeling research will support a broad USDA-ARS effort of integrating and extending temporal and spatial experimental research across environments, and the transfer of recommendation to producers and decision-makers via decision support tools. Objective 1: Extend RZWQM2 and GPFARM-Range model applications to limited-water agricultural systems in the arid western U.S. by evaluating current experimental results for long-term weather and different soil conditions, and derive alternative optimal management strategies for limited-water with respect to biomass production (including selected bio-energy crops), soil water usage, soil carbon and nitrogen status, and yield in crop and rangeland systems. • Sub-objective 1A. Assess and improve the utility of RZWQM2 and GPFARM-Range applications and their components using existing and new datasets of crop and rangelivestock systems from selected locations in the arid western United States for the purpose of evaluating existing and alternative crop and range-livestock management systems. • Sub-objective 1B. Develop relational databases and simple Decision Support System (DSS) tools using the above modeling and experimental results to help agricultural decision makers better cope with drought and water-limited conditions by selecting alternative crop sequences/rotations, improving irrigation scheduling, using reduced tillage practices, crop residue management, and range-livestock drought management tools. Assess the DSS tools under real-world situations by analyzing their economic feasibility and uncertainty/risk under drought and limited-water conditions. Objective 2: Use RZWQM2 and GPFARM-Range models to evaluate the effects of projected climate change on current and alternative production systems. • Sub-objective 2A. Evaluate and improve RZWQM2/GPFARM-Range models for response to higher CO2 and temperature and extreme rainfall patterns on crop and range growth, water use, and productivity. • Sub-objective 2B. Under the projected climatic conditions, re-evaluate management systems for crop rotation, plant species, irrigation, tillage, and crop residue management, and propose alternative management practices for typical crop and rangeland systems at the selected locations in the arid western U.S.

Approach:
RZWQM2 (a RZWQM-DSSAT4.0 hybrid) and GPFARM-Range process-level models will be used in this study. Typical crop and range livestock management systems will be selected at cooperating ARS locations in the arid western U.S.: Fort Collins, CO, Akron, CO, Bushland, TX, Sidney, MT, Pendleton, OR and Pullman, WA for cropping systems, and Cheyenne-WY, Miles City-MT, and Woodward-OK for range-livestock systems. The work will be done with cooperating scientists at each location. Scientists at the selected locations will collect minimum datasets (e.g., weather, soil, and crop information) needed for RZWQM2 or GPFARM-Range models, and then work with ASRU scientists to calibrate and evaluate the models. Calibrated model parameters should be transferable from location to location, except for site-specific inputs (e.g., soil, weather, crop variety). The models will then be validated by comparing the model predictions (e.g., crop production, evapo-transpiration, N uptake, soil moisture, and etc.) against measured data not used in the calibration or in another location. Failure of satisfactory validation will require more accurate measurement of the input data for site-specific parameters or enhancement of a model component’s science code for the location. Once the model has been satisfactorily validated for available experimental data at a location, it will be used to extend results for a longer duration using historical and projected climate-change weather conditions (down-scaled from climate change model) and for other important soil types in the surrounding area of the location. Biomass production, soil water usage, soil C/N status, and yield in different crop sequences or rangeland plant species over both the long and short term periods will be analyzed and interpreted. The model will then be applied to propose alternative crop and grazing management scenarios. Promising alternative management scenarios derived from the models will be the subject of future field testing. Synthesizing all simulation results across locations will give confidence in applying the model outside the test locations and will result in a comprehensive set of guidelines for management and policy in areas around the locations. The effects of high CO2 and high temperature on plant growth under possible global change conditions will also be examined for interactions and indirect effects on water and nitrogen uptake, carbon and nitrogen allocations in plants. Simulated and experimental results will be used to populate a database with querying ability, which will provide information for crop selection, plant species composition, and management effects on crop production, forage-livestock production, water use efficiency, soil C sequestration, and soil water and N losses in different environments, under current and projected climate conditions. Simple regressionbased decision tools will be developed for guiding planning and management.

Last Modified: 4/18/2014
Footer Content Back to Top of Page