Page Banner

United States Department of Agriculture

Agricultural Research Service

Title: Strategies for Ecological Extrapolation

Authors
item Peters, Debra
item Urban, Dean - DUKE UNIVERSITY
item Gardner, Robert - UNIVERSITY OF MARYLAND
item Breshears, David - LOS ALAMOS NATL LAB
item Herrick, Jeffrey

Submitted to: Oikos
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: February 24, 2004
Publication Date: September 1, 2004
Citation: Peters, D.C., Urban, D.L., Gardner, R.H., Breshears, D.D., Herrick, J.E. 2004. Strategies for ecological extrapolation. Oikos. 106(3):627-636.

Interpretive Summary: In this paper, we develop a synthetic, problem-solving framework for extrapolating information from fine to broad scales that is applicable to a broad range of ecological problems. The framework includes three classes of approaches that differ in their complexity and sources of error. We consider a range of ecological issues requiring complex approaches (i.e., nonlinear processes, thresholds, positive feedbacks, neighborhood processes) and identify options for dealing with these issues. Our operational framework of model selection serves as a practical and objective approach to the problem of ecological prediction across a range of spatial and temporal scales. Thus, this framework should be of interest to all ecologists and range scientists concerned with the problem of prediction.

Technical Abstract: Extrapolation of information collected at fine scales to broader scales is an increasingly important issue in ecology as the recognition of spatial connections within and among different levels of organization expands. In addition, our ability to represent complex behavior in ecological systems has improved with readily available instrumentation and software that allows detailed sampling and analysis and the ease with which geospatial data can be used to support large spatial simulation models or extensive data-based inventories and assessments. However, there is a tradeoff between simple approaches having errors associated with excluding processes and more complex approaches that are plagued by high uncertainty due to increased estimation and measurement error. In this paper, we develop a synthetic, problem-solving framework for extrapolating information from fine to broad scales that is applicable to a wide range of ecological problems. The framework includes three classes of approaches that differ in their complexity and sources of error: nonspatial, spatially implicit, and spatially explicit. We consider a range of ecological issues requiring complex approaches (i.e., nonlinear processes, thresholds, positive feedbacks, neighborhood processes) and identify options for dealing with these issues. Our operational framework of model selection serves as a practical and objective approach to the problem of ecological prediction across a range of spatial and temporal scales. Thus, this framework should be of interest to all ecologists concerned with the problem of prediction.

Last Modified: 10/25/2014
Footer Content Back to Top of Page