Skip to main content
ARS Home » Midwest Area » Bowling Green, Kentucky » Food Animal Environmental Systems Research » Research » Publications at this Location » Publication #253805

Title: Evaluation of amendments to manage nitrogen loss and microbiological quality in poultry litter.

Author
item Cook, Kimberly - Kim
item Rothrock, Michael
item EITEMAN, MARK - University Of Georgia
item Lovanh, Nanh
item Sistani, Karamat

Submitted to: Journal of Environmental Management
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 1/7/2011
Publication Date: 7/1/2011
Citation: Cook, K.L., Rothrock Jr, M.J., Eiteman, M.A., Lovanh, N.C., Sistani, K.R. 2011. Evaluation of amendments to manage nitrogen loss and microbiological quality in poultry litter. Journal of Environmental Management. 92:1760-1766.

Interpretive Summary: Poultry litter is a valuable nutrient source for crop production that requires proper management to garner environmentally and financially sustainable benefits. Successful management to reduce ammonia (NH3-N) and its harmful side-effects for poultry and the environment can be aided by the use of litter amendments. The purpose of this study was to evaluate alternative litter amendments for effects on nitrogen and on microbial communities responsible for ammonia production in poultry litter. In this laboratory incubation study acidifiers, biological treatments, chemical inhibitors and adsorber amendments were added on day 0 prior to incubation. Three acidifier treatments were added: Al+Clear®, Poultry Litter Treatment®, and Poultry Guard®. Two biological treatments were included: an anti-fungal and a biological treatment containing a bacterial-enzyme-nutrient mix. A commercial urease inhibitor, and two adsorbents, wastewater treatment residual and chitosan, were added to separate treatments. Application of litter amendments consistently reduced N loss as compared to no amendment at all. Chitosan was the only litter amendment to perform as well as acidifiers and without the unwanted side-effect of the fungal bloom. Chitosan is readily available, cost effective, and environmentally safe. The use of efficient, cost-effective litter amendments that have the potential to control not only N mineralization and loss but also pathogen survival and nutrient run-off upon application will provide environmental and financial benefits that make this research essential for the future of poultry production.

Technical Abstract: Poultry litter is a valuable nutrient source for crop production that requires proper management to garner environmentally and financially sustainable benefits. Successful management to reduce ammonia (NH3-N) and its harmful side-effects for poultry and the environment can be aided by the use of litter amendments. The purpose of this study was to evaluate alternative litter amendments for effects on nitrogen and on microbial communities responsible for ammonia production in poultry litter. In this laboratory incubation study acidifiers, biological treatments, chemical inhibitors and adsorber amendments were added on day 0 prior to incubation. Three acidifier treatments were added: Al+Clear®, Poultry Litter Treatment®, and Poultry Guard®. Two biological treatments were included: an anti-fungal and a biological treatment containing a bacterial-enzyme-nutrient mix. A commercial urease inhibitor, and two adsorbents, wastewater treatment residual and chitosan, were added to separate treatments. Total and organic N loss, total bacteria and fungi, and microbial groups specifically associated with N transformation (i.e., organisms that produce the urease and uricase enzymes) were measured at the beginning and the end of the study. Application of litter amendments consistently reduced N loss as compared to no amendment at all. Acidification of litter reduced N loss, but also resulted in a fungal bloom (3 orders of magnitude or greater). Chitosan was the only litter amendment to perform as well as acidifiers and without the unwanted side-effect of the fungal bloom. Chitosan is readily available, cost effective, and environmentally safe. Future research should be directed toward optimization of this amendment for poultry litter treatment. The use of efficient, cost-effective litter amendments that have the potential to control not only N mineralization and loss but also pathogen survival and nutrient run-off upon application will provide environmental and financial benefits that make this research essential for the future of poultry production.