Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: USING REMOTE SENSING & MODELING FOR EVALUATING HYDROLOGIC FLUXES, STATES, & CONSTITUENT TRANSPORT PROCESSES WITHIN AGRICULTURAL LANDSCAPES Title: Hydrological response to the drought estimation using Thermal Remote Sensing: A case study of the Little River Eperimental Watershed in Georgia Region, U.S.

Authors
item Choi, Minha -
item Jacobs, Jennifer -
item Anderson, Martha
item Bhat, Shirish -
item Bosch, David

Submitted to: American Geophysical Union
Publication Type: Abstract Only
Publication Acceptance Date: October 5, 2010
Publication Date: December 15, 2010
Citation: Choi, M., Jacobs, J., Anderson, M.C., Bhat, S., Bosch, D.D. 2010. Hydrological response to the drought estimation using Thermal Remote Sensing: A case study of the Little River Eperimental Watershed in Georgia Region, U.S.[abstract]. American Geophysical Union. 2010 CDROM.

Technical Abstract: Drought is a serious hydroclimatic hazard. It is typically recognized as a precipitation deficit resulting from rain timing and spatial distribution. Droughts may be using quantitative drought indices based on rainfall, streamflow, or water supply data. In contrast to conventional precipitation-based drought indices, remotely-sensed drought indices have a substantial advantage in that they do not require high quality precipitation observations. For example, the Evaporative Stress Index (ESI) generated with the Atmosphere-Land Exchange Inverse (ALEXI) remote sensing model does not require in situ. However, it can reasonably provide spatially-distributed drought products on a routine basis. The ESI’s remote-sensing basis is able to provide robust drought products in regions with minimal ground-based meteorological infrastructure. Here we evaluate ESI’s performance as compared to other standard precipitation-based drought indices and drought classification recorded in retrospective United States Drought Monitor reports. Furthermore, we investigate the operational efficacy of the ESI compared to other drought indices, Palmer Drought Severity Index and Vegetation Health Index, to characterize soil moisture and streamflow data in Little River Experimental Watershed at Georgia region, U.S.

Last Modified: 11/26/2014
Footer Content Back to Top of Page