Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: DEVELOPMENT OF GENOMIC TOOLS TO STUDY RUMINANT RESISTANCE TO GASTROINTESTINAL NEMATODES

Location: Animal Genomics and Improvement Laboratory

Title: Metagenomic sequences of the bovine abomasal microbiota of immune cattle in response to parasitic nematode Ostertagia ostertagi

Author
item LI, ROBERT

Submitted to: National Center for Biotechnology Information (NCBI)
Publication Type: Other
Publication Acceptance Date: May 30, 2012
Publication Date: June 7, 2012
Citation: Li, R.W. 2012. Metagenomic sequences of the bovine abomasal microbiota of immune cattle in response to parasitic nematode Ostertagia ostertagi. National Center for Biotechnology Information (NCBI). 6(9):e24417. doi:10.1371/journal.pone.0024417.

Technical Abstract: Infections in cattle by the abomasal nematode Ostertagia ostertagi result in impaired gastrointestinal function. Six partially immune animals were developed using multiple drug-attenuated infections, and these animals displayed reduced worm burdens and a slightly elevated abomasal pH upon reinfection. In this study, we characterized the abomasal microbiota in response to reinfection using metagenomic tools. Compared to uninfected controls, infection did not induce a significant change in the microbial community composition in immune animals. 16S rRNA gene-based phylogenetic analysis identified 15 phyla in the bovine abomasal microbiota with Bacteroidetes (60.5%), Firmicutes (27.1%), Proteobacteria (7.2%), Spirochates (2.9%), and Fibrobacteres (1.5%) being the most predominant. The number of prokaryotic genera and operational taxonomic units (OTU) identified in the abomasal microbial community was 70.8±19.8 (mean ± SD) and 90.3±2.9, respectively. However, the core microbiome comprised of 32 genera and 72 OTU. Infection seemingly had a minimal impact on the abomasal microbial diversity at a genus level in immune animals. Proteins predicted from whole genome shotgun (WGS) DNA sequences were assigned to 5,408 Pfam and 3,381 COG families, demonstrating dazzling arrays of functional diversity in bovine abomasal microbial communities. However, none of COG functional classes were significantly impacted by infection. Our results demonstrate that immune animals may develop abilities to maintain proper stability of their abomasal microbial ecosystem. A minimal disruption in the bovine abomasal microbiota by reinfection may contribute equally to the restoration of gastric function in immune animals.

Last Modified: 9/10/2014
Footer Content Back to Top of Page