Page Banner

United States Department of Agriculture

Agricultural Research Service

Title: Low Input No-Till Cereal Production in the Pacific Northwest of the U.S.: the Challenges of Root Diseases

Author
item PAULITZ, TIMOTHY

Submitted to: European Journal of Plant Pathology
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: May 8, 2006
Publication Date: June 14, 2006
Citation: Paulitz, T.C. 2006. Low input no-till cereal production in the pacific northwest of the u.s.: the challenges of root diseases. European Journal of Plant Pathology. 115:271-281.

Interpretive Summary: Direct-seeding or no-till is defined as planting directly into residue of the previous crop without tillage that mixes or stirs soil prior to planting. No-till reduces soil erosion, improves soil structure and organic matter, and reduces fuel inputs. No-till is widely used in cereal production in Australia, Canada, Argentina, and Brazil, but has not been widely adopted in Europe and the Pacific Northwest of the U.S. One of the limitations is that root diseases may increase with a reduction in tillage. This paper discusses the importance and management of take-all, Fusarium dryland foot rot, Rhizoctonia bare patch and root rot, and Pythium root rot in dryland cereal production systems, and how they are influenced by changes in tillage practices.

Technical Abstract: Direct-seeding or no-till is defined as planting directly into residue of the previous crop without tillage that mixes or stirs soil prior to planting. No-till reduces soil erosion, improves soil structure and organic matter, and reduces fuel inputs. No-till is widely used in cereal production in Australia, Canada, Argentina, and Brazil, but has not been widely adopted in Europe and the Pacific Northwest of the U.S. One of the limitations is that root diseases may increase with a reduction in tillage. This paper discusses the importance and management of take-all, Fusarium dryland foot rot, Rhizoctonia bare patch and root rot, and Pythium root rot in dryland cereal production systems, and how they are influenced by changes in tillage practices. To address this challenge, specifically with Rhizoctonia and Pythium, our research group has (1) developed classical and molecular techniques to detect and quantify Rhizoctonia and Pythium spp. from the soil to assess disease risk; (2) studied the disease dynamics of root disease during the transition from conventional to no-till; (3) developed greenhouse methods to screen germplasm for tolerance or resistance to Pythium and Rhizoctonia, and (4) using GPS and geostatistics, has examined the spatial distribution of R. solani and R. oryzae at a field scale up to 36 ha, across a number of crop rotations and years. By a combination of ecological, epidemiological, field, and laboratory studies, we hope to provide growers with a set of disease management tools to permit the economical and sustainable production of dryland cereals without degradation of the soil resource.

Last Modified: 9/29/2014
Footer Content Back to Top of Page