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Abstract

The underlying mechanism of the callipyge muscu-
lar hypertrophy phenotype in sheep (Ovis aries) is
not presently understood. This phenotype, charac-
terized by increased glycolytic type II muscle pro-
portion and cell size accompanied by decreased
adiposity, is not visibly detectable until approxi-
mately three to eight weeks after birth. The mus-
cular hypertrophy results from a single nucleotide
change located at the telomeric end of ovine
Chromosome 18, in the region between the im-
printed MATERNALLY EXPRESSED GENE 3
(MEG3) and DELTA, DROSOPHILA, HOMOLOG-
LIKE 1 (DLK1) genes. The callipyge phenotype is
evident only when the mutation is paternally
inherited by a heterozygous individual. We have
examined the pre- and postnatal expression of MEG3
and DLK1 in sheep of all four possible genotypes in
affected and unaffected muscles as well as in liver.
Here we show that the callipyge phenotype corre-
lates with abnormally high DLK1 expression during
the postnatal period in the affected sheep and that
this elevation is specific to the hypertrophy-respon-
sive fast-twitch muscles. These results are the first
to show anomalous gene expression that coincides
with both the temporal and spatial distribution of
the callipyge phenotype. They suggest that the effect
of the callipyge mutation is to interfere with the

Mention of a trade name, proprietary product, or specified equip-
ment does not constitute a guarantee or warranty by the USDA
and does not imply approval to the exclusion of other products
that may be suitable.

Correspondence to: Randy L. Jirtle; E-mail: jirtle@radonc.

duke.edu

DOI: 10.1007/s00335-004-2421-1 e Volume 16, 171-183 (2005)

normal postnatal downregulation of DLKI expres-
sion.

Callipyge (Greek for “‘beautiful buttocks’’) was the
name given to the phenotype observed in certain
descendants of a ram named ““Solid Gold,” born to a
sheep (Ovis aries) flock in Oklahoma in 1983. Cal-
lipyge sheep exhibit muscular hypertrophy charac-
terized by an elevation in number and size of type IIb
glycolytic (fast-twitch) muscle fibers (Koohmaraie et
al. 1995), including those in the longissimus dorsi
and biceps femoris muscles. This is not a global
muscle attribute, in that other muscles within the
affected sheep (e.g., infraspinatus) are not subject to
hypertrophy. The callipyge phenotype is inherited in
a manner that is similar to that observed for im-
printed genes; however, callipyge is apparent only in
heterozygotes in which the mutation is inherited
from the sire (NMATCPAT where N indicates the
wild-type allele, C denotes the mutant allele, and the
superscripts MAT and PAT indicate maternally and
paternally derived, respectively). Unexpectedly,
sheep homozygous for the mutation (CMATCPAT) are
phenotypically normal despite paternal inheritance
of the mutated allele. This mode of inheritance was
given the designation “polar overdominance’
(Cockett et al. 1996) because the alternate hetero-
zygotes exhibit divergent phenotypes (polar) and
both homozygote genotypes are phenotypically nor-
mal (overdominance). Although highly suggestive of
an imprinting component, the incomplete pene-
trance in the homozygous CMATCPAT individuals is
not consistent with a phenotype strictly mediated by
altered imprinting.
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Fig. 1. Schematic representation of the DLKI/MEG3 locus on ovine Chromosome 18. The direction of transcription is
indicated by the arrows. Paternally expressed DLK1 and maternally expressed MEGS3 are separated by approximately 79 kb
and the relative position of the causative callipyge mutation is shown. The position of riboprobes designed to detect DLK1
and MEGS3 [variant A (Bidwell et al. 2001)] transcripts is indicated below. Exon numbering for DLK1 is based on infor-
mation for the bovine (Fahrenkrug et al. 1999) and ovine (Charlier et al. 2001b) DLK1 genomic structure. MEG3 exons

represent all known splice variants (Bidwell et al. 2001).

The nearly 10-year search for the mutation that
causes the callipyge phenotype in sheep recently
concluded with the identification of a single nucle-
otide change located within an intergenic region of
the DLK1 (DELTA, DROSOPHILA, HOMOLOG-
LIKE 1) and MEG3 (MATERNALLY EXPRESSED
GENE 3, also referred to as GTL2) imprinted domain
(Fig. 1) (Freking et al. 2002; Smit et al. 2003). In spite
of the identification of this mutation, two things
remain unclear: first, the molecular mechanism that
allows a single nucleotide change in an apparently
intergenic region to give rise to callipyge and, sec-
ond, why the homozygous callipyge animals are
seemingly unaffected.

There are several other imprinted genes in addi-
tion to DLKI1 and MEG3 in the vicinity of the cal-
lipyge mutation. Charlier et al. (2001a) reported that
the imprint status of these genes, including DAT
(DLK1-Associated Transcript), PEG11 (Paternally
Expressed Gene 11), MEGS8 (Maternally Expressed
Gene 8), and the aforementioned genes DLKI and
MEGS3 was not altered in any of the callipyge geno-
types evaluated. We independently confirmed the
monoallelic expression of these genes in both fetal

and adult sheep (unpublished data). The callipyge
mutation therefore does not alter the imprinting per
se of nearby genes; this suggests instead that other
aspects of the regulated expression of these genes
may be affected.

The muscular hypertrophy of ani-
mals occurs only in fast-twitch muscles and does not
become apparent until after birth, indicating tem-
poral regulation of the causative gene. We therefore
predicted that the altered expression pattern of such
a gene or genes would (1) be specific to sheep dem-
onstrating the callipyge phenotype (NMATCPAT
sheep) and not be observed in animals with other
genotypes, (2) be specific to muscles affected by the
mutation, and (3) be concurrent with the appearance
of the phenotype.

The known biological activities of DLK1 strongly
suggest that this protein contributes to the etiology
of the callipyge phenotype. DLK1 is similar to the
Drosophila neurogenic protein Delta (Laborda et al.
1993) and belongs to the epidermal growth factor-like
family of proteins. DLKI1 functions in regulating
adipogenesis and cellular growth and differentiation
(Laborda et al. 1993; Laborda 2000), including neu-

NMATCPAT
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roblast differentiation (Van Limpt et al. 2000, 2003).
DIkl knockout mice exhibit growth retardation,
rapidly develop obesity, and are unable to maintain
appropriate levels of lipid metabolites, demonstrat-
ing important antiadipogenic and growth roles for
murine DIkl (Moon et al. 2002). DLKI is indeed
highly expressed in preadipocytes and inhibits their
differentiation, and is suppressed once the differen-
tiation process begins (Smas and Sul 1993). Carcasses
from callipyge sheep are characterized by decreased
adiposity with approximately 24.3% fat and 71.3%
fat-free lean compared with 31.5% and 64.0% for
normal carcasses at typical industry slaughter
weights (Freking et al. 1998b). The close proximity of
sheep DLK]1 to the callipyge mutation, together with
the roles of DLK1 in growth and differentiation pro-
cesses, led us to previously propose that this gene is
an excellent candidate for involvement in develop-
ment of the callipyge phenotype (Fahrenkrug et al.
1999). Based on the known functions of DLK1, al-
tered expression due to paternal inheritance of the
callipyge mutation may be responsible for the ob-
served lean phenotype of the callipyge sheep.

As an initial step in studying gene expression
that may be affected by the callipyge mutation, we
chose to examine DLKI and MEG3. MEG3 encodes
RNA that lacks a significant open reading frame and
whose function remains unknown. There are mul-
tiple alternatively spliced transcripts of MEG3 in
mice (Croteau et al. 2003), humans (UCSC Genome
Browser, July 2003; http://genome.ucsc.edu/), and
sheep (Bidwell et al. 2001) without preservation of
potential coding sequence, suggesting that MEG3
functions as a noncoding RNA. DLKI and MEG3
may exhibit coregulated expression, since they share
many features of the coordinately regulated IGF2/
H19 imprinted gene pair that also influence growth
and development (Wylie et al. 2000; Paulsen et al.
2001; Takada et al. 2002). Furthermore, MEG3 has
been postulated to regulate DLK1 expression in trans
(Georges et al. 2003), as has H19 also been implicated
as a trans regulator of IGF2 (Forne et al. 1997; Li et
al. 1998; Runge et al. 2000). We therefore examined
the pre- and postnatal profile of gene expression for
MEGS3 and DLK]1 to determine whether the presence
of the mutation contributes to deregulated tran-
scription of these genes in a tissue-specific and/or
ontogenic manner.

Materials and Methods

Tissues. Sheep muscle tissue (longissimus dorsi,
biceps femoris, infraspinatus) and liver were ob-
tained from a resource population produced and
maintained at the United States Department of
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Agriculture Meat Animal Research Center in Clay
Center, Nebraska (Freking et al. 1998a). Tissues were
stored at —80°C.

Nucleic acid purification. Total RNA was iso-
lated from frozen tissues using RNA Stat-60
according to the manufacturer’s directions (TelTest),
resuspended in nuclease free water, and either used
immediately or stored at —80°C prior to use.

Quantitative RNA analysis. 3.0 ug of total RNA
from fetal (97-133 days gestation; see Freking et al.
1998a) [NMATNPAT (n=4), CMATNPAT (n =3),
NMATCPAT (p = 4), and CMATCPAT (n = 2)] and adult
(233-240 days) sheep [NMATNPAT (n = 2), CMATNPAT
(n=2), NMATCPAT (n = 4), and CMATCPAT (n = 2)]
was analyzed using RNase protection assays (RPAII
kit; Ambion, Austin, TX). Probes for DLKI and
MEG3 were prepared by PCR amplification using
oligo dT-primed sheep ¢cDNA with oligonucleotide
primers for DLK1: DLKX2F (5-GAA TGC TTC CCG
GCC TGC CAC C-3’) and DLKX5R (5 CCC TCA
TCG TCC ACG CAG C-3') and for MEG3: MEG3F1
(5-GAC ACC TTC CGT CTG CCT TCC-3’) and
MEG3R9 (5" CAG AAG CAG ACG CAC ATA GAA
AAG C-3’). The MEG3 primers were designed based
on the known bovine sequence because the ovine
sequence including MEG3 (Accession No.
AF354168) was not available at the time these
studies were initiated. The underlined residues in
the MEG3 primer sequences represent mismatches
between the ovine and the bovine sequence, but
these did not hinder the ability to amplify the MEG3
sequence from ovine cDNA.

The amplicons were cloned into pGemT-Easy
vectors (Promega) followed by nucleotide sequence
confirmation from insert-containing colonies. The
373-nt DLK1 probe sequence (within the 448-nt total
length probe) corresponds to positions 54,868-61,074
of accession No. AF354168, and the 311-nt MEG3
probe sequence (which protects a 294-nt fragment
due to mismatches in the primer sequences within
the 397-nt total length probe) corresponds to posi-
tions 140,792-141,315 of Accession No. AF354168.
Both ¢cDNA probes were designed to contain se-
quence from multiple exons. Antisense probes were
generated by in vitro transcription (MaxiScript,
Ambion) from linearized templates in the presence
of o®*P-[rCTP] using the Ambion Maxiscript kit. 18S
rRNA was used as an internal control with «**P-
[rCTP]-labeled probes generated from the pTRI-
RNA-18S vector using the MEGAscript kit (Ambi-
on). The protected DLK1, MEG3, and 18S rRNA
fragments were separated on 6% denaturing poly-
acrylamide gels and quantified using a Molecular
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Dynamics Storm Phosphorlmager System (Amer-
sham Biosciences, Piscataway, NJ). Relative levels of
the protected DLK1 and MEGS3 transcripts were
normalized to the protected 18S rRNA fragments
present in each sample.

Statistical analysis of the expression levels for
each gene was performed using the unpaired Stu-
dent’s t-test with a two-tailed distribution assuming
heteroscedastic variance. Unless otherwise speci-
fied, comparisons were made relative to normal
sheep. Probability values less than 0.05 were con-
sidered significant.

Results

We predicted that a callipyge effector gene(s) would
exhibit altered patterns of expression among the
callipyge genotypes that correlate with the presence
and absence of the phenotype. To this end, we used
RNase protection assays (Fig. 1) to measure expres-
sion of MEG3 and DLKI1 in the hypertrophy-
responsive longissimus dorsi and biceps femoris
muscles, nonhypertrophic infraspinatus muscle, and
liver from sheep of all four genotypes (NMATNPAT
CMATNPAT NMATQPAT anq GMATCPAT),

During prenatal development, we found low
levels of MEG3 transcripts in lonsissimus dorsi
muscle of NMATNPAT gnd NMATGPAT gnimals, with a
modest increase in fetuses with maternal inheri-
tance of the callipyge mutation (Fig. 2A). This trend
is maintained in the adult sheep, with an overall
elevation in MEGS3 transcript levels relative to those
in the fetal sheep of the same genotype (Fig. 2A). The
increased level of MEG3 mRNA observed in the fetal
CMATNPAT and CMATCPAT sheep is even more
prominent in the adults, but these differences were
not statistically significant.

To determine the expression levels of DLK1, we
measured DLK1 transcripts in fetal and adult lon-
gissimus dorsi. DLK1 expression is high prenatally
in all four genotypes with the maximum level of
expression in the CMATN"AT animals (Fig. 3A, 3B).
Postnatally, there is an approximate threefold de-
crease in the expression of DLKI in the NMATNPAT,
CMATNPAT and CMATCPAT sheep, but strikingly, the
NMATCPAT gheep maintain elevated levels of DLK1
transcripts (p = 0.013 compared to that of the
NMATNPAT animals; Fig. 3A, 3C). Our results indi-
cate that NMATCPAT sheep do not repress postnatal
transcription of DLK].

To examine whether these patterns of expression
are specific to muscles containing predominantly
fast-twitch fibers (the muscles affected in the calli-
pyge sheep), we evaluated MEG3 and DLKI expres-
sion in two other muscle types in adult sheep. Biceps
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femoris, another hypertrophy-responsive muscle,
exhibits a very similar profile of MEG3 expression to
longissimus dorsi, with elevated MEG3 levels in
sheep with a maternally inherited callipyge muta-
tion (Fig. 4A). Interestingly, this pattern is also seen
in infraspinatus (Fig. 4B), which is composed pri-
marily of slow-twitch muscle fibers and is unaf-
fected in the callipyge phenotype. Although the
levels of infraspinatus MEG3 transcripts are higher
in sheep inheriting the callipyge mutation on the
maternal allele compared to normal sheep, these
differences were not significant. Fetal and adult
NMATCPAT sheep do not express significantly altered
levels of MEGS relative to N¥ATN"AT sheep in any of
the hypertrophic muscle types analyzed. These re-
sults indicate that the influence of the callipyge
mutation on expression of MEGS3 is not restricted to
fast-twitch muscle fibers and therefore suggest that
MEGS3 expression is not directly responsible for the
callipyge phenotype.

DLK1 expression is increased in biceps femoris
of the NMATCPAT animals approximately fourfold
over that observed in the NYATNAT (p = 0.042) and
CMATNPAT  gnimals (p = 0.039) (Fig. 4A). Biceps
femoris in the CMATCPAT animals exhibits slightly
higher levels of DLK1 transcripts relative to the
NMATNPAT gnd CMATNPAT sheep, but the expression
is much lower (~40%) than in NMATCPAT sheep
(p = 0.114). Although biceps femoris is an affected
muscle in the callipyge sheep, our results indicate
that the increase in DLK1 expression in this partic-
ular muscle is not as high as that observed in
Iongissimus dorsi. However, DLK1 expression in
biceps femoris in the NMATCPAT adult sheep is dis-
tinctly elevated relative to the other three genotypes.

In contrast to the elevated DLKI gene expression
profile seen in adult NMATCPAT fast-twitch muscles,
DLK]1 is expressed at much lower levels in infra-
spinatus of the same adult sheep (Fig. 4B). We ob-
served small elevation in expression in the CMATNTAT
(1.8-fold), NMATCPAT (1.6-fold), and CMATCPAT (1.7-
fold) adult animals relative to the NY4TN"7 sheep. In
spite of this small elevation in DLK1 levels across all
three genotypes carrying the mutated allele(s), the
differences in expression for both DLK1 and MEG3
between NMATCPAT and NMATNPAT adult sheep are
statistically significant (p = 0.027 and p = 0.031,
respectively). This finding is likely due to the greater
precision of testing differences between a larger
number of NMATCPAT individuals (n = 4) relative to
the other genotypes (n = 2 for each), since C¥ATNPAT
and CMATCPAT both express higher averaged levels of
DLK1 and MEG3 than do the NMATCPAT animals.
These results indicate that the abnormal elevation of
DLK1 expression in the adult NMATCPAT animals
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give the relative level of gene expression. 7(A Relative expression of MEG3 in fetal longissimus dorsi (gray bars) from

NMATNPAT (= 4), CMATNPAT (p = 3), NMATCPAT (n = 4), and CMATCPAT (n = 2) sheep and adult longissimus dorsi (black
bars) from NMATNPAT (n = 2), CMATNPAT (n = 2), NMATCPAT (n = 4), and CMATCPAT (n = 2) sheep. Error bars, standard error
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specifically occurs in fast-twitch muscle fibers, i.e.,
those affected by callipyge.

Little is known about the expression of DLKI
and MEGS3 in tissues other than muscle in the cal-
lipyge sheep. To investigate whether the patterns of
expression for MEG3 and DLK1 in mesodermal-
derived tissues of the sheep harboring the callipyge
mutation extend into tissues from a different
embryonic lineage, we performed RNase protection
assays in endodermal tissue using the same MEG3
and DLK1 probes (Figs. 5 and 6). In both fetal and
adult liver, the relative level of expression of both
genes is low compared to muscle (note Y-axis), and
the overall level of MEG3 is greatly decreased in the
adults relative to that found in fetal sheep (7.9-fold
averaged across genotypes). Interestingly, in spite of

the low RNA levels, MEG3 expression does vary
significantly between the NMATNAT and CMATNPAT
(p = 0.031) genotypes in adult liver and expression is
lower (although not statistically significant) in the
CMATGPAT adults as well (Fig. 5A, Table 1). This
pattern of expression, with higher levels of MEG3 in
the NMATNTAT and NMATCPAT is opposite that ob-
served in the fetal liver and in muscle tissues, indi-
cating independent regulatory mechanisms for
MEGS3 expression in tissues of mesodermal and
endodermal origin.

DLK1 expression is also higher in the fetal liver
samples versus adult liver (6.6-fold when averaged
across genotypes), and there is a tendency toward
higher levels of expression of DLKI where the cal-
lipyge mutation is maternally inherited (CMATNPAT
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unique to the affected N¥ATCP7 sheep, these results
together suggest that MEGS3 is unlikely to be a direct
mediator of the muscle hypertrophy phenotype.

Our data clearly show persistent elevation of
DLK1 expression in postnatal NMATCPAT sheep,
specifically in callipyge-affected muscles. In another
study, DLK1 was found to be elevated in longissimus
dorsi muscle of both NMATCPAT and CMATCPAT
eight-week-old lambs by Northern blot, with de-
creased levels in the NMATNPAT and CMATNPAT
sheep (Charlier et al. 2001a). In our study, the aver-
age age of the adult sheep was approximately 33
weeks, and at this age the callipyge phenotype is
fully evident. The elevated DLK1 in eight-week-old
CMATCPAT 1ambs suggests that there may be a delay
in downregulation of DLKI expression in the
homozygous mutant sheep postnatally, and this de-
lay is apparently not sufficient to give rise to mus-
cular hypertrophy. Combined, these results suggest
that the normal attenuation of DLKI expression
takes place perinatally but further work will be re-
quired to determine the precise timing of this event.

One mechanism that could account for the nor-
mal reduction of DLK1 expression in postnatal sheep
is via a trans-regulatory effect (Charlier et al. 2001a;
Georges et al. 2003; Charlier 2004). In this scenario,
another gene that is reciprocally expressed with
DLK1 (e.g., MEG3) may modulate DLK1 expression.
Our results indicate that DLK1 expression is nor-
mally reduced postnatally, and this reduction ap-
pears to be concomitant with an increase in MEG3
expression. Table 1 shows the ratio of the average
expression of these two genes for each group of ani-
mals in this study. In support of a trans-regulatory
role for MEGS3, the ratio of DLK1 to MEG3 is high
during fetal development in all four genotypes (at a
time when the phenotype is not evident), while in
adult sheep this ratio remains elevated only in the
affected NMATNPAT animals, and this pattern is ob-
served in the affected muscles. We and others
(Charlier et al. 2001a) have noted that expression of
genes linked in cis to the callipyge mutation is ele-
vated; as such, the lack of a phenotype in the
CMATCPAT gnimals may result from the ability of
increased MEG3 from the maternal allele to ““con-
trol”” DLK1 that is expressed from the paternal allele.
This type of trans effect might occur at the tran-
scriptional or translational level. The results shown
in Fig. 3 suggest that this type of regulatory effect
may indeed be at the level of transcription since
DLK1 transcripts are not elevated in the CMATCPAT
sheep, but more work will be required to test this
postulate.

Together with the known biological activities of
the DLK1 protein, the combined studies make sheep
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DLKI1 the strongest candidate to date for mediating the
effects of the callipyge mutation. Further support for
DLK1 as the callipyge effector gene comes from several
lines of evidence. First, pigs also exhibit polar over-
dominance associated with growth, adiposity, and mus-
cle fiber composition; this is linked to paternal
inheritance of DLKI (Kim et al. 2004). Second, the
presence of DLKI protein was recently shown to be
highly specific to fast-twitch muscle fibers in postnatal
NMATCPAT gheep (Davis et al. 2004). Lastly, transgenic
mice overexpressing DIkl display generalized muscular
hypertrophy, linking DIk1 to the key characteristic of the
callipyge phenotype (Davis et al. 2004). The signaling
pathways through which DLK1 acts are currently not
well understood. Given the role of DLKI1 in specifying
alternative differentiation fates in vitro, and the in-
creased number of fast-twitch muscle fibers and reduced
adiposity in the callipyge sheep, it is possible that sheep
DLKI1 functions in mesodermal differentiation pro-
cesses, specifically in the choice between myoblast versus
adipocyte cell linecages. Appropriate in vitro and in vivo
model systems will be required to investigate this aspect
of DLKI1 function.

Imprinted genes other than MEG3 and DLK1 are
located in the same region and might also contribute
to the callipyge phenotype (Charlier et al. 2001b).
These include DAT and MEGS, whose human se-
quence was recently shown to encode snoRNAs
(small nucleolar RNAs) (Cavaille et al. 2002). PEG11
is also located in this region and encodes a gag and
pol-like polyprotein of unknown function. PEG11 is
expressed in sheep skeletal muscle (Charlier et al.
2001a) and is therefore potentially involved in calli-
pyge. PEGI11 transcripts are indeed very highly
expressed in the affected muscles of postnatal
NMATCPAT sheep compared to the other genotypes,
consistent with a specific effect resulting from the
presence of the callipyge mutation that correlates
with phenotype (Bidwell et al. 2004). However, it is
unknown whether PEG11 protein is produced, or
how PEG11 may functionally contribute to muscu-
lar hypertrophy. In addition, temporal differences in
PEG11 expression between fetal and adult sheep
remain to be demonstrated. Seitz et al. (2003)
established that in mice the previously reported
anti-PEG11 (Charlier et al. 2001b) in fact produces
microRNAs, and they postulated that these mi-
croRNAs may be involved in regulating expression
of PEG11. Whether this applies to sheep and whether
other microRNAs are present within this imprinted
domain that contribute to callipyge muscular
hypertrophy is presently unknown. The callipyge
mutation is located in a region that is transcribed in
sheep to produce CLPGI, an RNA that has the po-
tential to encode protein (Freking et al. 2002).
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However, the open reading frame of this putative
protein is not well-conserved across species and,
therefore, it is presently unresolved whether CLPG1
has a direct role in the callipyge phenotype. Quan-
titative expression studies of all of these genes,
similar to those described in the current study, are
required to answer these questions.

In conclusion, we have provided evidence that
the callipyge phenotype correlates with altered
temporal expression of the DLK1 gene. Specifically,
the appearance of the phenotype coincides with
abnormally elevated DLK1 expression in the affected
sheep; this is in direct contrast to the downregula-
tion of DLKI in all of the nonaffected genotypes,
including the homozygous CM47C"7 sheep that are
phenotypically normal. Furthermore, substantial
DLKI mRNA transcript elevation is not seen in the
nonaffected infraspinatus muscle or in liver of the
NMATCPAT gnimals; therefore, this variance does not
represent a global deregulation of this gene. This
evidence, together with the role of DLK1 in cellular
differentiation, strongly suggests that DLKI is an
effector of callipyge and that the callipyge mutation
is somehow negating the ability to downregulate
expression of DLK1 postnatally. Further investiga-
tion will be required to determine how the callipyge
mutation mechanistically influences the expression
of the imprinted genes in the callipyge region.
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