Opportunities for Collaboration with NASA/JPL

Simon J. Hook

Simon.j.hook@jpl.nasa.gov

Research Scientist and Carbon Cycle and Ecosystems Discipline Program Manager at JPL, California Institute of Technology

Outline

- Research Scientists and current tasks
- Instrumentation
 - Spaceborne: ASTER, HyspIRI, SMAP
 - Airborne: AVIRIS, MASTER
- Ways to Collaborate

Research Scientists

Amy Braverman	Erika Podest
Amy.J.Braverman@jpl.nasa.gov	epodest@jpl.nasa.gov
Robert Green	Sassan Saatchi
Robert.O.Green@jpl.nasa.gov	Sasan.S.Saatchi@jpl.nasa.gov
Simon Hook	Marc Simard
Simon.J.Hook@jpl.nasa.gov	Marc.Simard@jpl.nasa.gov
Kyle McDonald	Geoff Toon
Kyle.C.Mcdonald@jpl.nasa.gov	Geoffrey.C.Toon@jpl.nasa.gov
Charles Miller	Robert Treuhaft
Charles.E.Miller@jpl.nasa.gov	Robert.N.Treuhaft@jpl.nasa.gov

Example Tasks

- Amy Braverman
 - Statistical analysis of large data volumes
- Robert Green
 - Development of visible-shortwave infrared imaging spectrometers
- Simon Hook
 - Development of mid-thermal infrared imaging spectrometers
- Kyle McDonald
 - Understanding the freeze-thaw cycle and its impact on vegetation productivity and CO2 exchange
- Charles Miller
 - Molecular spectroscopy
- Erika Podest
 - Understanding the freeze-thaw cycle and its impact on vegetation productivity and CO2 exchange
- Sassan Saatchi
 - Mapping Boreal Forest Wetlands and Biomass, fusion of lidar and radar for measuring forest biomass
- Marc Simard
 - Vegetation 3D structure with inSAR and Lidar
- Geoff Toon
 - Atmospheric chemistry
- Robert Treuhaft
 - structure and biomass estimation from InSAR 3-D vegetation missions at L-band over tropical forests

Terra Satellite

Terra is the flagship of NASA's ESE (Earth Science Enterprise). **ASTER is the zoom lens of Terra!**

ASTER Instrument

- 1999 launch on Terra
- Joint Japan/US effort
- 15m visible, 30 m swir, 90 m tir
- 60 km swath
- < 16 day repeat cycle
- 10:30 am overpass

Land Use

12km

10 km

Surface Energy Balance from ASTER data El Reno OK, 4-Sep-2000, Kustas & Norman 2-source model

ASTER data of El Reno OK, 4-Sep-2000: NDVI & Surface Temperature

NRC Decadal Survey

- January 2007: NRC releases Earth Science & Applications from Space report (the Decadal Survey) to NASA, NOAA, & USGS
- Calls for 17 satellite missions as an integrated set of space measurements in the decade 2010-2020 (14 NASA, 2 NOAA, 1 both)
- NRC places missions in 3 temporal tiers (2010-2013, 2013-2016, 2016-2020)
- Decadal Survey recommendations set boundary conditions for mission design efforts & discussions. We rarely stray from them & only do so for the most compelling reasons of science, cost, mission design, etc.

NRC Recommended Near-Term Missions (Tier 1)

Mission	Mission Description	Orbit	Instruments
CLARREO (NASA portion)	Solar and Earth radiation: spectrally resolved forcing and response of the climate system	LEO, Precessing	Absolute, spectrally- resolved interferometer
SMAP	Soil moisture and freeze/thaw for weather and water cycle processes	LEO, SSO	L-band radar L-band radiometer
ICESat-II	Ice sheet height changes for climate change diagnosis	LEO, Non- SSO	Laser altimeter
DESDynI	Surface and ice sheet deformation for understanding natural hazards and climate; vegetation structure for ecosystem health	LEO, SSO	L-band InSAR Laser altimeter

NRC Recommended Mid-Term Missions (Tier 2)

Mission	Mission Description	Orbit	Instruments
HyspIRI	Land surface composition for agriculture and mineral characterization; vegetation types for ecosystem health	LEO, SSO	Hyperspectral spectrometer TIR multispectral scanner
ASCENDS	Day/night, all-latitude, all- season CO ₂ column integrals for climate emissions	LEO, SSO	Multifrequency laser
SWOT	Ocean, lake, and river water levels for ocean and inland water dynamics	LEO	Ka-band wide swath radar C-band radar
GEO-CAPE	Atmospheric gas columns for air quality forecasts; ocean color for coastal ecosystem health and climate emissions	GEO	High and low spatial resolution hyperspectral imagers
ACE	Aerosol and cloud profiles for climate and water cycle; ocean color for open ocean biogeochemistry	LEO, SSO	Backscatter lidar Multiangle polarimeter Doppler radar

http://smap.jpl.nasa.gov/

Soil Moisture Active and Passive (SMAP) Mission

JPL-Ames Joint Workshop Pasadena, CA

September 10, 2008

Kyle McDonald Eni Njoku Kent Kellogg

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

SMAP Science and Applications

Decadal Survey Panels	Cited SMAP Applications		
Water Resources and Hydrological Cycle	 Floods and Drought Forecasts Available Water Resources Assessment Link Terrestrial Water, Energy and Carbon Cycles 		
Climate / Weather	1. Longer-Term and More Reliable Atmospheric Forecasts		
Human Health and Security	 Heat Stress and Drought Vector-Borne and Water-Borne Infectious Disease 		
Land-Use, Ecosystems, and Biodiversity	 Ecosystem Response (Variability and Change) Agricultural and Ecosystem Productivity Wild-Fires Mineral Dust Production 		

"...the SMAP mission is ready for "fast-track" towards launch as early as 2012, when there are few scheduled Earth missions. The readiness of the SMAP mission also enables gap-filling observations to meet key NPOESS community needs (soil moisture is "Key Parameter," see 4.1.6.1.6 in IORD-II Document)."

SMAP is one of four missions recommended by the NRC Earth Science Decadal Survey for launch in the 2010-2013 time frame

Applications and User Engagement

• By providing direct measurements of soil moisture and freeze/thaw state, SMAP will enable a variety of societal benefits:

Droughts

Floods/Landslides

Agriculture

Weather/Climate

Human Health

- Near-term SMAP applications outreach will be focused on:
 - 1. Developing a community of end-users, stakeholders, and decision makers that understand SMAP capabilities and are interested in using SMAP products in their application (SMAP Community of Practice).
 - 2. Developing an assessment of current application benefits / requirements and needs for SMAP products (survey).
 - 3. Identifying a handful of "early adopters" who will partner to optimize their use of SMAP products, possibly even before launch as part of the extended OSSE activities ("targeted partners").
 - 4. Providing information about SMAP to the broad user community

NRC Decadal Survey HyspIRI

Visible ShortWave InfraRed (VSWIR) Imaging Spectrometer Multispectral Thermal ⁺InfraRed (TIR) Scanner

HyspIRI Mission Overview

HyspIRI Key Science Questions

What are the spatial distributions of different plant functional groups, diagnostic species, and ecosystems? How do changes in the physical, chemical, and biotic environment affect the productivity, carbon storage and biogeochemical cycling processes of ecosystems? How do human-caused and natural disturbances affect the distribution, biodiversity and functioning of ecosystems? How do changes in ecosystem composition and function affect human health, resource use, and resource management?

What are the changes in the behavior of active volcanoes? What is the impact of global biomass burning on the terrestrial biosphere and atmosphere? How can we better characterize trends in local and regional water use? How does urbanization affect the environment? What is the composition and temperature of the exposed surface of the Earth?

HypsIRI Measurement of Vegetation with Imaging Spectroscopy

Multi Spectral Remote Sensing of Vegetation

HyspIRI Science Study Group

Mike Abrams	JPL	michael.j.abrams@jpl.nasa.gov 818-354-0937	
Rick Allen	UID	rallen@kimberly.uidaho.edu 208-423-6601	
Martha Anderson	USDA	Martha.Anderson@ars.usda.gov 301-504-6616	
Greg Asner	Stanford	gpa@stanford.edu 650-462-1047	
BryanBailey	USGS EROS	gbbailey@usgs.gov 605-594-6001	
Paul Bissett	FERI	pbissett@flenvironmental.org 813-866-3374 x102	
Alex Chekalyuk	Lamont-Doherty	chekaluk@ldeo.columbia.edu 845-365-8552	
JamesCrowley	USGS	jcrowley@usgs.gov 703-648-6356	
Ivan Csiszar	UMD	icsiszar@hermes.geog.umd.edu 301-405-8696	
Heidi Dierssen	U Conn.	heidi.dierssen@uconn.edu	
Friedmann Freund	Ames	friedemann.t.freund@nasa.gov	
John Gamon	U A	gamon@gmail.com	
Louis Giglio	UMD	louis_giglio@ssaihq.com 301 867-2030	
Greg Glass	JHU	gglass@jhsph.edu 410-955-3708	
Robert Green	JPL	rog@jpl.nasa.gov	
Simon Hook	JPL	simon.j.hook@jpl.nasa.gov 818-354-0974	
JamesIrons	GSFC	James.R.Irons@nasa.gov 301-614-6657	
Bob Knox	GSFC	Robert.G.Knox@nasa.gov 301-614-6656	
John Mars	USGS	jmars@usgs.gov 703-648-6302	
Betsy Middleton	GSFC	elizabeth.m.middleton@nasa.gov 301-614-6670	
Peter Minnett	U. Miami	pminnett@rsmas.miami.edu 305-361-4104	
FrankMuller Karger	U. MA Dartmouth	fmullerkarger@umassd.edu 508 999 8193	
Scott Ollinger	UNH	scott.ollinger@unh.edu	
Anupma Prakash	UAF	prakash@gi.alaska.edu 907-474-1897	
Dale Quattrochi	MSFC	dale.quattrochi@nasa.gov 256-961-7887	
Vince Realmuto	JPL	Vincent.J.Realmuto@jpl.nasa.gov818-354-1824	
Dar Roberts	UCSB	dar@geog.ucsb.edu	
Dave Siegel	UCSB	davey@icess.ucsb.edu 805-893-4547	
Phil Townsend	U of Wisconsin	ptownsend@wisc.edu 608-262-1669	
Kevin Turpie	GSFC	kevin.r.turpie@nasa.gov 301-286-9996	
Steve Ungar	GSFC	stephen.g.ungar@nasa.gov	
Susan Ustin	UC Davis	susan@cstars.ucdavis.edu	
Rob Wright	UHI	wright@higp.hawaii.edu 808-956 9194	

2009 HyspIRI Workshop

NASA will convene a science community workshop on August 11-13, 2009, in Pasadena, CA. The primary goal of this workshop will be to discuss and review a draft white paper containing the scientific rationale for the HyspIRI mission. This white paper will focus on: the scientific questions the HyspIRI mission will address: the objectives of the mission; potential mission products; and resulting mission requirements.

Selected Airborne Instrument Activities at JPL

AVIRIS – R. Green MASTER – S. Hook

AVIRIS: Characteristics

Spectral Range Sampling Accuracy Radiometric

360 to 2500 9.8 nm 0.5 nm

Range Sampling Accuracy Precision*

0 to Max Lambertian 16 bits >96 percent >1000 VNIR, >500 SWIR

Spatial (ER2 / WB57 / Proteus / Twin Otter aircraft)Swath11 / 8 / 5 / 2.5 kmSampling20 / 15 / 8 / 4 mAccuracy20 / 15 / 8 / 4 m

Full INU/GPS geo rectification

*for AVIRIS reference radiance

MODIS/ASTER Airborne Simulator (MASTER)

Simon Hook and Jeff Myers Simon.J.Hook@jpl.nasa.gov jmyers@mail.arc.nasa.gov http://masterweb.jpl.nasa.gov

Instrument Characteristics

Wavelength range	0.4-13 micrometers
Number of channels	50
Number of pixels	716
Instantaneous Field of View	2.5 milliradians
Total Field of View	85.92 degrees
Platforms	Department of Energy KingAir Beachcraft B200
	NASA ER-2
	NASA DC8
Pixel size DC-8	10-30 m
Pixel size ER-2	50 m
Pixel size B200	5-20 m
ER-2 Range (without refueling)	3700 statute miles
B200 Range (without refueling)	700 statute miles
DC-8 Range (without refueling)	5400 nautical miles
Scan speeds	6.25/12.5/25 rps
Products	Radiance at sensor (Level 1B)
Calibration VIS-SWIR	Laboratory Integrating Sphere
Calibration MIR-TIR	2 On-board Blackbodies
Data Format	Hierarchical Data Format (HDF)
Digitization	16-bit

Ways to collaborate

- Check out the ROSES calls:
 - http://nspires.nasaprs.com/external/
 - (Generally look under Terrestrial Ecology (TE) and Applications)
- Get involved in a future instrument workshop
 - Both SMAP and HyspIRI will have workshops this year
 - http://smap.jpl.nasa.gov
 - http://hyspiri.jpl.nasa.gov
- Get some data, historical data is normally free, e.g. ASTER, MASTER
 - <u>http://masterweb.jpl.nasa.gov</u>
 - http://asterweb.jpl.nasa.gov
- Got a research idea for an upcoming call and want a JPL Co-I. Email me and I will let you know who might be a good match

Backup

US-Mexico border at Mexicali

Science Questions Ecosystem Function and Diversity

Species Type 90% Accurate

Measurement of the spectral signature of vegetation over this complete spectral range at 10 nm resolution enables direct mapping of species-type and fractional cover.

With measurement of species-type and fractional cover the ecosystem functional type, diversity, and status is determined

Santa Ynez Front Range, California (Dennison and Roberts 2003)

Photosynthesis Revealed via Spectroscopy

ASTER Bands

http://emissivity.jpl.nasa.gov

Na	avig	atio	n			
Q) Н	ome				1
C	0	rder				
C	PL	ıbs				
C) Va	alida	tion	i i		
C	E>	am	ples			
C	- - U:	SCR	N			
87						
	*	Apr	il 21	009	»	
Мо	Tu	We	Th	Fr	Sa	Su
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30			

North American Land Surface Emissivity Project

Welcome to the website for the North American Land Surface Emissivity Project. The goal of the project is to create a seamless database of emissivity from standard ASTER emissivity products for use in climate research. The Earth emits energy at wavelengths we cannot normally see, that energy is a function of the temperature and the emissivity of the surface. The surface emissivity primarily depends on the composition of the surface. Thus as the surface composition changes through, for example, land cover land use change, so does the surface emissivity. The land surface emissivity is measured by several instruments mounted on satellites and aircraft. Some of the most well known satellite sensors are **QAIRS**, **QASTER** and **QMODIS**.

Of these three satellite sensors, ASTER provides the most detailed emissivity images with a pixel spatial resolution of 90m. The image below was created by merging together all the ASTER emissivity data ever acquired over California, Nevada, Arizona and Utah under clear skies from 2000-2008 for the months July, August and September.

ASTER Mean Summer Emissivity - Band 12 (9.1 µm)

In the image above areas of red correspond to areas with large amounts of vegetation cover which has a high emissivity and areas of blue correspond to areas with low emissivities such as the desert regions of the southwest USA. The lowest emissivities are associated with sand dunes. Greens and yellows indicate transition areas as you move from the desert regions to more heavily vegetated regions.

ASTER Mean Summer Emissivity, Band 12 (9.1 µm) - 18,242 Scenes

SMAP Mission Concept

- Orbit:
 - > Sun-synchronous, 6 am/pm orbit
 - ➢ 670 km altitude
- Instruments:
 - > L-band (1.26 GHz) radar
 - High resolution, moderate accuracy soil moisture
 - Freeze/thaw state detection
 - SAR mode: 3 km resolution
 - Real-aperture mode: 30 x 6 km resolution
 - > L-band (1.4 GHz) radiometer
 - Moderate resolution, high accuracy soil moisture
 - 40 km resolution
 - Shared instrument antenna
 - 6-m diameter deployable mesh antenna
 - Conical scan at 14.6 rpm
 - Constant incidence angle: 40 degrees
 - □ 1000 km-wide swath
 - Swath and orbit enable 2-3 day revisit

- Mission Development Schedule
 - > Phase A start: September 2008
 - > SRR/MDR: February 2009
 - > PDR: December 2009
 - > CDR: December 2010
 - > SIR: October 2011
 - Instrument Delivery April 2012

> LRD:

- March 2013
- Mission operations duration: 3 years

HyspIRI Imaging Spectroscopy Science Measurements

Science Questions:

- What is the composition, function, and health of land and water ecosystems?
- How are these ecosystems being altered by human activities and natural causes?
- How do these changes affect fundamental ecosystem processes upon which life on Earth depends?

Measurement:

- 380 to 2500 nm in 10nm bands
- Accurate 60 m resolution
- 19 days revisit
- Global land and shallow water

HyspIRI Thermal Infrared Science Measurements

- Measure the land surface temperature and emissivity
- 5 day equatorial revisit to generate monthly, seasonal and annual products.
- 60 m spatial resolution

TIR at 60 m

- 7 bands between 7.5-12
 μm and 1 band between
 3-5 μm
- 3-5 μm band saturates at 1400K
- 7.5-12 μm bands saturate at 400K

HyspIRI VSWIR Science Measurements

- Measure the **global** land and coastal/shallow water (> -50m).
- 19 day equatorial revisit to generate seasonal and annual products.

 Measure the molecular absorption and constituent scattering signatures in the spectral range from 380 to 2500 nm at 10 nm, and at 60 m spatial sampling.

