Page Banner

United States Department of Agriculture

Agricultural Research Service

Title: Aflp Diversity Within and among Hardinggrass Populations

Submitted to: Crop Science
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: August 10, 2005
Publication Date: October 27, 2005
Citation: Mian, R.M., Zwonitzer, J.C., Chen, Y., Saha, M.C., Hopkins, A.A. 2005. AFLP diversity within and among hardinggrass populations. Crop Science. 45:2591-2597.

Interpretive Summary: HARDINGGRASS (Phalaris aquatica L.), is a cool-season forage grass that grows well in the mild climates, and there is good potential for its adaptation to the southern Great Plains through breeding. Information on genetic diversity of hardinggrass will be very useful for improvement of this species. Currently, little information is available on the genetic diversity of hardinggrass. The objective of this study was to determine the genetic diversity within and among 22 promising hardinggrass populations (including plant introductions (PIs), breeding populations, and one cultivar) with amplified fragment length polymorphism (AFLP) markers. A high degree of genetic diversity was found, with a greater proportion of the diversity within (74%) rather than among (26%) populations. Substantial genetic variation that could be exploited for selection is present within these hardinggrass populations. Further, the evidence indicates that selection within hardinggrass populations need not result in a loss of genetic diversity. The clustering of the accessions from Morocco away from other populations in the study suggests that the Moroccan populations represent distinct germplasm and could be used to construct distinctive populations. Broad based populations could be constructed as well from combinations of several of the non-Moroccan accessions. Finally, the genetic differences between the Moroccan accessions and other populations in this research suggest a starting point for investigating possible heterosis in hardinggrass. Semi-hybrid cultivars might then be developed to take advantage of heterosis.

Technical Abstract:

Last Modified: 4/22/2015
Footer Content Back to Top of Page