Skip to main content
ARS Home » Northeast Area » Washington, D.C. » National Arboretum » Floral and Nursery Plants Research » Research » Publications at this Location » Publication #166889

Title: TRANSGENIC APPROACHES TO DISEASE RESISTANCE IN ORNAMENTAL CROPS

Author
item Hammond, John
item Hsu, Hei Ti
item Huang, Qi
item Jordan, Ramon
item Kamo, Kathryn
item Pooler, Margaret

Submitted to: Journal of Crop Improvement
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 5/31/2005
Publication Date: 11/16/2006
Citation: Hammond, J., Hsu, H.T., Huang, Q., Jordan, R.L., Kamo, K.K., Pooler, M.R. 2006. Transgenic approaches to disease resistance in ornamental crops. Journal of Crop Improvement. 17:155-210.

Interpretive Summary: Viral, bacterial, and fungal diseases of ornamental plants cause major losses in productivity and quality. Chemical methods are available for control of fungal diseases, and to a lesser extent for bacterial diseases, but there are no economically effective chemical controls for viral diseases except to control vector species. Host plant resistance is an effective means of controlling plant diseases, and minimizing the necessity for the application of pesticides; however, there are many ornamentals in which no natural disease resistance is available. It is possible to introduce resistance derived from other species, or even from the pathogen itself, by genetic engineering. This allows the introduction of specific, or in some instances broad spectrum, disease resistance into plant genotypes that have been selected for desirable horticultural characters; in contrast introduction of natural resistance by traditional breeding may take many cycles of breeding to combine disease resistance with desirable ornamental quality. This article briefly reviews existing work on transformation systems for ornamentals, and discusses the various approaches to introducing resistance to viral, bacterial, and fungal diseases, and to nematode infestations. These include pathogen-related proteins, R genes, and general pathogen resistance; anti-microbial peptides; expression of anti-pathogen antibodies; viral sequences; ribozymes; antiviral peptides; ribonucleases; and ribosome-inactivating proteins. Examples are given of application of these approaches to disease resistance in other types of crop and model plant systems, and actual or potential application to disease resistance in ornamentals. Future prospects for obtaining plants with multiple pest and disease resistances are discussed.

Technical Abstract: Viral, bacterial, and fungal diseases of ornamental plants cause major losses in productivity and quality. Chemical methods are available for control of fungal diseases, and to a lesser extent for bacterial diseases, but there are no economically effective chemical controls for viral diseases except to control vector species. Host plant resistance is an effective means of controlling plant diseases, and minimizing the necessity for the application of pesticides; however, there are many ornamentals in which no natural disease resistance is available. It is possible to introduce resistance derived from other species, or even from the pathogen itself, by genetic engineering. This allows the introduction of specific, or in some instances broad spectrum, disease resistance into plant genotypes that have been selected for desirable horticultural characters; in contrast introduction of natural resistance by traditional breeding may take many cycles of breeding to combine disease resistance with desirable ornamental quality. This article briefly reviews existing work on transformation systems for ornamentals, and discusses the various approaches to introducing resistance to viral, bacterial, and fungal diseases, and to nematode infestations. These include pathogen-related proteins, R genes, and general pathogen resistance; anti-microbial peptides; expression of anti-pathogen antibodies; viral sequences; defective interfering RNAs and DNAs; ribozymes; antiviral peptides; ribonucleases; and ribosome-inactivating proteins. Examples are given of application of these approaches to disease resistance in other types of crop and model plant systems, and actual or potential application to disease resistance in ornamentals. Future prospects for obtaining plants with multiple pest and disease resistances are discussed, including pyramiding of genes for different traits, and multiple resistance mechanisms against a specific pathogen.