

LOCATIONS OF UNIFORM SOYBEAN TESTS, NORTHERN STATES, 1972

NORTHERN STATES

1972

RSLM 250

0

Compiled by:

R. L. Bernard and D. A. Lindahl Agricultural Research Service, USDA U. S. Regional Soybean Laboratory 160 Davenport Hall, University of Illinois Urbana, Illinois 61801

> Phone: 217-344-0622 FTS: 217-356-1124

I

TABLE OF CONTENTS

Uniform Test Participants		
Introduction	5	II
Methods	6	
Uniform Test Locations	10	
Identification of Parent Strains	12	
Uniform Test 00	13	
Uniform Test 0	20	
Preliminary Test 0	26	
Uniform Test I		
Preliminary Test I		
Uniform Test II		III
Preliminary Test II	56	111
Uniform Test III	59	
Preliminary Test III	74	
Uniform Test IV	78	
Preliminary Test IV	94	
Growing Conditions	98	
Origin and Development of Wells	12	
Appendix: Uniform Test III-IV	.14	

UNITED STATES REGIONAL SOYBEAN LABORATORY Agricultural Research Service, USDA Urbana, Illinois

- R. L. Cooper, Research Leader
- P. J. Amdor, Agricultural Research Technician
- R. L. Bernard, Geneticist
- T. F. Carter, General Machinist
- D. W. Chamberlain, Plant Pathologist
- C. R. Cremeens, Agricultural Research Technician
- D. I. Edwards, Plant Pathologist (Nematologist)
- S. M. Evbuoma, Biology Laboratory Technician (Plants)
- S. J. Gibbons, Physical Science Technician
- L. E. Gray, Plant Pathologist
- M. E. Hageman, Chemist
- J. E. Harper, Plant Physiologist
- O. A. Krober, Chemist
- L. L. Lange, Crops Research Helper
- D. J. Lilley, Clerk-Dictating Machine Transcriber
- D. A. Lindahl, Agronomist (Research Assistant)
- N. H. Maxwell, Laboratory Helper
- P. S. McCleary, Crops Research Helper
- R. W. Nave, Agricultural Engineer
- W. L. Ogren, Plant Physiologist
- R. W. Rinne, Plant Physiologist
- G. L. Sprau, Crops Research Helper
- E. W. Stoller, Plant Physiologist
- R. L. Warsaw, Agricultural Research Technician
- L. M. Wax, Agronomist

- L. J. Anderson Canada Dept. of Agriculture Research Station Harrow, Ontario, Canada
- K. L. Athow Department of Botany and Plant Pathology Purdue University Lafayette, Indiana 47907
- R. L. Bernard, ARS, USDA U. S. Regional Soybean Lab. University of Illinois Urbana, Illinois 61801
- R. D. Brigham
 Texas A&M University
 Agricultural Research
 and Extension Center
 Lubbock, Texas 79401
- D. R. Browning Agronomy Research Center Southern Illinois University Carbondale, Illinois 62901
- R. I. Buzzell Candada Dept. of Agriculture Research Station Harrow, Ontario, Canada
- D. W. Chamberlain, ARS, USDA U. S. Regional Soybean Lab. University of Illinois Urbana, Illinois 61801
- R. C. Clark, ARS, USDA Department of Agronomy Iowa State University Ames, Iowa 50010
- R. H. Cole & J. O. Yocum Department of Agronomy Penn State University University Park, Penn. 16802
- R. L. Cooper, ARS, USDA
 U. S. Regional Soybean Lab.
 University of Illinois
 Urbana, Illinois 61801

- L. S. Donovan
 Genetics and Plant Breeding
 Research Institute
 Canada Dept. of Agriculture
 Central Experimental Farm
 Ottawa, Ontario, Canada
- L. A. Duclos University of Missouri Delta Research Center Portageville, Missouri 63873
- J. M. Dunleavy, ARS, USDA Department of Botany and Plant Pathology Iowa State University Ames, Iowa 50010
- D. B. Egli Department of Agronomy University of Kentucky Lexington, Kentucky 40506
- W. R. Fehr Department of Agronomy Iowa State University Ames, Iowa 50010
- L. A. Fitch Oregon State University Malheur Experiment Station Ontario, Oregon 97914
- J. E. Giesbrecht Canada Dept. of Agriculture Experimental Farm Morden, Manitoba, Canada
- E. E. Hartwig, ARS, USDA Delta Branch Experiment Station Stoneville, Mississippi 38776
- D. J. Hume Department of Crop Science University of Guelph Guelph, Ontario, Canada
- T. J. Johnston
 Department of Crop Science
 Michigan State University
 East Lansing, Michigan 48823

- J. R. Justin
 Department of Soils and Farm Crops
 Rutgers University
 New Brunswick, New Jersey 08903
- O. A. Krober, ARS, USDA
 U. S. Regional Soybean Lab.
 University of Illinois
 Urbana, Illinois 61801
- J. W. Lambert
 Department of Agronomy
 University of Minnesota
 St. Paul, Minnesota 55101
- F. A. Laviolette
 Department of Botany
 and Plant Pathology
 Purdue University
 Lafayette, Indiana 47907
- R. C. Leffel, ARS, USDA Plant Nutrition Laboratory Plant Physiology Institute Beltsville, Maryland 20705
- D. A. Lindahl, ARS, USDA
 U. S. Regional Soybean Lab.
 University of Illinois
 Urbana, Illinois 61801
- D. A. Littlejohns
 Ridgetown College of
 Agricultural Technology
 Ridgetown, Ontario, Canada
- V. D. Luedders, ARS, USDA Department of Agronomy University of Missouri Columbia, Missouri 65201
- A. O. Lunden
 Plant Science Department
 South Dakota State University
 Brookings, South Dakota 57006
- L. J. Meyer Kansas State University Southeast Kansas Experiment Sta. Mound Valley, Kansas 67354
- C. Moore
 Kemptville College of
 Agricultural Technology
 Kemptville, Ontario, Canada
- R. S. Moomaw Northeast Station University of Nebraska Concord, Nebraska 68728

- C. D. Nickell
 Department of Agronomy
 Kansas State University
 Manhattan, Kansas 66502
- C. O. Rydberg University of Wisconsin Experiment Station Spooner, Wisconsin 54801
- J. A. Schillinger
 Department of Agronomy
 University of Maryland
 College Park, Maryland 20742
- P. E. Smith
 Department of Agronomy
 Ohio State University
 Columbus, Ohio 43210
- H. Tachibana, & L. C. Card, ARS, USDA
 Department of Botany
 and Plant Pathology
 Iowa State University
 Ames, Iowa 50010
- G. H. Tenpas University of Wisconsin Experiment Station Ashland, Wisconsin 54806
- J. H. Torrie
 Department of Agronomy
 University of Wisconsin
 Madison, Wisconsin 53706
- D. A. Whited Department of Agronomy North Dakota State University Fargo, North Dakota 58102
- J. R. Wilcox & R. J. Martin, ARS, USDA Department of Agronomy Purdue University Lafayette, Indiana 47907
- J. H. Williams Department of Agronomy University of Nebraska Lincoln, Nebraska 68503
- E. L. Wisk University Substation Delaware Agricultural Experiment Station Georgetown, Delaware 19947

INTRODUCTION

The U. S. Regional Soybean Laboratory conducts research directed toward breeding better varieties of soybeans in cooperation with federal and state research personnel in all important soybean producing states and with research workers in two provinces in Canada. The purpose of the Uniform Soybean Tests is to evaluate critically the best of the experimental soybean lines developed by these researchers.

A test is established for each of ten maturity groups. Uniform Test 00 includes maturity Group 00 strains for the northern fringe of the present area of soybean production. Uniform Tests 0 through IV include later strains adapted to locations progressively farther south in the North Central States and areas of similar latitude. Each year new selections are added and others that have been sufficiently tested are dropped. The summary of performance of strains in Uniform Tests 00 through IV in the northern states is included in this report. The report on Uniform Tests IVS through VIII in the southern states is issued separately.

Data from the Uniform Tests form the basis for decisions on the regional release of soybean varieties. Preliminary Tests are grown at a limited number of locations throughout the region to screen the experimental strains for maturity and general agronomic performance for one year before they are entered in the Uniform Tests.

Unreleased strains in this report are not available for general distribution. For further information on them contact the originating agencies listed on page 9.

6 METHODS

Uniform Tests are usually planted in four-row plots with three replications or three-row plots with four replications and the center one or two rows are harvested. Pre-liminary Tests are usually planted in three-row plots (the center row harvested) with two replications. Usually 18 to 20 feet of row are planted and 16 feet harvested, to eliminate end-of-row effects. Seeds are packeted at approximately 180 viable seeds per packet for each row.

Parentage. Parent strains other than named varieties are identified on page 12.

Generation Composited is the generation after the final single-plant selection.

Previous Testing. The number of previous years in the same Uniform Test is given, or, in the case of new entries, a reference to last year's test abbreviated UT 0 for Uniform Test 0, PT III for Preliminary Test III, etc.

<u>Yield</u> is measured after the seeds have been dried to a uniform moisture content and is recorded in bushels (60 pounds) per acre. [To convert to kilograms per are (or quintals per hectare) multiply by .6725; 1 kg/are = 1.487 bu/acre.]

Maturity is the date when 95% of the pods have ripened. Delayed leaf drop and green stems are not considered in assigning maturity. Maturity is expressed as days earlier (-) or later (+) than the average date of the reference variety. To aid in maturity group classification, one earlier and one later "tie" variety are listed on the maturity table for each Uniform and Preliminary Test except 00. Current reference and tie varieties and the maturity group limits relative to the reference varieties are:

Group	Reference	Range	Early Tie	Late Tie
00	Portage	-2 to +6		Clay (0)
0	Merit	-4 to +4	Morsoy (00)	Steele (I)
1	Steele	-3 to +5	Merit (0)	Corsoy (II)
11	Corsoy	-3 to +5	Hark (I)	Wayne (III)
III	Wayne	-4 to +4	Beeson (II)	Cutler 71 (IV)
IV	Cutler 71	-4 to +7	Calland (III)	Hill (V)

These maturity group ranges are based on long-time means over many locations. When using data from fewer environments, the interval between reference varieties may differ from that implied above, but the division between maturity groups can be estimated in proportion to the above figures.

Lodging is rated at maturity according to the following scores:

- 1 Almost all plants erect
- 2 All plants leaning slightly or a few plants down
- 3 All plants leaning moderately (450), or 25% to 50% of the plants down
- 4 All plants leaning considerably, or 50% to 80% of the plants down
- 5 Almost all plants down

Height is the average length in inches of plants from the ground to the tip of the main stem at the time of maturity. [To convert to centimeters, multiply by 2.54.]

Seed Quality is rated according to the following scores considering the amount and degree of wrinkling, defective seed coat (growth cracks), greenishness, and moldy or rotten seeds. (Threshing or handling damage is not considered, nor is mottling or other pigment.)

3 Fair 1 Very good 2 Good 4 Poor 5 Very poor

Seed Size in grams per 100 is based on a 100 or 200-seed sample. [To convert to seeds per pound divide this into 45,359.2].

Seed Composition is measured on samples submitted to the Laboratory. A 60 to 70-gram sample of clean seeds is prepared by taking an equal volume or weight of seeds from each replication. Protein percentage is measured using the Kjeldahl method and oil percentage is measured using nuclear magnetic resonance. These percentages are expressed on a moisture-free basis.

Descriptive Code: 1234 567, abbreviated as underlined below:

1 = Flower Color: Purple, White

2 = Pubescence Color: Tawny, Gray, Light tawny

3 = Pubescence Type: Normal, Appressed, Semi-appressed

4 = Pod Color: Brown, Tan

5 = Seed Coat Luster: Dull, Shiny, Intermediate

6 = Seed Coat Color: Yellow, Gray, Light gray, Green
7 = Hilum Color: Black, Imperfect black, Brown, Buff, Gray, Tan, Yellow; prefixes indicate Light or Dark shades, e.g., Lbf = light buff, Dib = dark imperfect black.

Peroxidase Activity: H = high, L = low activity in seed coat.

Fluorescent Light Response: E = early flowering (about 35 days), L = late flowering (about 70 days) under 20-hour cool white fluorescent photoperiod.

Shattering is scored at a specified time after maturity and is based on estimates of the percent of open pods as follows:

3 10% to 25% shattered 5 Over 50% shattered 1 No shattering

2 1% to 10% shattered 4 25% to 50% shattered

Iron Chlorosis is rated from 1, no chlorosis, to 5, severe chlorosis.

Emergence Score is related to hypocotyl elongation and was measured at Ames, Iowa, on germination at 25° C (a critical temperature for differentiating strains).

Germination tests are reported on Uniform and Preliminary Tests 0 to IV grown at Lafayette, both on seed harvested at maturity and on seed harvested late, about 4 weeks after maturity.

Bentazon response. The new post-emergence herbicide Bentazon was tested on the strains of Uniform Tests I to IV at Urbana by Loyd Wax. Although some exotic varieties of soybeans had been found to be highly sensitive the Uniform Test entries were all quite tolerant. The detailed data are not presented.

8 DISEASE

Disease reactions are listed according to "Soybean Classification Standards", March 1955, unless otherwise specified. Disease reaction is scored from 1 (healthy) to 5 (heavily infected) or in some cases as percent infected or simply as + (present) or o (absent). The location where the test was made is identified in the column heading, and the letter "a" or "n" signifies artificial or natural infection. Clearcut and consistent reactions are given by letter instead of number: R = resistant, S = susceptible, I = intermediate, and H = heterogeneous. Natural infection ratings are from agronomic tests in some instances and from special disease plantings in others. Absence of symptoms under natural infection does not necessarily mean high resistance.

Abbreviation	Disease	Pathogen
BB	Bacterial blight	Pseudomonas glycinea
BBV	Bud blight	Tobacco ringspot virus
BP	Bacterial pustule	Xanthomonas phaseoli var. sojensis
BS	Brown spot	Septoria glycines
BSR	Brown stem rot	Cephalosporium gregatum
CN	Cyst nematode	Heterodera glycines
CR	Charcoal rot	Macrophomina phaseoli
DM	Downy mildew	Peronospora manshurica
FE ₁ , FE ₂	Frogeye race 1, 2	Cercospora sojina
PM	Powdery mildew	Microsphaera diffusa
PR	Phytophthora rot	Phytophthora sojae
PS	Purple stain	Cercospora kikuchii
PSB	Pod and stem blight	Diaporthe phaseolorum var. sojae
Pyd	Pythium root rot	Pythium debaryanum
Pyu	Pythium root rot	Pythium ultimum
RK	Root knot nematode	Meloidogyne spp.
RR	Rhizoctonia root rot	Rhizoctonia solani
SB	Sclerotial blight	Sclerotium rolfsii
SC	Stem canker	Diaporthe phaseolorum var caulivora
SMV	Soybean mosaic	Soja virus 1
TS	Target spot	Corynespora cassiicola
WF	Wildfire	Pseudomonas tabaci
YMV	Yellow mosaic	Phaseolus virus 2

Ratings for BB, BP, BS, DM, FE2, PM, and SMV were based on leaf symptoms; those for PS on the amount of seed stain; those for BSR on percent of plants with stem browning; and those for PR on seedling rotting and/or stunting; and those for PSB are the percentage of infected seeds.

Experimental (i.e., unreleased) strains are identified with number and a code letter prefix. These letters indicate the originating agency as follows:

- A Iowa A.E.S. and U.S.R.S.L.
- C Purdue A.E.S. and U.S.R.S.L.
- CM Canada Dept. of Agriculture, Morden, Manitoba
- D Mississippi A.E.S. and U.S.R.S.L.
- E Michigan A.E.S. and U.S.R.S.L.
- FC Forage and Range Research Branch, U.S.D.A.
- H Ohio A.E.S. and U.S.R.S.L.
- K Kansas A.E.S. and U.S.R.S.L.
- L Illinois A.E.S. and U.S.R.S.L.
- M Minnesota A.E.S. and U.S.R.S.L.
- Md Maryland A.E.S. and U.S.R.S.L.
- ND North Dakota A.E.S. and U.S.R.S.L.
- O Central Experiment Farm, Ottawa, Ontario
- O Research Station, Harrow, Ontario
- OAC University of Guelph, Guelph, Ontario
- PI Plant Introduction Investigations, New Crops Research Branch, U.S.D.A.
- S Missouri A.E.S. and U.S.R.S.L.
- SD South Dakota A.E.S. and U.S.R.S.L.
- SL Two or more state experiment stations and U.S.R.S.L.
- T Soybean Genetic Type Collection, U.S.R.S.L.
- U Nebraska A.E.S. and U.S.R.S.L.
- UD Delaware A.E.S. and U.S.R.S.L.
- UM University of Manitoba, Winnipeg, Manitoba
- W Wisconsin A.E.S. and U.S.R.S.L.

		Tests	U	nif			sts		Prel				
Location	on*	Conducted by	00	0	I	II	III	IV	0	I	II	III	IV
Pa.	University Park	R. H. Cole				x	o x	×					
N. J.	Hopewell Adelphia	J. R. Justin	1			0	×						
	Centerton		1				~	×					
Del.	Georgetown I	E. L. Wisk	1					x					x
Md.	Upperco	J. A. Schillinger	1			×							
	Reistertown B	0	1			0	0	0					
	Clarksville						$\frac{x}{x}$	×				×	×
	Queenstown B							×					
	Quantico W	100					×	x					
	Queenstown	R. C. Leffel &						×					
	Linkwood	V. L. Miller	11.5					×					X
Ont.	Ottawa	L. S. Donovan	x						1				
	Kemptville	C. Moore		x					×				
	Elora	D. J. Hume	x	$\frac{x}{x}$					×				
	Ridgetown	D. A. Littlejohns	1	x	x	×			×	×			
	Harrow	L. J. Anderson				x					×	-	
Ohio	Hoytville	P. E. Smith		×	x	x	×			×	×		
	Wooster				x	X							
	Columbus	TENER PLANTS OF THE			×	×	×	×	100			x	
Mich.	E. Lansing Dundee	T. J. Johnston		×	×	X o			×	x			
Ind.	Knox	J. R. Wilcox			0						0		
	Bluffton	11				×	x	20				-	
	Lafayette	1.000			×	X	×	×			×	×	
	Greenfield Worthington		1				×					140	
	Evansville	11				×	×	X				×	
Ky.	Henderson	D. B. Egli					×	×	1				×
vis.	Ashland	G. H. Tenpas	0				_	^					
	Spooner	C. O. Rydberg	1	×					×				
	Durand	J. H. Torrie		×	×				-				
	Madison	4		17	×	×				×	×		
111.	Dekalb	R. L. Cooper			×	×				×	1,000		
	Pontiac	11	M.		$\frac{x}{x}$	$\frac{x}{x}$				_	×		
	Urbana	R. L. Bernard &	1		×	x	×	x			×		
	Girard	D. A. Lindahl			-	×	×	×				×	
	Edgewood	0	1			×	$\frac{x}{x}$	$\frac{x}{x}$				-	
	Belleville	190				×	×	x				x	x
	Eldorado	30				×	×	x	1				×
	Cardondale	D. R. Browning				$\frac{x}{x}$	×	$\frac{x}{x}$					-
finn.	Crookston	J. W. Lambert	x										
	Morris	0	x x	×					x				
	Rosemount	111	x	x					×				
	Lamberton	40			x	x				x			
0.00	Waseca				×	×							
owa	Sutherland	R. C. Clark &								XX			
	Kanawha	W. R. Fehr			x	×				×	×		

Locatio	n*	Tests	U	hif	ort	n Te	sts	-	Preliminary Test				
		Conducted by	00	0	I	II	III	IV	0			III	
Iowa	Ames	R. C. Clark &				x					×		
	Stuart	W. R. Fehr					×	x			-	×	
	Ottumwa	W					×	x				×	
Mo.	Spickard	V. D. Luedders			x	×	×	7					
	Columbia				0	0	0	0			×	0	0
	Mt. Vernon	•				×	×	×					
	Portageville	L. A. Duclos	1					×					×
Man.	Portage la Prairie	J. E. Giesbrecht	×										
	Morden		×										
N. D.	Fargo	D. A. Whited	×	x					×				
	Oakes I	10 100	_		0				_				
S. D.	Revillo	A. O. Lunden		x	x				×				
	Brookings				×	×			100	×			
	Centerville				_	×					×		
	Elk Point	"				=	×						
Neb.	Concord	R. S. Moomaw			x	x	×						
	Mead I	J. H. Williams			×	×	×	0		×	×	×	
Kansas	Powhattan	C. D. Nickell	1				x x	$\frac{x}{x}$					
	Manhattan		1				×	x					
	u I		4				×	$\frac{x}{x}$	1			×	$\frac{x}{x}$
	Ottawa		1					x					x
	Columbus	L. J. Meyer					×	x					
Tex.	Lubbock I	R. D. Brigham						X					
Ore.	Ontario I	L. A. Fitch	×	×									
No. of	locations with agron	omic data (x.x)	10	12	22	32	30	29	9	11	11	10	10
	h seed composition d		6		11			13	5	6	4	4	5

1972 Disease and Shattering Tests

				UT	PT
Ont.	Harrow	PM, Peroxidase, Fluorescent Light	R. I. Buzzell	00-IV	
Ind.	Lafayette	CR, FE2, PR, PSB, Germination	F. A. Laviolette	00-IV	0-IV
		BSR	K. L. Athow	I-IV	I-IV
111.	Urbana	BSR	D. W. Chamberlain	00-IV	0-IV
	. 10	Shattering	R. L. Bernard & C. R. Cremeens	00	
		Bentazon	L. Wax	I-IV	1.550
Minn.	St. Paul	BSR	J. W. Lambert	00-IV	1624
	Lamberton	Chlorosis	10	00-IV	
	Crookston	H.		00-IV	1.00
Iowa	Ames	BB2, BSR, PR	H. Tachibana &	00-IV	0-IV
		SMVa	L. C. Card	00-IV	
	11	BB1, BP, BS, SMVn	J. M. Dunleavy	00-IV	1,700
		Chlorosis	W. R. Fehr	00-IV	0-IV
	- 11	Emergence		00-IV	
Miss.	Stoneville	PR	E. E. Hartwig	II-IV	II-IV
	11	Shattering		II-IV	
Kansas	Manhattan	Shattering	C. D. Nickell	00-II	0-11
Tex.	Lubbock	Shattering	R. D. Brigham	III-IV	

^{*} B = after barley, W = after wheat, I = irrigated

Strain	Parentage or Source	Uniform Test
Clark-I r Rps rxp(L12)	PR and BP resistant yellow hilum Clark BC	65-66 IV
Kent-Rps rxp(SL5)	PR and BP resistant Kent BC	65 IV
Wayne-I r Rps	PR resistant yellow hilum Wayne BC	(69 P III
II-54-139	Renville x Capital	
II-54-240	(Lincoln ² x Richland) x Korean	
AX56P64-1	Adams x Harosoy, progenitor of Amsoy	61-63 II
C1079	Lincoln x Ogden. From same F3 plant as Kent	54-56 IV
C1223	Cl070 x Adams; (F3 sib of Adelphia)	60-61 III
C1253	Blackhawk x Harosoy. PR resistant	64 P II
C1264	Harosoy x C1079	62-63 II
C1265	11 525 7	62-63 II
C1266		62-63 IV
C1317-71	C1223 ⁸ x Mukden	64 III
FC 31.122	From E.R. Sheffel, Bayfield, Wis., in 1941	
L48-7289	Seneca x Richland	50-51 II
L49-4091	(F3 Lincoln ² x Richland) x	20.22.22
213 1032	(F1 Lincoln x CNS)	51 IV,52-53
L57-0034	Clark x Adams	60-62 IV
L62-1932	Clark-e2 from Clark ⁶ x T245	65 II
L66-531	Clark-dt1E1t e2 from	75 75
200 302	dtle2(Clark6 x T245) x E1t(Clark6 x T175)	
L66-1322-1	(F ₁₀ Hawkeye x Lee) x (F ₁₀ Hawkeye x Lee)	
M10	Lincoln ² x Richland	49-51 I
M55-134	Pagoda 25 x Chippewa	67 00
M319	Lincoln x Hawkeye	58-61 I
M372	M10 x PI 180.501	61 I
M384	Capital x Renville	63-66 00
M387	Renville x Capital	63 00,64
M402	Renville x capital	63-64 II
M406	Harosoy x Norchief	64-65 0
		64 0,65 0
M433	Acme x Chippewa	04 0,03 0
0-52-903	Strain 753-1 from Sven A. Holmberg, Norrkoping, Sweden, same as PI 194.654	
4.7 8.78 8.68 5.6v	from Pagoda-2 x Fiskeby III	60-61 00
0-57-2921	Blackhawk x Capital	60-1 0,62-5
PI 132.207	No. D14 from Dr. L. Koch, Zeist, Nether- lands, in 1939	
PI 180.501	Strain No. 18 from Frankfurt, Germany, in	
	1949; from a Manchurian strain x PI 54.616	
PI 248.406	Osijecka, from Yugoslavia in 1958	
UM-S58-544	Blackhawk x PI 194.633	
W57-2334	Seneca x Chippewa	62 I
PI 194.633	Strain 733-4 from Sven A. Holmberg,	
		0 P 00 (as Me27A

Stra	in	Parentage	Line	Previous Testing*
1. 2. 3. 4. 5.	Ada Altona Morsoy Norman Portage	Merit x Norman 0-52-903(Holmberg 753-1) x Flambeau Acme x L48-7289(Seneca x Richland) Acme x Hardome Acme x Comet	F ₅ F ₅ F ₇ F ₅ F ₅	2 8 4 7 12
6. 7. 8. 9.	CM119 CM145 M62-173 M64-101 M64-105	Acme x Blackhawk " M387(Renville x Capital) x M406(Harosoy x Norchief) Merit x M55-134(Pagoda 25 x Chippewa) Chippewa 64 x M433(Acme x Chippewa)	F ₇ F ₇ F ₅ F ₅	1 P 00 U 0

^{*} Number of years in this test or name of last year's test.

Regional means of the five named varieties in this test show a positive regression of yield on maturity, which is expected for this maturity group. The top-yielding variety, Altona, is also the latest in maturity. Ada, which was just released last year, averaged (3-year mean) slightly low in yield for its maturity but has phytophthora resistance and remarkable resistance to lime-induced chlorosis in the Minnesota tests.

Of the 5 experimental strains only one was in this test last year. CM119 has averaged close to Altona in yield both years. It averaged earlier in 1971 but about the same maturity as Altona in 1972. CM145 was advanced from last year's Preliminary 00 and has yielded very well for its early maturity and in addition has phytophthora resistance but may be somewhat deficient in seed composition.

M62-173, was entered from last year's Uniform Test O since it is borderline in maturity between group 00 and O. It averaged well ahead in yield in this test and ranked first in 7 out of the 10 locations but was several days later than the other strains. The remaining 2 strains were new entries, in this test since there was no Preliminary Test in 1972. Their yield performance was not up to that of the check varieties except in Manitoba where M64-101 did very well at both locations.

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oil
¥ 11 = 1 = 1				197	2			100	
No. of Tests	9	9	9	7	7	9	9	5	5
Ada	33.5	10	+ 5.1	3.1	32	2.1	17.8	40.9	19.8
Altona	36.3	2	+ 5.8	2.8	30	2.1	19.0	40.2	20.2
Morsoy	36.0	4	+ 5.0	3.4	32	2.5	18.6	37.3	22.3
Norman	34.6	8	+ 1.7	2.8	30	2.1	17.4	40.2	20.3
Portage	33.8	9	9-15+	1.4	28	2.4	18.0	39.1	20.9
CM119	35.6	5	+ 5.6	2.9	31	2.7	20.0	39.9	20.2
CM145	35.6	5	+ 2.2	2.4	27	2.7	19.6	38.3	21.1
M62-173	39.7	1	+10.1	2.8	30	2.6	15.1	37.7	21.2
M64-101	36.1	3	+ 8.1	2.3	35	1.9	16.6	39.6	20.0
M64-105	34.7	7	+ 5.1	1.9	32	1.9	16.7	40.1	20.6

^{† 113} days after planting

			1970	-72, 3-	year mean				
No. of Tests	29	29	27	27	27	27	25	17	17
Ada	31.0	4	+ 5.5	2.5	31	1.9	17.7	41.6	19.6
Altona	33.1	1	+ 6.3	2.5	30	2.2	18.9	41.5	19.9
Morsoy	32.3	2	+ 6.2	2.9	31	2.6	19.2	38.9	21.8
Norman	31.5	3	+ 2.8	2.3	29	2.0	17.3	41.1	20.0
Portage	30.5	5	9-11†	1.5	27	2.4	18.0	40.2	20.3

† 112 days after planting

			1968	-72, 5-	year mean				
No. of Tests	48	48	46	40	44	45	41	28	28
Altona	32.1	1	+ 4.5	2.6	29	2.2	19.0	40.9	20.1
Morsoy	31.8	2	+ 5.8	2.9	30	2.7	20.6	38.6	21.8
Norman	31.0	3	+ 2.6	2.3	29	1.9	17.6	40.8	20.1
Portage	30.1	4	9-12†	1.5	27	2.4	18.3	39.9	20.2

^{† 114} days after planting

			1965	1965-72, 8-year mean					
No. of Tests	74	74	67	59	70	67	63	43	43
Altona	30.6	1	+ 4.8	2.5	29	2.4	18.4	40.5	20.0
Norman	29.7	2	+ 2.7	2.3	29	2.1	17.0	40.1	20.0
Portage	28.6	3	9-13+	1.5	27	2.3	17.9	39.4	20.1

^{† 113} days after planting

Disease Data

_	B	В	BP	BS	FE ₂	PM	· ·	BSR		CR	P	R	SI	MV
Strain	Ame		Ames	Ames	Laf.	Har. Ont.	Urb. Ill.	St. Paul Minn.	Ames	Laf. Ind.	Laf. Ind.	Ames Iowa	100	mes owa
	nl	n2	n	n	a	a	n %	n %	n %	n %	a	а	n	ą
Ada	4.5	3	4.0	4.0	- 4	R	80	90	55	.100	Н	R	1	35
Altona	3.5	2	4.0	3.5	5	R	70	100	36	71	R	R	1	63
Morsoy	.4.0	3	.4.0	-4.0	. 5	· R	.50	95	28	. 62	S	. S	.1	47
Norman	4.0	3	4.0	3.0	5	S	70	60	34	92	S	H	.1	42
Portage	4.0	3	3.5	4.5	5	S	100	100	39	91	S	H	. 2	39
CM119	4.5	2	4.0	3.0	5	R	50	100	58	90	R	R	1	85
CM145	3.5	3	4.0	3.5	5	R	70	100	52	91	R	R	1	50
M62-173	3.5	2	4.0	5.0	5	R	70	80	37	100	S	S	1	60
M64-101	4.0	2	4.0	4.0	5	R	80	100	31	71	H	S	1	60
M64-105	3.5	3	4.0	5.0	5	R	50	95	25	100	R	R	1	85

Descriptive and Other Data

	Descri	ntive	Chl	orosis		Fluor-		7.0	Sh	atteri	ng
Strain	Code	риго	Crkstn. Minn.	Lamb. Minn.	Ames Iowa	escent Light	Emer- gence	Perox- idase	Urb.		n. n.
/ Ada	WGNBr	SYY	1	1.0	- 1.8	E	2	L	1.0	1.8	3.0
Altona	PTNBr		4	4.0	2.5	E	1	H	2.0	1.5	3.5
Morsoy	PGNBr	No. wor to -1	2	3.0	1.2	E	2	L	2.0	1.8	4.5
Norman	PGNBr	SYY	2	2.3	2.2	E	1	H	1.5	1.0	2.0
Portage	PGNBr	D+SYY	3	3.0	1.8	E	1	Н	3.0	4.0	5.0
CM119	PGNBr	SYG	5	2.0	2.5	E	1	н	2.0	1.8	4.0
CM145	PGNBr	DYY	5	4.3	3.4	E	2	H	2.5	2.5	5.0
M62-173	PGNBr	DYY	1	2.3	1.9	L	2 2	L	1.0	1.0	1.0
M64-101	WGNBr	DYY	1	1.7	1.8	E	2	L	1.5	2.0	3.5
M64-105	PTNBr	SYBr	1	2.3	2.1	E	2	L	1.0	1.0	1.5

								Manito	ba		CVILLS.
			Ontario			nesota		Portage			Oregon
Strain	Mean	Ot-	Kempt-		Crook-	Mor-	Rose-	la	Mor-	Dak.	Ontario
	1	tawa	ville	Elora	ston	ris	mount	Prairie	den	Fargo	I
9	Tests				1972 YI	ELD (b	u/a)				*
Ada	33.5	35.6	35.1	40.1	19.6	34.3	38.7	30.7	26.4	41.3	50.9
Altona	36.3	39.4	42.4	41.7	21.7	36.6	40.9	34.7	28.1	40.8	52.3
Morsoy	36.0	38.5	38.5	40.3	22.1	38.1	37.7	33.8	30.1	44.5	59.1
Norman	34.6	36.1	40.7	38.4	21.1	33.1	37.2	32.5	26.5	45.5	59.1
Portage	33.8	35.1	38.2	38.5	24.2	33.9	34.0	32.5	24.9	42.5	52.4
CM119	35.6	37.4	40.9	44.0	19.9	39.1	37.5	32.5	25.0	43.9	53.6
CM119	35.6	41.5	40.8	42.3	21.1	38.7	38.1	31.1	22.1	45.1	49.5
	39.7	42.0	47.2	42.4	24.9	46.4	43.6	35.6	28.5	46.4	67.9
M62-173 M64-101	36.1	37.4	40.3	41.2	20.7	36.2	38.9	36.2	31.3	42.5	64.2
M64-101	34.7	38.4	36.8	39.7	23.4	34.3	36.6	30.9	28.4	43.8	56.7
		-					2 2		-07		4 4
C.V. (%)		8.2	7.0	12.9	13.8	8.4	5.2	7.7	7.3	6.0	6.1
L.S.D. (4.5	4.3	ns	5.2	5.3	3.4	3.6	2.9	3.8	5.9
Row Sp.		34	21	12	28	30	30	36	30	24	20
Rows/Plo	t	3	4	14	14	4	4	3	3	3	14
Reps		4	3	4	3	3	3	4	4	4	3
					YIEL	D RANK					*
Ada	10	9	10	7	10	7	4	10	7	9	9
Altona	2	3	2	4	5	5	2	3	5	10	8
Morsoy	4	4	7	6	4	4	6	4	2	4	3
Norman	8	8	5	10	6	10	8	5	6	2	3
Portage	9	10	8	9	2	9	10	5	9	7	7
CM119	5	6	3	1	9	2	7	5	8	5	6
CM145	5	2	4	3	6	3	5	8	10	3	10
M62-173	1	ī	1	2	i	1	1	2	3	1	1
M64-101	3	6	6	5	8	6	3	i	ĭ	7	
M64-101	7	5	9	8	3	7	9	9	4	6	5
		-		9022			27 11222				
29	Tests			1970	-72, 3-Y	EAR ME	AN YIEL	<u>D</u>			
					71-72		a		70,72		71-72
Ada	30.9	39.6	32.3	37.7	22.7	30.2	37.9	30.1	24.6	27.0	54.2
Altona	33.1	40.3	36.0	41.5	23.1	33.5	40.1	33.3	24.8	27.2	54.5
Morsoy	32.2	40.6	30.4	39.2	21.5	31.1	42.1	31.2	28.0	27.6	61.2
Norman	31.4	39.8	40.7	39.7	20.6	29.4	35.8	30.7	21.0	27.3	61.1
Portage	30.5	37.7	33.1	39.5	22.5	27.5	35.7	29.8	21.2	27.3	
					YIEL	D RANK	5				
Ada	4	4	4	5	2	3	3	4	3	5	4
Altona	1	2	2	1	1	1	2	1	2	4	3
Morsoy	2	1	5	4	4	2	1	2	ī	1	1
Norman	3	3	1	2	5	4	4	3	5	2	2
Portage	5	5	3	3	3	5	5	5	4	2	5
ortage	3	-					•		- 4	2	5

a St. Paul in 1970

								Manitol	a		
			Ontari	0	Mů	nneso	ta	Portage		North	0regon
Strain	Mean	Ot-	Kempt-				Rose-		Mor-		Ontario
HAM HAND HAVE THE		tawa	ville	Elora	ston	ris		Prairie	den	Fargo	I
	9 Tests		М	ATURITY	(relat	ive d	ate)				*
Ada	+ 5.1	+11	+ 3	+ 3	+3	+ 5	+ 9	+ 5	+ 3	+ 4	+ 3
Altona	+ 5.8	+ 9	+ 5	+ 1	+3	+ 8	+ 8	+ 9	+ 5	+ 4	+ 3
Morsoy	+ 5.0	+ 8	+ 3	+ 4	-1	+ 5	+ 9	+ 9	+ 5	+ 3	+11
Norman	+ 1.7	+ 5	0	+ 1	-3	+ 3	+ 4	+ 2	+ 2	+ 1	+ 1
Portage†	9-15	9-22	9-17	9-17	9-23	9-10	8-27	9-17	9-10	9-19	8-26
CM119	+ 5.6	+11	+ 5	+ 5	+ 1	+ 6	+ 7	+12	+ 3	0	+ 8
CM145	+ 2.2	+ 9	0	0	+ 3	+ 3	- 2	+ 8	- 1	0	+ 2
M62-173	+10.1	+12	+16	+ 6	+ 8	+10	+ 9	+14	+10	+ 6	+ 5
M64-101	+ 8.1	+13	+ 8	+ 6	+ 3	+ 8	+ 9	+12	+ 8	+ 6	+ 7
M64-105	+ 5.1	+ 7	+ 5	+ 4	0	+ 3	+ 8	+12	+ 4	+ 3	+ 5
Clay (0)				+11	+ 6	+10	+10				+13
Date Plante	d 5-28	5-26	6-8	6-19	5-24	6-1	5-10	5-16	5-25	5-31	5-5
+Days to ma		119	101	121	122	101	109	124	108	111	113
	7 Tests			LOD	GING (s	core)			*		*
4.1-											
Ada	3.1	4		2.5	2.0	3.7	4.0	2.3	1	3	3.5
Altona	2.8	3		2.3	1.7	3.7	3.7	2.3	1	3	2.3
Morsoy	3.4	4		3.6	1.7	4.0	4.3	3.0	1	3	4.2
Norman	2.8	3		3.3	1.7	3.0	3.7	1.8	1	3	4.5
Portage	1.4	2		1.4	1.0	1.3	2.0	1.3	1	1	2.2
CM119	2.9	3		3.3	1.7	3.7	4.0	2.8	1	2	3.8
CM145	2.4	4		2.5	1.0	3.0	3.0	2.0	1	1	4.0
M62-173	2.8	4		1.8	2.0	3.3	2.7	2.5	1	3	1.8
M64-101	2.3	3		2.1	1.0	2.7	3.0	2.5	1	2	3.2
M64-105	1.9	3		2.3	1.3	2.3	2.3	1.3	1	1	3.5
	7 Tests		-	PLANT I	HEIGHT	(inch	es)				*
Ada	32	38		35	28	28	34		28	32	40
Altona	30	33		31	28	26	33		25	33	33
Morsoy	32	37		35	28	28	32		29	35	36
Norman	30	33		34	24	27	32		25	35	38
Portage	28	33		31	26	26	29		23	29	34
CM119	31	35		35	28	29	31		24	32	31
CM145	27	34		31	23	25	28		21	27	30
M62-173	30	32		31	31	27	31		26	29	24
M64-101	35	37		40	35	30	38		29	35	38
M64-105	32	37		33	30	28	36		26	31	38
H04-T02	32	31			30	20	JU		20	31	J0

								Manito	ba	0.75	
			Ontario	e e	Mi	nnesot	a	Portage		North	Oregon
Strain	Mean	Ot- tawa	Kempt- ville	Elora	Crook- ston	Mor- ris	Rose- mount	la Prairie	Mor- den	Dak. Fargo	Ontario I
9	Tests			SEE	D QUALI	TY (sc	ore)				*
Ada	2.1	3	2	1.5	1.7	2.0	3.7	1.8	1.8	1	2.0
Altona	2.1	1	2	3.0	2.3	2.0	2.7	1.5	1.3	3	2.0
Morsoy	2.5	2	2	2.0	3.0	2.3	4.0	2.5	2.3	2	3.0
Norman	2.1	3	1	2.5	2.3	1.7	3.7	1.8	2.0	1	1.5
Portage	2.4	4	2	1.5	2.7	2.3	2.7	2.3	2.0	2	1.5
CM119	2.7	3	2	2.0	3.7	3.0	3.7	3.3	1.8	2	2.5
CM145	2.7	3	3	3.0	3.0	2.3	2.7	3.0	2.5	2	2.0
M62-173	2.6	4	3	3.5	2.0	1.7	3.3	2.8	2.3	1	1.5
M64-101	1.9	3	1	1.5	2.3	1.7	2.3	2.0	2.0	1	1.5
M64-105	1.9	1	1	1.0	2.3	2.3	3.0	2.3	2.3	2	1.5
9	Tests				SEED SI	ZE (g/	100)				*
Ada	17.8	21.6	16.8	15.6	16.5	16.7	17.1	20.0	17.3	18.9	22.0
Altona	19.0	22.6	19.9	17.4	16.9	19.0	18.0	21.1	18.6	17.4	22.0
Morsoy	18.6	20.3		16.0	16.2	19.0	18.5	21.2	17.9	19.7	23.0
Norman	17.4	21.3	16.0	15.1	17.9	16.4	16.4	18.0	16.7	18.7	19.5
Portage	18.0	21.0	16.4	15.5	19.7	18.2	17.5	19.1	16.0	18.9	21.0
CM119	20.0	22.9	19.2	17.2	19.1	20.8	19.6	21.3	19.0	20.8	22.0
CM145	19.6	23.3	19.6	16.3	19.2	21.3	17.5	21.0	18.2	19.8	22.5
M62-173	15.1	16.6	15.2	13.0	12.9	15.8	15.1	17.8	13.5	15.7	17.5
M64-101	16.6	19.5	14.5	14.2	16.9	16.6	16.9	18.9	16.0	15.7	21.0
M64-105	16.7	20.9	15.6	15.5	15.4	16.2	15.8	18.3	16.3	16.2	20.0

			Onta	rio	Minnesota	Manitoba	North Dakota	Oregon
Strain		Mean	Ottawa	Elora	Crookston	Morden	Fargo	Ontario I
	5	Tests			PROTEIN (%)		*
Ada		40.9	42.0	41.3	39.2	41.9	40.2	39.6
Altona		40.2	42.5	41.6	36.4	41.2	39.5	39.5
Morsoy		37.3	38.9	38.2	34.3	38.0	37.0	36.8
Norman		40.2	40.0	42.1	38.3	40.5	40.2	38.4
Portage		39.1	40.1	39.4	37.7	39.4	38.9	37.8
CM119		39.9	41.3	40.6	38.0	40.3	39.3	39.6
CM145		38.3	39.6	39.1	36.1	38.1	38.6	38.3
M62-173		37.7	39.2	39.9	32.8	38.6	37.8	37.2
M64-101		39.6	40.4	42.0	37.1	40.2	38.4	40.5
M64-105		40.1	41.6	42.8	36.9	41.0	38.4	41.4
	5	Tests			OIL (%)			
Ada		19.8	18.9	18.5	21.0	20.3	20.3	20.5
Altona		20.2	18.7	19.0	22.0	20.2	21.1	20.9
Morsoy		22.3	21.3	20.3	24.6	22.3	23.1	22.2
Norman		20.3	19.4	18.2	21.5	20.6	21.8	21.5
Portage		20.9	19.8	19.3	21.8	21.3	22.1	22.6
CM119		20.2	18.8	18.9	21.1	20.7	21.4	21.5
CM145		21.1	19.8	19.4	22.5	22.3	21.6	21.6
M62-173		21.2	19.9	19.3	23.2	21.3	22.2	23.5
M64-101		20.0	19.2	18.3	21.6	19.8	21.3	19.4
M64-105		20.6	19.5	18.9	21.5	21.1	22.2	21.0

Stra	in	Parentage	Line	Previous Testing*
1.	Clay	Capital x Renville Blackhawk x Capital	F ₅	5 14
3.	Swift	II-54-240[(Lincoln ² x Richland) x Korean] x		
4.	Wilkin	II-54-139(Renville x Capital) Merit x Harosoy	F ₅ F ₅	2
5.	M61-96	n	F.	2
6.	M61-207	Merit x Norman	F	1
7.	M61-216	Merit x Harosoy	F	1
8.	M62-177	M387(Renville x Capital) x M406(Harosoy x Norchief)	F	1
9.	M63-172	M402(Renville x Capital) x M406(Harosoy x Norchief)	F 5 F 5 F 5 F 5	P 0

Three of the varieties have been in the test for 5 years or more, and their mean performance shows Clay and Swift yielding well for their respective maturities and the older variety, Merit, lagging in yield. M61-96 was top yielder in the 2- and 3-year regional means and has good lodging resistance, height, and seed quality and carries resistance to phytophthora rot.

Three of the remaining strains have been in the test for two years. The two-year regional mean shows M62-177 yielding second only to M61-96 which is over 3 days later. It outyielded the early check, Clay, by about a bushel but has the drawback of being susceptible to lime chlorosis. M61-207 and M61-216 were resistant to chlorosis and to phytophthora but showed no advantage in yield over checks of comparable maturity. M62-177, advanced from last year's Preliminary O, was relatively poor in yield performance, similar to Swift in maturity but 3 bushels lower in yield.

Regional Summary

	LA Y-		Matu-	Lodg-	Man along	Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	0i1
				19	972				
No. of Tests	8	- 8	7	7 -	7	7	8	6	6
Clay	38.3	5	-5.9	1.6	28	2.9	16.6	40.1	21.6
Merit	35.0	9	9-25+	2.4	36	2.3	13.7	39.4	21.
Swift	38.9	4	+1.1	2.8	38	2.1	15.6	37.8	21.6
Wilkin	39.4	3	-5.3	1.3	30	2.2	15.2	39.4	21.0
M61-96	40.1	2	-1.4	2.2	37	2.2	15.1	38.2	21.
M61-207	38.3	5	-2.3	2.5	32	1.9	15.4	40.3	20.2
M61-216	38.0	7	-3.6	2.1	34	1.9	15.3	39.2	21.2
M62-177	40.4	1	-4.3	2.1	32	2.1	18.1	39.5	20.
M63-172	35.9	8	+1.1	2.6	38	2.4	16.8	38.5	21.5
No. of Tests	16	16	14	15	15	14	16	12	12
							16.5	41.1	21.5
Clay Merit	37.0 35.4	5	-6.7 9-25†	2.1	27 34	2.9	14.2	40.1	21.
Swift	38.0	3	0	2.5	36	2.2	15.7	38.6	21.
Wilkin	36.8	6	-6.6	1.3	28	2.1	15.1	40.4	20.
M61-96	39.8	1	-1.4	2.0	34	1.9	15.5	39.4	21.6
M61-207	37.3	4	-3.0	2.1	31	2.0	15.4	40.7	20.
M61-216	36.1	7	-4.9	1.9	32	1.9	15.2	40.2	21.0
M62-177	38.3	2	-5.0	1.9	31	2.2	17.9	40.6	20.6
	_	_							
† 127 days af	ter plan	ting							
					-year mea			79.2	
No. of Tests	24	24	21	22	23	21	22	17	17
Clay	35.5	3	-6.4	1.5	27	2.6	16.7	41.0	21.
Merit	34.3	5	9-22†	2.0	35	2.0	14.5	40.4	21.3
Swift	36.2	2	+0.6	2.5	36	2.1	15.7	38.8	21.5
Wilkin	34.9	4	-6.0	1.2	28	2.1	16.7	40.4	20.9
					01.	1 0	3 F F	00 0	01

Wilkin	34.9	4
M61-96	37.8	1
† 123 days	after plant	ing

			1968	-72, 5-	year mea	in -			
No. of Tests	40	40	36	36	38	35	32	30	30
Clay	34.9	2	-5.7	1.4	27	2.3	16.7	41.1	21.7
Merit	34.4	3	9-21+	2.1	34	2.1	14.4	40.4	21.2
Swift	36.3	1	+0.9	2.4	36	2.2	15.8	39.2	21.4

1.9

-0.8

34

15.5

39.6

21.8

1.8

^{† 124} days after planting

Disease Data

	В	В	BP	BS	FE2	PM		BSR		CR	PI	3	SI	IV	P	SB
Strain	Am	es	Ames Iowa				10000	St.Paul Minn.			Laf.		-2/27	nes wa		af.
	20												2		Mat.	Late
	nl	n2	n	n	a	а	n %	n %	n %	n %	а	а	n	a %	n %	8
Clay	3.5	1	4.0	4.0	5	s	40	100	40	100	s	s	1	45	12	70
Merit	3.0	2	4.5	4.5	5	R	60	100	35	100	H	R	1	47	8	78
Swift	3.0	1	4.5	4.0	5	R	80	100	35	80	S	S	1	30	8	82
Wilkin	4.0	2	3.5	4.0	5	R	50	100	28	92	R	R	3	30	3	73
M61-96	4.0	2	4.0	4.0	5	R	60	95	31	90	R	R	1	60	6	62
M61-207	4.5	2	4.0	4.0	5	Н	50	100	41	100	R	R	1	25	1	66
M61-216	4.5	2	4.0	4.5	5	R	50	95	32	100	R	R	1	45	6	77
M62-177	4.0	2	4.0	4.0	5	R	60	95	41	100	S	S	2	32	32	86
M63-172	3.5	1	3.5	4.5	4	R	40	100	20	92	S	S	1	60	4	71

Descriptive and Other Data

	Descriptive	Ch	lorosi	s	Flour-			Shat	tering	Germin	nation
	Code		tn. Lamb Minn.		escent	Emer- gence		Manh Kans	attan as	Lafay	
				200				2 wk.	6 wk.	Mat.	Late
Clay	PGNBr SYY	1	3.0	3.0	E	1	L+H	1.8	2.5	82	53
Merit	WGNBr DYBf	3	2.7	2.1	E	1	L	1.8	2.0	88	45
Swift	WTNBr DYB1	1	2.7	2.4	E	2	H	3.0	4.0	92	43
Wilkin	WGNBr DYY	1	2.3	2.2	E	1	L	2.5	4.5	96	55
M61-96	WGNBr DYY	2	3.0	2.2	E+L	1	Н	2.0	2.0	74	53
M61-207	WGNBr DYY	1	1.7	2.1	E	1	L	1.5	2.5	94	50
M61-216	WGNBr DYY	2	2.3	1.8	E	2	L	2.0	2.5	95	41
M62-177	PGNBr DYY	3	3.3	3.5	E	2	L	2.0	2.5	67	27
M63-172	PGNBr DYY	1	2.7	2.0	E	3	H	2.5	4.0	85	47

		On	tario		Ohio	Mích.	Wisco			nn.	North	Dak.	Oregon On-
Strain	Mean	Kempt-		Ridge-	-Hoyt-	E.Lan-	Spoon	-Dur-	Mor-	Rose-	Dak.	Rev-	tario
		ville			ville		er	and	ris	mount	Fargo	ĭllo	I
	Test	ts				972 YIE	LD (bu	/a)					
		200			*		*	*					*
Clay	38.3	35.1	28.0	50.3	21.4	37.2	34.0		43.1		47.8	22.0	62.5
Merit	35.0	31.6	33.1	47.4	23.1	32.9	30.8		32.6		44.9	21.6	64.7
Swift	38.9	34,4	34.6	53.1	25.4	38.2	38.5			37.3	43.4	28.1	65.6
Wilkin	39.4	43.8	38.7	48.4	24.5	33.3	36.3	23.8	40.1	44.5	46.2	20.3	63.1
M61-96	40.1	37.9	43.5	52.9	25.1	39.6	37.3	28.9	39.9	41.4	41.1	24.7	69.9
M61-207	38.3	36.7	36.8	49.8	24.3	34.2	34.3	28.9	38.5	42.2	44.3	23.7	63.0
M61-216		41.8	36.2		23.3	30.4	31.7	26.5	39.5		45.4	21.1	60.9
M62-177		46.0	34.9		20.6	34.7	36.4		40.4		49.3	25.2	61.9
M63-172		23.9	32.4		31.0	39.0	36.7			41.8	40.2	23.8	65.1
c.v. (%		8.1	13.8	4.9		11.5	8.7	7.2	9.3	8.6	6.7	14.8	5.7
L.S.D.		4.6	7.1	3.6		5.9	4.5	2.8	6.3		4.4	n.s.	n.s.
Row Sp.			12	24	32	28	36	36	30	30	24	36	20
Rows/Plo		4	4	4	3	3	1	1	4	4	3	3	4
	,,	3	4	4	4	4	4	4	3	3	4	4	3
Reps		- 3			3/1								
						YIELD	RANK						
Clay	5	6	9	5	8	4	7	7	1	2	2	6	7
Merit	9	8	7	9	7	8	9	8	9	9	5	7	4
Swift	4	7	6	1	2	3	1	1	2	8	7	1	2
Wilkin	3	2		7	4	7	5	9	4	1	3	9	5
M61-96	2	4	2	2	3	1	2	3	5	6	8	3	1
M61-207	5	5	3	6	5	6	6	3	7	3	6	5	6
M61-216	7	3	4	8	6	9	8	5	6	5	4	8	9
M62-177	1	1	5	3	9	5	4	5	3	7	1	2	8
M63-172	8	9	8	4	1	2	3	2	8	4	9	4	3
) II T-	320			1070-7	2, 3-YE	AD MEA	N VIE	.n				
	24 Tes	sts			1370-7	2, 5-12	AK HER	1111	<u> </u>	70,72			71-72
Clay	35.5	35.7	34.8	45.8	23.7		24.5	21.5	39.6	47.3	31.8	31.4	56.8
Merit	34.3	31.8	33.5		26.6		25.0		34.7		30.4	32.3	63.3
Swift	36.2	35 . 6	35.0		28.6		26.8		39.1		29.1	33.6	62.1
Wilkin	34.8	36.4	38.6		22.5		24.3		37.8		30.5	28.5	60.3
M61-96	37.8	40.5	43.2		26.8		27.7		39.6		30.4	33.1	70.1
						YIELD	RANK						
A 60.5				¥.	4	1100	4	3	- 1	1	1	4	5
Clay	3	3 5	4	3	3		3	5	5	5	3	3	2
Merit	5	4	5	1	1		2	1	3	4	5	1	3
Swift	2	2		5	5		5	4	4	2	2	5	4
Wilkin	4	1	2	2	2		1	2	1	3	3	2	1
M61-96	1	. 1	1	4	2		-	2	-	-			1.77

a St. Paul in 1970

,		0	ntari		Ohio	Mich.	Wi	s.	M	inn.	North		Orego
Strain	Mean	Kempt		Ridge	-Hoyt	E.Lan	-Spoot	-Dur					
Strain	nean					sing			ris	mount	Fargo	illo	I
	7 7			777	4.20	(relat	0.45						
	7 Tests	\$		PIAT	*	(relat.	#	*					*
Clay	-5.9	- 3	- 6	-12	- 4	- 2	- 9		- 5	-10		- 3	-10
Merit†	9-25			9-25	9-2	9-10	9-22		9-25	9-17		10-1	9-18
Swift	+1.1	- 5	- 5		+ 3	+ 2	0		+ 4	+ 1		+ 1	- 1
Wilkin	-5.3	- 9	-12	- 5	- 3	- 2	- 8		0	- 9		0	-10
M61-96	-1.4	0	- 6	- 1	- 3	- ī	+ 3		- 1			0	- 2
		7.15											
M61-207	-2.3	0	- 7	- 5	- 1	- 1	0		0	- 1		- 2	- 8
M61-216	-3.6	- 3	-11	+ 3	- 3	- 4	- 2		- 3	- 4		- 3	- 6
M62-177	-4.3	- 5	-10	+ 2	- 3	- 4	+ 2		0	- 9		- 4	-10
M63-172	+1.1	+ 2	+ 2	+ 1	+ 2	0	+ 4		0	+ 2		+ 1	0
Morsoy (00)		-16	-13						-10	-11			-12
Steele (I)		-10	-13	+ 7	+13	+11			+ 2				
Steele (1)					113	144			- W W.				
Date Planted	5-25	6-8	5-19	5-19		5-19	5-25	5-25	6-1	5-10	5-31	6-3	5-5
Days to mat	. 124	120	138	129		114	120		116	130		120	136
7	Tests				LODG	ING (sc	ore)	*					*
									212	400	3.0	2.8	
Clay	1.6		1.4		1	1	1.6		1.3		2	2.3	2.5
Merit	2.4		2.8	1.5	1	2	2.1		2.3		3	2.0	4.7
Swift	2.8		3.4	1.5	2	2	3.0		3.0	3.3	4	2.4	4.5
Wilkin	1.3		1.1	1.0	1	1	1.0		1.0	1.3	2	2.0	1.8
M61-96	2.2		2.8	1.5	1	1	2.0	2.5	2.0	3.0	3	1.9	4.0
M61-207	2.5		3.5	2.0	1	3	2.6	3.5	1.3	3.0	2	2.5	4.0
M61-216	2.1		1.9	1.5	ī	ı	2.3		1.7		3	2.3	4.0
M62-177	2.1		1.5	2.0	1	i	2.8		2.0	3.0	3	2.1	3.8
M63-172	2.6		3.6	2.0	2	2	1.9		2.7	200	3	1.8	4.8
105-172			0.0			_			-		-		7.0
7	Tests			PL	ANT HI	EIGHT (inches	3)					
					*		*	*					*
Clay	28		30	29	23	28	25	29	26	32	31	21	31
Merit	36		42	41	28	35	35	35	33		42	23	52
Swift	38		44	42	31	40	36	37	32	42	42	27	57
Wilkin	30		34	33	24	31	28	30	26	34	31	22	32
M61-96	37		41	41	30	38	36	36	35	40	42	25	40
M61-207	32		35	35	23	37	32	34	27	38	33	22	35
M61-216	34		35	38	26	36	32	36	29	36	38	24	38
			33	36	21	33	29	33		33			
M62-177	32		42	41	34						35	22	34
M63-172	38		42	41	34	39	36	36	34	42	41	27	58

		(Ontario		Ohio	Mich.	Wisconsin		nn.	North		Oregon On-
Strain	Mean	Kempt-					Spoon-Dur-				Rev-	tario
		ville	Elora	town	ville	sing	er and	ris	mount	Fargo	illo	I
7	Tests				SEE:	D QUALI	TY (score)					*
Clay	2.9	3	3.5	3	1.2		1.0	3.0	3.3	2	2.2	1.5
Merit	2.3	3	2.0	3	1.0		1.7	2.7	3.0	1	1.3	1.5
Swift	2.1	2	1.5	3	1.5		1.5	2.7	3.3	1	1.3	1.0
Wilkin	2.2	2	3.0	3	1.5		1.0	2.0	2.7	1	1.4	2.0
M61-96	2.2	3	2.5	3	1.0		1.6	1.7	2.7	1	1.3	1.5
M61-207	1.9	2	3.0	2	1.0		1.0	1.7	2.0	1	1.3	2.0
M61-216	1.9	1	2.5	3	1.0		1.0	2.0	2.7	1	1.3	2.0
M62-177	2.1	1	2.0	3	1.2		1.4	2.3	3.7	1	1.8	2.0
M63-172	2.4	4	2.5	3	1.0		1.6	2.3	2.3	ī	1.4	2.0
8	Tests				s	EED SIZ	E (g/100)					
	10010				*	100	18/2007			33.3		*
Clay	16.6	15.9		18.5	17.8	17.4		16.4			17.4	22.5
Merit	13.7	13.3		14.8	15.0	15.2		12.3			14.0	19.0
Swift	15.6	13.8	12.7	19.2	16.9	17.1		15.5	17.0		14.6	21.5
Wilkin	15.2	13.5	12.2	16.6	17.2	15.5		15.5	14.6	16.0	17.5	20.5
M61-96	15.1	14.2	12.9	18.5	16.3	16.2		14.0	15.8	15,0	13.9	21.0
M61-207	15.4	13.7	12.9	18.6	17.4	15.9		15.3	16.1	16.0	15.0	21.0
M61-216		13.9	12.1	17.9	17.3	15.4		14.9	16.2	15.8	16.3	21.0
M62-177		17.8	14.4	21.4	16.2	17.4		18.9	17.4	19.0	18.8	21.8
M63-172		16.4	15.1	19.9	18.6	17.8		16.0	17.3	16.5	15.3	23.5
6	Test	5				PROTE	IN (%)					*
Clay	40.1		42.2			37.6	41.4	40.4		38.7	40.0	39.9
7	39.4		41.9			36.5	41.7	39.5			38.7	39.6
Merit	37.8		40.3			34.5	39.3	38.6			37.5	38.0
Swift	39.4		40.6			36.0	40.8	40.0			39.9	39.8
Wilkin M61-96	38.2		39.8			34.4	40.0	39.8			37.6	38.9
M61-207	un 2		42.2			37.0	42.1	41.1		39.0	40.1	40.6
M61-216			41.3			35.8	40.7	39.7			39.4	40.0
M62-177			41.7				41.8	40.2			39.0	40.4
M63-172			41.6			35.9	40.2	39.5			36.8	39.0
6	Test	s				OIL	(%)					*
	21.6		18.5			23.9	19.7	23.1		21.9	22.4	22.5
Clay Merit	21.1		19.4				19.4	20.6			21.8	22.0
Swift	21.6		19.7			24.4		21.5			22.2	
	21.0		18.8			23.6	19.9	21.5			21.6	21.0
Wilkin M61-96	21.7		19.9			24.4	20.0	22.0			22.5	22.1
M61-207	20.2		17.5			22.5	18.6	20.3			20.9	21.0
M61-216			19.5			23.6	19.9	20.9			22.2	20.7
M62-177	20.7		17.8			23.4	19.2	22.0			21.1	20.6
M63-172			19.2			24.5	20.1	21.6		20.9	22.9	22.3

Stra	in	Parentage		Line
1,	Clay			
2.	Merit			
3.	M64-96	Merit x Portage		F
4.	M64-157	Merit x Amsoy		F
5.	M65-74	M384(Capital x Renville)	Corsoy	F.
6.	M65-85			F.
7.	M65-94	H.	it.	F
8.	ND8	Grant x Harosoy		F
9.	OAC89-5	UM-S58-544 x Merit		F,

Three of the strains surpassed both check varieties in regional mean yield. M65-74 was the highest yielding one and was 2 days earlier than Merit. M64-157 yielded about as well, was 1 day earlier than Merit, and in addition is Phytophthora resistant. The third strain M65-94, is the earliest one, almost 5 days earlier than Merit and just 2 days later than Clay and a bushel higher in yield than Clay. The remaining four strains showed no advantage over the checks in regional mean performance or were distinctly poorer.

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oil
No. of Tests	8	8	7	7	7	7	7	5	5
Clay	39.7	4	-6.7	1.7	29	2.3	16.2	40.0	21.1
Merit	37.9	6	9-23	2.7	39	2.1	13.7	39.8	20.4
M64-96	36.8	8	-6.9	2.0	33	2.4	17.4	40.5	19.1
M64-157	41.9	2	-1.1	1.7	36	2.0	15.9	39.3	20.8
M65-74	42.2	1	-2.1	1.7	34	2.3	15.3	39.8	21.1
M65-85	36.1	9	+1.3	1.7	33	2.8	17.3	40.9	19.9
M65-94	40.6	3	-4.7	1.4	32	2.5	16.9	39.5	21.3
ND8	38.9	5	+0.1	3.1	35	2.2	17.1	40.6	19.9
OAC89-5	37.9	6	-3.9	3.6	39	1.9	17.9	42.0	21.9

Disease Data

	BB	FE ₂	B	SR	CR	P	R	PS	В	
Strain	Ames Iowa	Laf. Ind.	Urb.	Ames Iowa	Laf. Ind.	Laf. Ind.	Ames Iowa	Lafay		
								Mat.	Late	
	n2	а	n %	n %	n %	a	a	n %	n %	
Clay	3	5	80	49	100	S	S	12	70	
Merit	1	5	40	36	100	H	H	8	78	
M64-96	2	5	70	51	100	R	R	8	47	
M64-157	1	5	50	32	92	R	R	6	64	
M65-74	2	5	50	40	89	S	S	7	50	
M65-85	2	5	40	49	100	S	S	8	59	
M65-94	3	5	70	46	100	S	S	21	60	
ND8	2	5	40	29	100	S	S	2	56	
OAC89-5	2	1	90	45	100	R	R	14	82	

Descriptive and Other Data

Strain	Descript Code	tive	Chlorosis Ames Iowa	Shatte Manha Kansa	attan	Germinatio Lafayette Indiana		
				2 wk,	6 wk.	Mat.	Late	
Clay	PGNBr	SYY	3.0	1.5	2.5	82	53	
Merit	WGNBr	DYBF	2.1	2.0	2.5	88	45	
M64-96	PGNBr	DYY	2.1	3.0	4.0	88	52	
M64-157	WGNBr	DYY	2.5	1.5	2.0	90	63	
M65-74	WGNDbr	DYY	3.1	1.8	3.0	92	72	
M65-85	P+WGNDbr	DYY	2.4	1.5	2.0	89	65	
M65-94	WGNBr	D+SYY	2.6	1.2	2.0	75	59	
ND8	WGNBr	SYB1	2.9	2.0	2.5	92	65	
OAC89-5	WTNBr	DYB1	2.1	3.5	4.0	75	19	

			Ontario		Mich.	Wis.		nn.	North	South
Strain	Mean	Kempt-		Ridge-	E. Lan-	Spoon-	Mor-	Rose-	Dakota	
9.77 (2.17)	4,2.5	ville	Elora		sing	er	ris	mount	Fargo	Reville
	8 Tests		1000	YIEL	D (bu/a)					
	Q 1037 St									*
Clay	39.7	31.7	36.9	51.7	32.7	33.8	40.8	42.7	46.9	15.6
Merit	37.9	31.3	44.7	46.2	31.8	28.4	37.8	37.3	45.4	17.4
M64-96	36.8	34.5	37.8	46.8	28.9	32.4	31.2	37.5	45.3	15.0
M64-157	41.9	33.2	47.0	52.2	34.4	38.2	45.1	44.6	40.1	19.4
M65-74	42.2	35.5	41.9	51.2	32.1	35.0	38.2	51.5	52.5	20.1
M65-85	36.1	18.1	27.9	48.6	31.0	36.0	36.6	43.1	47.5	17.5
M65-94	40.6	35.1	39.1	50.7	29.5	37.2	41.1	42.6	49.2	20.4
ND8	38.9	32.4	37.6	51.7	29.4	37.2	34.4	41.5	47.2	15.7
OAC89-5	37.9	35.0	45.6	42.6	30.9	32.2	35.4	35.4	46.4	17.5
Coef. of Var.	(%)	8.4	12.6	5.2	8.4	8.5	6.8	10.3	12.6	23.0
L.S.D. (5%)		6.2	n.s.	n.s.	6.1	4.3	5.9	9.9	13.6	n.s.
Row Spacing	(in.)	21	12	24	28	36	30	30	24	36
Rows/Plot	-11.	3	4	4	3	1	2	2	3	3
		2	2	4	2	2	2	2	2	2
Reps		2			- 2	2			- 2	-
				AIE	LD RANK					
Clay	4	7	8	2	2	6	3	14	5	8
Merit	6	8	3	8	4	9	5	8	7	6
M64-96	8	4	6	7	9	7	9	7	8	9
M64-157	2	5	1	1	1	1	1	2	9	3
M65-74	1	í	4	4	3	5	4	1	1	2
M65-85	9	9	9	6	5	4	6	3	3	4
M65-94	3	2	5	5	7	2	2	5	2	1
ND8	5	6	7	2	8	2	8	6	4	7
OAC89-5	6	3	2	9	6	8	7	9	6	4
	7 Tests		MATI	URITY (relative	date)				
200	12.2	- 4			TO.	4.7				*
Clay	-6.7	- 2	-10	- 9	- 2	- 6	- 6	-12		- 2
Merit	9-23	10-5	10-1	9-22	9-10		9-26	9-18		10-2
M64-96	-6.9	- 8	-11	- 8	- 3	+ 3	-12	- 9		- 4
M64-157	-1.1	- 2	- 6	- 2	+ 4	0	0	- 2		+ 2
M65-74	-2.1	- 2	- 2	+ 2	- 2	- 2	- 4	- 5		- 4
M65-85	+1.3	+ 2	+ 7	- 2	- 2	+ 5	0	- 1		+ 1
M65-94	-4.7	- 8	- 9	- 4	0	- 2	0	-10		- 3
ND8	+0.1	- 2	- 6	+ 8	+ 2	+ 2	- 2	- 1		- 3
DAC89-5	-3.9	-10	- 8	+ 4	0	- 2	- 1	-10		0
Morsoy (00)		-15	-10				-11	-12		
Steele (I)			-0	+ 8	+11		+ 1	+ 7		
	E 02	6-0	5-10			F 05	77. 7.			02/2
Date Planted	5-23	6-8	5-19	5-19	5-19	5-25	6-1	5-10	5-31	6-3

Stra	iin	Parentage	Line	Previous Testing	
1.	Chippewa 64	Chippewa ⁸ x Blackhawk	29 F. li	nes 10	
2.	Hark	Hawkeye x Harosoy	F	8	
3.	Steele	Blackhawk x Harosov	F.	4	
4.	M61-224	Merit x Harosoy	F.5	1	
5.	M62-263	Grant x M319W(Lincoln x Hawkeye)	F5 F5	1	
6.	M63-194	Corsoy x PI 132.207(from			
		Netherlands in 1939)	F.	PI	
7.	M63-217	Corsoy x M372(M10 x PI 180.501)	F	PI	
8.	W7-186	W7-2334(Seneca x Chippewa) x Chippewa 6	54 F.	PI	
9.	W8-37	т.	F ₅	PI	

Two strains have been in this test for two years. M62-263 was top-yielding in the 2-year regional mean but not significantly above Hark. The other strain, M61-224, was earlier in maturity and higher yielding than Chippewa 64 but would probably not outyield the new early I varieties, Anoka, Dunn, and Wirth. M61-224 was somewhat chlorosis resistant and apparently segregating for Phytophthora resistance.

The remaining four strains were entered from last year's Preliminary Test I. Both M63-194 and M63-217 yielded well above the check varieties. M63-194 is late I maturity but M63-217 was as early as Chippewa 64. The remaining two strains (both W-strains) were earlier and averaged lower in yield. W8-37 is borderline between group 0 and I in maturity, averaging slightly closer to 0 in these data.

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	0i1
				19	72				
No. of Tests	16	16	14	16	15	14	14	11	11
Chippewa 64	38.4	9	-1.4	2.2	37	1.9	15.7	41.7	21.1
Hark	43.8	3	+4.8	2.1	38	1.7	17.0	42.3	20.
Steele	40.7	6	9-21+	2.5	37	2.0	17.8	40.5	21.2
M61-224	42.4	5	-2.1	1.6	35	2.1	17.6	40.0	22.
M62-263	43.8	3	+3.5	2.9	34	1.9	21.4	39.8	22.
M63-194	46.9	1	+6.2	2.8	42	1.9	16.7	40.5	21.
M63-217	45.8	2	-1.2	2.2	36	2.0	17.3	39.8	22.
W7-186	40.3	7	-2.3	2.6	37	2.1	17.5	39.7	21.
W8-37	39.8	8	-4.4	2.0	37	2.0	16.2	39.5	21.0

^{† 122} days after planting

1971-72, 2-year mean

No. of Tests	34	34	30	34	33	29	28	23	23
Chippewa 64	38.2	5	-1.3	1.9	36	1.8	15.7	41.5	21.2
Hark	- 42.2	2	+5.3	1.9	37	1.7	16.8	42.6	20.8
Steele	39.9	4	9-16+	2.1	35	1.8	17.6	40.4	21.4
M61-224	- 40.4	3	-2.2	1.4	33	2.0	17.0	39.8	22.2
M62-263	- 42.4	1	+3.9	2.4	33	2.0	20.9	39.9	22.1

^{† 118} days after planting

Disease Data

	В	В	BP	BS	FE ₂		PM			BSR	
1000		es wa	Ames	Ames	Laf		Har. Ont.	Laf. Ind.	Urb. Ill.	St. Paul Minn.	Ames
Strain	n1	n2	n	n	a		а	n %	n %	n %	n %
Chippewa 64	3.5	2	4.0	4.0	4		R	5	50	100	52
Hark	3.5	1	3.0	4.5	3		S	8	40	100	28
Steele	3.5	1	4.0	4.5	5		S	82	50	100	33
M61-224	4.0	2	4.0	4.0	4		S	25	70	100	30
M62-263	4.5	1	3.5	3.5	5		R	59	50	100	58
M63-194	4.5	1	4.0	3.0	4		S	13	50	100	27
M63-217	5.0	2	3.0	4.5	5		S	24	40	100	30
W7-186 W8-37	4.0	3 2	3.5	4.0	5		R R	19 39	70 80	100 100	46 41
	C	R		PR	SM	v		PSB			
		f.	Laf.	Ames		es		., Ind.			
	In	d.	Ind.	Iowa	Io	wa	mat				
Strain	n		a	a	n	a	n	n			
	9	,				8	%	36			
Chippewa	10	0	R	R	í	50	6	73			
Hark		2	S	S	1	26	42	58			
Steele	10		R	R	1	50	16	66			
M61-224		2	Н	Н	1	75	10	33			
M62-263		5	S	S	1	35	36	56			

Descriptive and Other Data

S

S

R

R

M63-194

M63-217

W7-186

W8-37

S

S

R

R

			Chlorosis Crkstn. Lamb. Ames			1270		Perox-	Shat- tering		Germina-	
Strain	Descri Code	ptive	Crkstn. Minn.			Light	gence	idase	Man.,		Laf.,	
Chippewa 64	PTNBr	SYB1	3	3.0	2.5	E	3	L	1.0	1.0	94	76
Hark	PGNBr	DYY	4	2.7	3.9	L	2	H	2.5	3.0	66	71
Steele	PGNBr	DYY	4	3.0	4.1	E	1	L	2.0	2.0	79	65
M61-224	WGNBr	DYY	3	2.0	1.2	L	2	L	3.0	4.0	50	65
M62-263	WGNBr	SYBL	3	2.3	2.6	L	1	L	1.5	2.0	49	28
M63-194	PGNBr	DYY	3	2.0	4.1	E	1	Н	1.0	2.0	71	74
M63-217	PGNBr	SYY+B	£ 2	1.0	3.1	L	5	H	1.5	1.5	83	73
W7-186	PTNBr	DYB1	1	2.0	3.1	E	5	L	2.0	2.0	49	19
W8-37	PTNBr		3	1.7	2.9	E	1	L	1.0	1.5	73	54

A T E		Ont	ario		Ohio		Michig		Ind.	Wisco	
Strain	Mean	Ridge-	Har-	Hoyt-	Woos-	Col-	E. Lan-	Dun-	Lafay-	Dur-	Mad-
		town	row	ville	ter	umbus	sing	dee	ette	and	ison
16	Tests			197	2 YIEL	D (bu/a)				
				*	*	*	-			*	*
Chippewa 64	38.4	44.7	32.6	31.9	24.3	34.9	35.1	41.7	39.0	29.1	36.6
Hark	43.8	49.3	44.8	36.3	27.6	31.4	37.5	47.7	40.7	32.5	37.2
Steele	40.7	44.9	33.8	28.9	22.4	29.9	36.8	44.7	40.3	28.6	33.8
M61-224	42.4	50.6	40.0	34.0	26.7	25.1	34.2	47.7	40.4	30.9	34.7
M62-263	43.8	51.8	38.0	30.0	35.9	38.5	39.0	49.6	39.0	33.6	38.7
M63-194	46.9	55.1	33.2	31.4	39.4	33.3	41.8	51.8	42.3	34.1	43.2
M63-217	45.8	59.1	40.4	32.1	35.9	32.9	40.3	48.3	43.1	34.5	39.8
W7-186	40.3	43.4	33.9	29.4	29.9	34.0	33.3	44.2	37.5	30.9	37.2
W8-37	39.8	42.3	36.1	30.7	35.2	34.7	35.9	43.1	36.3	30.7	36.3
C. V. (%)		9.0	5.9				10.6	9.8	7.1	8.1	10.5
L.S.D. (5%)		6.4	3.8				5.7	6.6	n.s.	3.7	5.5
Row Spacing	(in)	24	24	32	32	28	28	30	38	36	36
Rows/Plot	(111.)	4	4	3	3	3	3	3	3	1	1
Reps		4	3	4	4	4	4	4	4	4	4
					YIELD	RANK					
Chippewa 64	9	7	9	4	8	2	7	9	6	8	6
Hark	3	5	1	1	6	7	14	4	3	4	4
Steele	6	6	7	9	9	8	5	6	5	9	9
M61-224	5	4	3	2	7	9	8	4	4	5	8
M62-263	3	3	4	7	2	1	3	2	6	3	3
M63-194	1	2	8	5	1	5	1	1	2	2	1
M63-217	2	1	2	3	2	6	2	3	1	1	2
W7-186	7	8	6	8	5	4	9	7	8	5	4
W8-37	8	9	5	6	4	3	6	8	9	7	7
94	Tests		1	968-72,	5-YEA	R MEAN	YIELD				
										68 70-72	
Chippewa 64	36.2	45.9	31.2	28.2	24.4	33.7			42.3	18.8	34.8
Hark	40.4		36.9	30.4	26.2	34.5			48.1	22.2	36.2
Steele	38.9		34.6	27.9	24.1	30.6			45.3	21.3	
					YIELD	RANK					
Chippewa 64	9	3	3	2	2	2					-
Hark	3	2	1	1	1	1			3	3	3 2 1
Steele	2	1	2	3	3	3			1 2	1	2
preete	2		2	3	3	3			2	2	1

I	llinoi			esota	Iow	a	Mo.	S. D	akota	Nebraska	
De-	Pon-	Ur-	Lamb-	Wa-	Suth-	Kan	Spick-	Rev-	Brook-	Con-	Mead
kalb	tiac	bana	erton	seca	erland	awha	ard	illo	ings	cord	I
					1972 Y	IELD (1	ou/a)		1 4		
		10.00 47				6.63		*			
40.2	41.0	45.3	30.5	26.9	45.3	39.5	40.1	20.6	31.5	42.1	39.3
46.5	42.9	55.8	32.8	37.4	54.0	49.3	39.6	25.8	32.6	44.2	46.4
44.3	40.0	43.1	31.5	30.6	47.1	42.9	47.3	22.0	34.4	43.3	46.0
43.4	40.0	40.7	37.0	37.9	43.9	45.4	44.9	24.5	36.7	47.2	48.5
48.4	41.3	54.2	37.8	33.9	48.5	45.1	47.4	20.6	32.4	46.5	47.3
51.0	45.2	58.2	39.8	42.0	55.1	51.2	49.7	22.4	35.2	45.7	53.1
50.0	40.7	47.9	42.0	36.3	48.4	48.6	51.7	19.8	39.7	48.7	47.5
40.9	38.3	45.4	34.0	34.2	48.6	44.8	45.2	26.0	33.2	45.6	42.4
41.3	41.2	41.4	36.6	31.9	43.3	43.1	47.6	23.4	31.2	43.8	41.0
4.1	6.4	6.1	7.7	12.9	5.4	6.0	10.5	23.8	7.1	4.8	6.4
3.2	4.5	5.1	4.8	7.7	3.8	4.0	7.1	n.s.	5.6	4.6	4.8
30	38	30	30	30	27	27	15	36	30	30	30
4	4	4	4	4	4	4	4	3	3	4	4
3	3	3	3	3	4	4		4	4	3	3
					YIE	LD RAN	ĸ				
9	5	6	9	9	7	9	8	7	8	9	9
4	2	2	7	3	2	2	9	2	6	6	5
5	7	7	8	8	6	8	5	6	4	8	6
6	7	9	14	2	8	4	7	3	2	2	2
3	3	3	3	6	4	5	4	7	7	3	4
1	1	1	2	1	1	1	2	5	3	4	
2	6	4	1	4	5	3	1	9	1	1	3
8	9	5	6	5	3	6	6	1	5	5	7
7	4	8	5	7	9	7	3	4	9	7	8
				19	68-72, 5	YEAR M	EAN YIELD				200
						69-7	68-69 2 71-72				68, 70-72
41.9	34.1	44.0	34.8	35.7	35.9	38.1	39.8	28.6	30.5	35.2	39.8
45.5	37.1	49.9	37.6	40.3	42.2	43.9	41.6	32.0		40.0	
43.6		46.1	37.2	37.2	37.9	39.2	44.2	30.2	32.9	39.1	44.5
					YII	LD RAN	<u>K</u>				
3	3	3	3	3	3	3	3	3	3	3	3
1	1	1	1	1 2	1	1	2	1	2	1	1
2	2	2	2	2	2	2	1	2	1	2	2

7 10		Onta	rio		Ohio		Michig		Ind. Lafay- ette	Wisc	
Strain	Mean	Ridge-	- Har-	Hoyt- ville	Woos- ter	Col- umbus	E. Lan- sing	Dun- dee		Dur- and	Mad- ison
203		town	row								
	14 Test	s	MA	TURITY	(rela	tive da	ite)			*	*
Chippewa 64	-1.4	- 6	- 3	- 3	+ 8	+ 7	+ 1	0	0		- 2
Hark	+4.8	+ 2	+ 6	+ 3	+ 8	+12	+ 5	+ 3	+ 3		+ 5
Steele†	9-21	9-30	9-23	9-15	9-12	9-9	9-21	9-26	9-15		9-26
M61-224	-2.1	+ 1	+ 1	- 3	- 1	+ 2	0	0	0		0
M62-263	+3.5	+ 2	+ 2	+ 3	+ 8	+ 8	+ 6	+ 2	+ 3		+ 4
M63-194	+6.2	+ 5	+ 6	+ 3	+ 8	+15	+ 7	+ 7	+ 5		+ 8
M63-217	-1.2	+ 1	- 2	+ 5	+ 1	+ 2	- 2	+ 2	- 2		+ 1
W7-186	-2.3	- 4	- 5	- 5	0	+ 1	+ 1	0	- 3		- 2
W8-37	-4.4	-11	- 4	- 6	0	- 1	0	- 2	- 4		- 3
Merit (0)		- 5	- 7	-13			-11		-14		- 7
Corsoy (II)	+8.4	+16	+ 7	+ 6	+ 9	+16	+13	+12	+ 8		+11
Date Planted	5-22	5-19	6-2			5-8	5-16	5-22	5-22	5-25	5-2
†Days to mat.	122	134	113			124	128	127	116		12
	16 Test	s		LOD	SING (score)					
				*	*	*				*	*
Chippewa 64	2.2	2.0	3.0	1.7	1	1.0	2	2.0	2.2	2.0	2.
Hark	2.1	2.5	1.7	1.2	1	1.0	2	2.0	2.2	2.0	2.
Steele	2.5	2.0	3.3	1.7	1	1.0	3	3.0	2.0	2.0	2.
M61-224	1.6	1.0	1.3	1.2	1	1.0	1	2.0	1.2	2.8	2
M62-263	2.9	3.5	3.7	2.0	1	1.2	4	4.0	2.1	2.0	3.
M63-194	2.8	3.0	4.0	2.0	1	1.0	3	4.0	3.1	2.0	3.
M63-217	2.2	2.0	2.3	1.7	1	1.0	2	3.0	1.8	2.0	2.
W7-186	2.6	3.5	4.0	2.7	1	1.2	2	4.0	2.1	2.0	2.
W8-37	2.0	2.5	2.7	2.0	1	1.0	1	2.5	2.0	2.0	2
	15 Test	s		PLANT I	HEIGHT	(inche	s)				
				*	*	*				*	*
Chippewa 64	37	41	27	33	24	29	40	36	39	37	33
Hark	38	43	27	33	20	29	40	36	40	38	33
Steele	37	43	29	33	21	26	39	37	36	38	35
M61-224	35	43	24	31	19	23	37	32	36	38	33
M62-263	34	37	25	28	22	26	38	33	33	37	33
M63-194	42	48	30	36	27	32	49	42	43	41	35
M63-217	36	41	28	32	28	27	39	35	35	37	33
W7-186	37	38	27	34	25	29	40	33	38	37	35
W8-37	37	41	25	34	26	29	40	36	39	39	34

Illinois		Minnesota		Iowa Mo.			S. I	akota	Nebraska		
De-	Pon-	Ur-	Lamb-	Wa-	Suth-	Kan-	Spick-	Rev-	Brook-	Con-	Mead
kalb	tiac	bana	erton	seca	erland	awha	ard	illo	ings	cord	I
					MATURITY	(relat:		-15			
- 4	+ 1	0	5.5			100		*			
+ 6	+ 5	+ 7	- 1	0		- 3			- 2	- 1	- 1
9-25	9-14	9-5	+ 6	+ 6		+ 5			+ 3	+ 5	+ 5
- 1	+ 1	- 8	9-17	9-17		9-13			10-19	9-20	9-17
+ 4	+ 5	+ 6	+ 3	- 4		- 5			- 6	- 3	- 1
				+ 3		+ 3			+ 2	+ 3	+ 5
+ 7	+ 4	+11	+ 9	+ 5		+ 5			+ 5	+ 4	+ 7
- 5	- 2	- 2	+ 6	- 3		- 1			- 4	- 2	- 1
- 5	- 4	- 4	+ 3	0		- 3			- 3	- 2	- 3
- 6	- 4	- 8	- 4	- 3		- 6			- 5	- 2	- 3
- 7	- 8	- 9	- 8	- 4							
+ 7	+ 7	+ 4	+12	+ 5		+ 5			+ 5	+ 7	+10
5-24	5-26	5-12	5-15	5-9	5-10	5-9	5-17	6-3	6-7	5-26	5-31
124	111	116	125	131		127			134	117	109
					LODGI	NG (sc	ore)				
3.5	2.2	1.4	3.0	2.0	1.9	1.6	1.1	1.8	2.2	2.0	
2.2	1.5	1.3	2.3	2.0	2.0	1.8	1.1	1.5	2.2	3.0	1.9
3.5	2.2	1.4	4.0	2.7	2.2	2.0	1.0	1.9	2.5	2.5	2.8
2.2	1.3	1.2	2.0	2.3	1.2	1.4	1.0	1.8	1.8		2.4
3.0	2.0	1.5	4.0	2.7	2.0	2.8	1.0	1.7	2.7	2.0	1.9
3.0	2.8	1.9	3.3	2.7	2.1	2.1	1.1	1.6	2.5	3.2	3.3
2.8	2.0	1.3	3.0	3.0	1.9	2.2	1.0	1.6	2.0	2.5	1.8
3.3	1.8	1.6	3.3	2.7	1.8	2.3	1.1	1.8	2.4	2.8	2.6
2.8	1.7	1.2	2.3	2.3	1.6	1.8	1.0	2.1	1.9	2.5	2.0
					PLANT HE	IGHT (i	inches)				
27	27	211	27	39	39	38		★ 27	31	40	39
37	37	34 34	37 39	40	40	41		29	32	42	40
39 37	38 37	33	37	39	38	38		24	30	41	39
36	33	28	38	37	32	33		28	32	39	37
35	31	30	36	39	36	37		25	29	39	36
			42	45	42	42		26	31	42	44
42	41	39	38	38	34	37		26	32	39	39
40	31	32	39	39	38	39		27	31	41	39
37	36 37	32 32	39	40	37	40		29	34	41	40

			Ontar	io	7 - 7	Ohio		Michi		Ind.		onsin
Strain		Mean	Ridge-		Hoyt-	Woos-	Col-	E. Lan-	Dun-	Lafay-	Dur-	
		337	town	row	ville		umbus	sing	dee	ette	and	ison
	11	Tests			SEED O	UALITY	(score)				
	-	442.65			*	*	*					*
Chippewa	64	1.9	3	2.0	1.0	1.2	2.2			1.5		2
Hark		1.7	3	1.0	1.0	1.7	2.5			1.5		3
Steele		2.0	3	2.3	1.0	1.0	1.7			1.5		2
M61-224		2.1	3	2.0	1.0	1.0	2.0			1.5		1
M62-263		1.9	2	1.3	1.0	1.0	2.0			1.5		1
M63-194		1.9	3	1.7	1.0	1.2	2.5			1.5		3
M63-217		2.0	3	2.0	1.0	1.0	2.0			1.5		2
W7-186		2.1	3	3.0	1.2	1.5	2.2			1.5		2
W8-37		2.0	2	2.7	1.0	1.0	2.5			1.5		2
	30	Tanka		_	CEED	CITE	(-/100)					
	14	Tests			SEED	*	(g/100)	-				
Chippewa	64	15.7	17.2	15.6	15.6	17.0	18.1	14.6	16.1	15.5		
Hark		17.0	20.5	17.5	16.7	16.2	17.5	14.6	18.2	16.4		
Steele		17.8		18.1	17.3	15.6	18.4	18.6	18.8			
M61-224		17.6		18.5	17.5	15.1	17.6	17.6	18.7	16.6		
M62-263		21.4	24.1	21.8	19.8	19.9	21.1	20.6	23.5	18.2		
M63-194		16.7	19.3	15.8	17.1	15.7	17.2	15.5	18.2	14.4		
M63-217		17.3	20.3	18.2	18.1	16.9	17.9	16.9	18.7	16.6		
W7-186		17.5	17.7	18.4	17.3	17.4	17.7			16.5		
W8-37		16.2	15.5	17.5	15.7	16.9	16.6	17.0 15.6	17.0			
	11	Tests			P	ROTEIN	(%)					
Chippewa	64	41.7	43.2		1		42.2		42.0	42.2		42.2
Hark	-	42.3	44.3				43.2		41.6	42.1		42.9
Steele		40.5	42.3				39.3					42.2
M61-224		40.0	41.2				40.5		42.0			
M62-263		39.8	40.5				39.9		40.7	39.2 40.0		40.0
		40.5										
M63-194		39.8	41.2				42.6		42.0	40.2		42.
M63-217			41.0				39.9		40.1	39.6		40.
W7-186 W8-37		39.7	40.6				39.5		40.1	41.0		40.2
	11	Tests	74.6			OIL (771		41.5	33.3		70.
01.			10.0			OID (78.00					
Chippewa	64	21.1	19.9				22.8		20.5	21.0		20.
Hark		20.7	19.8				22.1		21.4	20.0		19.
Steele		21.2	20.0				22.6		20.8	21.4		19.
M61-224		22.1	21.0				23.6		21.5	23.6		20.5
M62-263		22.1	20.8				23.1		21.9			21.
M63-194		21.2	20.3				22.3		20.5	22.1		19.
M63-217		22.7	21.4				24.5		22.1	24.1		21.
W7-186		21.8	20.3				24.0		21.9			20.
W8-37		21.6	20.1				22.9		20.6	22.0		21.0

	Illino		Minne	esota	Io	wa	Mo.	S. I	akota	Nebr	aska
De-	Pon-	Ur-	Lamb-	Wa-	Suth-	Kan-	Spick-	Rev-	Brook-	Con-	Mead
kalb	tiac	bana	erton	seca	erland	awha	ard	illo	ings	cord	I
					SEED QU	ALITY (score)				
515	20.00	27.25				0.0	E D	*			
1.5	2.0	2.6	2.0	2.3	1.0	1.0	2.0	1.3	1.1	2.0	2.
1.2	1.5	2.0	2.0	2.3	1.0	1.0	1.3	1.2	1.5	2.5	2.
1.5	2.5	2.3	2.0	3.0	1.0	1.0	1.5	1.2	1.2	2.0	2.
1.0	2.3	2.2	2.3	3.0	1.0	1.0	2.5	1.3	1.2	3.0	3.
1.5	2.5	2.6	2.3	2.0	1.0	1.4	2.0	1.5	1.4	2.5	2.
1.3	1.5	3.5	2.0	2.3	1.0	1.0	1.5	1.2	1.3	2.0	2.
1.5	2.0	2.5	2.7	3.0	1.0	1.0	1.8	1.2	1.3	2.0	2.
1.7	2.3	2.5	2.7	3.0	1.0	1.0	2.0	1.3	1.3	2.0	2.
2.0	2.0	2.6	3.0	2.7	1.0	1.0	2.3	1.2	1.3	2.5	2.
					SEED :	SIZE (g.	/100)				
						-		*			
14.0	16.2	16.1	14.0	14.8		15.3		14.1	15.9	17.9	17.
14.7	17.0	18.1	15.3	18.4		17.6		15.4	13.6	17.8	18.
16.3	17.7	17.1	15.2	17.5		16.7		15.1	15.6	20.2	20.
15.7	17.1	16.9	16.8	17.1		16.2		17.2	16.7	19.3	20.
20.5	19.9	22.7	19.4	19.5		21.3		17.3	19.1	23.5	24.
14.5	15.7	17.7	17.0	17.2		16.6		14.1	15.0	17.6	19.
16.3	15.9	18.1	16.2	15.9		17.0		16.3	15.6	17.7	19.
15.6	15.9	17.8	17.4	17.7		17.2		16.4	17.6	19.4	20.
14.8	15.7	15.8	14.7	14.5		16.8		15.0	15.9	19.2	18.2
					PR	OTEIN (%)				
41.1		40.3		42.6		39.8			42.5		40.1
42.3		41.2		42.8		40.8			43.4		40.
40.5		40.0		40.8		37.9			40.9		39.3
39.9		39.2		40.2		38.6			40.6		39.
39.5		39.5		40.4		37.7			41.7		37.6
40.0		39.2		40.4		37.9			40.6		39.
39.2		38.3		42.0		38.3			40.7		37.
39.7		37.8		40.3		38.3			41.0		37.
39.5		38.2		40.5		37.3			40.0		37.
						OIL (%)					
20.6		22.8		20.6		22.2			18.6		22.2
20.1		22.8		20.5		21.0			18.2		22.2
20.6		23.4		21.1		22.9			18.6		22.3
20.9		24.0		22.5		23.1			19.3		22.5
22.0		23.8		22.0		22.9			18.8		23.
21.2		22.5		21.0		22.6			18.1		22.
21.6		25.3		21.6		23.7			20.3		24.0
20.7		23.5		21.9		23.1			18.1		23.6
21.2		23.4		21.0		22.6			19.7		23.0

Stra	in	Parentage	Line
1.	Hark		
2.	Steele		
3.	M64-122	Aloo x 057-2921(Blackhawk x Capital)	F ₅
4.	M64-165	M384(Capital x Renville) x	3
		L62-1932(Clark-e ₂)	F ₅
5.	M65-69	M384 x Corsoy	F ₅ F ₅ F ₅ F ₅
6.	M65-115	Anoka x Amsoy	F
7.	M65-122		F
8.	0X-643	Blackhawk x Harosoy 63	F.

Most of the strains in this test yielded well relative to the check variety of similar maturity. From the very early 0X-643 to the mid-group I, M64-165, regional mean yields are well above those of the checks with the single exception of M64-122. M64-165 and M65-122 showed superior lodging resistance. Most of the strains (except OX-643) showed improved shattering resistance. Except for the resistant OX-643, Phytophthora response was segregating or uncertain.

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	011
No. of Tests	9	9	8	9	9	7	8	5	5
Hark	42.2	5	+4.8	2.3	38	2.0	17.1	42.6	20.5
Steele	40.5	8	9-24	2.3	37	2.2	17.8	40.6	21.1
M64-122	41.1	7	+1.1	1.7	37	2.3	19.2	39.8	21.9
M64-165	44.5	2	+2.5	2.8	35	1.7	17.7	41.4	21.4
M65-69	44.3	3	+0.6	2.7	36	2.0	16.1	39.3	22.3
M65-115	45.3	1	+0.3	2.4	36	2.7	17.2	40.5	22.7
M65-122	43.0	4	-1.1	1.6	36	2.4	19.0	41.7	22.1
OX-643	41.5	6	-3.8	2.4	37	2.0	17.4	40.3	21.9

Disease Data

	BB	FE ₂		BSR		CR	P	R	PS	В
Strain	Ames	Laf.	Laf.	Urb.	Ames	Laf.	Laf.	Ames		Ind.
	Iowa	Ind.	Ind.	111.	Iowa	Ind.	Ind.	Iowa	mat.	late
	n2	a	n %	n %	n %	n %	а	a	n %	n %
Hark	2	3	8	40	18	92	S	S	42	58
Steele	1	5	82	60	28	100	R	R	16	66
M64-122	3	5	22	40	29	92	H	H	3	46
M64-165	3	4	69	50	26	72	H	S	36	62
M65-69	2	5	0	40	24	71	S	S	9	56
M65-115	3	5	27	60	36	81	H	H	54	79
M65-122	2	5	32	70	34	92	S	H	14	65
0X-643	2	5	50	50	31	100	R	R	17	68

Descriptive and Other Data

Strain	Descri	iptive	Chlorosis Ames Iowa		tering attan as		nation yette ana
				2 wk.	6 wk.	mat.	late
Hark	PGNBr	DYY	3.9	2.5	3.0	66	71
Steele	PGNBr	DYY	4.1	2.0	3.0	79	65
M64-122	WGNBr	C Proposition of the Control of the	2.2	1.8	2.5	87	67
M64-165	WGNBr	DYY	2.9	1.0	1.5	44	74
M65-69	WGNBr	DYY	3.4	1.0	1.5	81	76
M65-115	PGNTn	SYIb	3.2	1.5	1.5	26	23
M65-122		SYIb+Bf	2.2	1.0	1.5	74	62
0X-643	WGNBr		1.6	3.0	3.0	71	50

		Ont.	Ohio	Mich.	Wis.	I11.			Io		S.Dak.	
Strain	Mean	Ridge-	Hoyt-	E.Lan-	Madi-		Lamb-		Suther			
7777		town	ville	sing	son	kalb	erton	seca	land	wha	ings	1
9	Tests				YIELD	(bu/a)					
	3.50		*		*		The sale					65.3
Hark	42.2	49.5	36.0	39.8	31.7		42.3		50.2	45.2	32.3	47.3
Steele	40.5	47.2	32.8	38.7	32.5		39.6		40.5	37.1	38.9	45.9
M64-122	41.1	43.7	28.3	38.0	34.3		41.3		44.0	39.6	33.3	48.2
M64-165	44.5	52.9	33.2	45.7	41.0	42.9	46.7	29.7	54.0	45.3	36.7	46.6
M65-69	44.3	56.2	33.3	42.7	43.4	48.2	47.9		50.2	48.8	40.4	31.7
M65-115	45.3	59.6	35.4	44.1	42.6	54.3	46.4	26.4	46.9	45.7	38.7	45.9
M65-122	43.0	56.0	36.4	38.1	35.8	43.6	46.1	30.0	46.6	45.1	34.3	47.0
OX-643	41.5	48.8	35.7	44.7	37.5	47.9	40.0	29.2	39.5	40.0	40.7	42.7
0 4 (9)		4.2		9.0	5.0	5.6	5.6	6.3	4.0	5.6	6.5	3.8
C. V. (%) L.S.D. (5%)		5.1		9.0	4.3	5.1	5.8	4.5	4.4	5.8	5.7	3.9
	1:- 1	24	32	28	36	30	30	30	27	27	30	30
Row Spacing	(In.)	4	3	3	1	3	2	2	4	4	3	3
Rows/Plot		4	2	2	2	2	2	2	2	2	2	2
Reps				-			-	-				
					YIELD	RANK						
Hark	5	5	2	5	8	8	5	3	2	4	8	2
Steele	8	7	7	6	7	2	8	7	7	8	3	5
M64-122	7	8	8	8	6	5	6	1	6	7	7	1
M64-165	2	4	6	1	3	7	2	5	1	3	5	4
M65-69	3	2	5	4	1	3	1	2	2	1	2	8
M65-115	1	1	4	3	2	1	3	8	4	2	4	5
M65-122	4	3	1	7	5	6	4	4	5	5	6	3
OX-643	6	6	3	2	4	4	7	6	8	6	1	7
	Tests			MATTIE	ITY (re	01 2+1	ve dat	•)				
	lests		*	MATOR	*	clati	ve dati	= /				
Hark	+4.8	+ 2	+ 3	+ 4	+ 9	+ 8	+ 4	+ 6		+ 4	+ 4	+ 6
Steele	9-24	9-30	9-18	9-21	9-25	9-23	9-18				10-20	9-17
	+1.1	+ 1	0	0	+ 3	+ 4		- 2		- 3	- 4	+11
M64-165	+2.5	+ 3	0	+ 5	+ 5	+ 5	+ 3	0		+ 2	- 1	+ 3
M65-69	+0.6	+ 3	0	+ 5	+ 3	+ 3	0	- 2	-90	- 5	- 1	+ 2
M65-115	+0.3	+ 2	0	0	+ 1	+ 1	0	- 1		- 3	+ 2	+ 1
M65-122		- 5	0	+ 5	+ 2	- 3	0	- 2		- 2	- 2	0
0X-643	-3.8		0	- 1	- 2	- 4	- 6	- 6		- 6	- 4	- 4
Merit (0)		- 5	-16	-11	- 6	- 5	- 9	- 3				
Corsoy (II)	+9.5		+ 3	+13	+12	+ 9		+ 6		+ 4	+ 5	+12
Date Planted	15-21	5-19	_	5-19	5-22	5-24	5-15	5-9	5-10	5-9	6-7	5-31

Stra	in	Parentage	Line	Previous Testing*
1.	Amsoy 71	Amsoy ⁸ x Cl253(Blackhawk x Harosoy)	4 F ₃ lines	3
2.	Beeson	C1253 x Kent	F.3	5
3.	Corsoy	Harosoy x Capital	F'	8
4.	Provar	Harosoy x Clark	F.º	64-67
5.	Wells(C1470)	C1266R(Harosoy x C1079) x C1253	F ₇ 8	3
6.	A66-1441-2	Provar x F, (Harosoy 63 x PI 248.406)	F.	PII
7.	A66-1746-9	AX56P64-1(Amsoy) x FC 31.122	F	PII
8.	AX227-31	Hawkeye 63 x FC 31.122	F ₅ F ₆ F ₅	PII
9.	Blend 2	25% Amsoy 71 + 75% Corsoy	5	PII

Four of the check varieties, Amsoy 71, Beeson, Corsoy, and Wells, have been in the test for four years or more, and the four year regional data shows them to be remarkably similar in mean yield. The most recent release, Wells, has shown excellent lodging resistance.

All of the experimental strains were new entries this year. The blend of Corsoy and Amsoy 71 was similar to the higher yielding variety, Corsoy, in mean yield, actually a non-significant .3 bushel higher. The three experimental A-strains are well below most of the check varieties. Because of their moderately higher protein they should be compared with Provar, and they appear to be slightly superior in mean yield. AX227-31 is PR resistant but yielded slightly below the other two.

Regional Summary

			Matu-	Lodg-	To the	Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oil
				19	72				
No. of Test	s 27	27	21	26	26	24	24	14	14
Amsoy 71	- 43.7	4	+3.5	2.6	41	2.6	17.9	39.9	22.3
Beeson	43.5	5	+5.0	2.2	38	2.3	19.4	40.9	21.1
Corsoy	~ 45.1	2	9-23†	2.7	37	2.2	16.1	40.6	21.7
Provar	39.0	9	+0.8	2.3	36	2.1	21.4	43.7	20.8
Wells	-44.3	3	-0.5	1.7	38	2.5	16.4	41.9	21.4
A66-1441-2	40.7	6	+0.9	2.0	39	2.1	20.7	42.8	21.7
A66-1746-9	40.1	7	+5.1	2.3	39	2.5	22.0	43.1	21.0
AX227-31	39.5	8	+4.0	2.7	40	2.3	21.6	44.8	19.6
Blend 2	45.4	1	+1.9	2.5	39	2.2	16.5	40.5	22.1

^{† 124} days after planting

1969-72, 4-YEAR MEAN

No. of Tests	116	116	92	110	114	99	91	60	60
Amsoy 71	44.5	2	+3.1	2.5	42	2.2	17.3	39.8	22.5
Beeson	44.7	1	+4.2	2.1	40	2.2	19.3	40.6	21.6
Corsoy	44.3	3	9-19+	2.6	39	2.1	15.9	40.5	21.9
Wells	44.3	3	-0.5	1.6	38	2.4	16.2	41.3	21.9

^{† 118} days after planting

Disease Data

	_ <u>P</u>	B	BP	BS	FE ₂	PM			BSR		
Strain		es wa	Ames Iowa	Ames	Laf.	Har. Ont.	Laf.	Urb.	St. Paul Minn.	Waseca Minn.	Ames
	nl	n2	n	n	a	a	n %	n %	n %	n	n %
Amsoy 71	4.5	1	4.0	3.5	3	s	13	70	100	3.0	37
Beeson	3.5	2	4.0	4.0	2	R	28	50	95	2.7	62
Corsoy	4.5	3	4.0	4.0	4	S	54	60	95	4.0	52
Provar	4.5	3	4.0	4.0	· 5	· R	60	70	100	4.3	61
Wells	3.0	3	4.0	4.5	1	S	13	40	100	3.7	59
A66-1441-2	3.0	3	4.0	4.5	5	R	9	30	100	3.3	59
A66-1746-9	3.5	3	4.0	3.0	3	S	8	70	100	2.7	58
AX227-31	2.5	2	4.0	4.5	5	S	20	30	100	3.0	57
Blend 2	1.5	1	3.5	4.0	4	S	0	70	85	3.3	79

	CR		PR		SI	YY	PS	P	SB
Strain	Laf. Ind.	Laf. Ind.	Ames Iowa	Stoneville Mississippi	An	nes	Upperco Md.	Laf.	, Ind. late
	n %	a	a	n	n V	a %	n g	n %	n g
Amsoy 71	100	R	R	1	1	55	9	44	68
Beeson	50	R	R	1	1	30	13	27	47
Corsoy	91	S	S	3	1	26	1	50	72 -
Provar	. 84	S	S	2	1	50	1	50	- 84
Wells	67	R	R	1	1	89	6	21	. 47
A66-1441-2	100	S	S	1	1	5 7	4	39	55
A66-1746-9	69	S	S	1	1	61	9	32	52
AX227-31	85	R	R	1	1	55	2	29	56
Blend 2	67	Н	Н	2	1	47	5	21	46

Descriptive and Other Data

			Chl	orosis		Fluor-	Emer-	Perox	- Shat	teri	ng	Germin	nation
Strain	Descrip	_	Crkstn	.Lamb.	Ames	escent	gence	idas e	Stnvl.	Ma	n.	Laf.,	Ind.
	tive		Minn.			Light			Miss.	Ka	n.	mat.	late
	Code									2 wk	6 wk	8	- %
Amsoy 71	PGNTn S	YY	3	2,0	3.1	L	5	н	1	1.5	1.5	24	8
Beeson	PGNBr S		3	1.5	2.8	L	5	L	1	2.5	3.0	50	59
Corsov	PGNBr D		3	2.3	3.0	E	1	H	1	1.0	1.5	44	74
Provar	PTNBr D		3	1.3	2.2	L	3	- H	2	1.0	1.0	26	17
√Wells	PGNBr D		3	1.7	3.5	L	5	L	1	2.0	3.0	61	38
A66-1441-2	PGNBr D	YBf	2	1.3	3.2	L	3	Н	1	1.5	2.0	67	34
A66-1746-9			2	2.0	3.0	L	2	H	1	1.5	1.5	27	4
AX227-31	PGNBr S		1	1.7	2.1	L	2	L+H	3	1.5	3.0	65	34
Blend 2	PGNBr		2	2.3		E+L		Н	2	1.5	1.5	70	88

		Penn.	Md.	Ontar	io		Ohio	1920	Michig	
Strain	Mean	Univ.	Upper-	Ridge-	Har-	Hoyt-	Woos-		E. Lan-	
		Park	со	town	row	ville	ter	umbus	sing	dee
27	Tests		1972	YIELD	(bu/a)					
	1,40,40		200.10			*	*	*		
Amsoy 71	43.7	37.2	40.1	55.9	39.0	38.6	30.9	46.2	41.9	49.1
Beeson	43.5	34.9	39.3	53.8	40.9	39.5	32.3	51.3	39.5	50.
Corsoy	45.1	33.8	36.5	50.8	37.8	33.0	31.7	39.1	41.4	55.5
Provar	39.0	28.7	33.7	47.9	40.0	35.3	30.4	42.9	38.4	42.
Wells	44.3	35.3	38.2	50.1	42.8	43.0	28.8	40.8	42.3	50.
A66-1441-2	40.7	32.9	34.0	47.1	39.0	37.5	24.9	37.7	40.5	42.
A66-1746-9	40.1	33.6	38.4	44.2	40.0	39.1	22.8	33.4	37.9	46.
AX227-31	39.5	33.8	40.5	48.4	32.8	30.3	17.9	40.8	35.2	41.
Blend 2	45.4	31.3	40.2	53.8	41.4	35.4	18.4	37.5	44.1	50.
C. V. (%)		8.1	8.7	12.0	7.4				10.2	11.
L.S.D. (5%)		4.7	5.7	n.s.	5.0				6.0	7.
Row Spacing (in.)		30	30	24	24	32	32	28	28	30
Rows/Plot		3	3	4	4	3	3	3	3	3
Reps		3	3	4	3	4	4	4	4	4
			Y	IELD RA	NK					
Amsoy 71	4	1	3	1	6	4	3	2	3	5
Beeson	5	3	4	2	3	2	1	1	6	3
Corsoy	2	4	7	4	8	8	2	6	4	1
Provar	9	9	9	7	4	7	4	3	7	7
Wells	3	2	6	5	1	1	5	4	2	2
A66-1441-2	6	7	8	8	6	5	6	7	5	8
A66-1746-9	7	6	5	9	4	3	7	9	8	6
AX227-31	8	4	1	6	9	9	9	4	9	9
Blend 2	1	8	2	2	2	6	8	8	1	4
116	Tests	1	969-72,	4-YEAR	MEAN Y	IELD				
										69,
										71-7
										b
Amsoy 71	44.5			57.5	38.4	34.3	30.8	51.2		42.
Beeson	44.7			53.8	39.9	32.9	34.4	51.6		45.
Corsoy	44.3			57.3	37.9	31.0	28.6			46.
Wells	44.3			53.9	40.9	35.5	30.5	48.1		42.
			Y	IELD RA	NK					
Amsoy 71	2			1	3	2	2	2		2
Beeson	2 1 3			4	2	3	2	2		3
Corsoy	3			2	4	4	4	4		3 2 1
Wells	3			3	1	1	3	3		4

b Petersburg in 1971

45

2

4

3

2

3

1

3

1

4

3

4

2

4

3

1

1

4

7			linois		
Pon-	Ur-	Gi-	Edge-	Belle-	Eldo-
tiac	bana	rard	wood	ville	rado
		1972 Y	IELD (E	u/a)	
42.8	53.5	56.5	43.1	42.0	49.7
44.1	59.5	53.9	38.4	40.0	51.0
47.2	57.6	58.3	42.5	41.3	47.1
41.8	46.3	49.0	37.6	36.7	43.3
48.6	57.7	56.5	45.2	42.8	50.9
41.3	51.6	52.1	41.3	40.0	45.6
41.8	48.1	52.0	39.9	41.4	51.1
35.2	50.5	50.4	41.4	37.9	43.1
48.5	57.5	59.5	43.5	39.8	48.6
6.3	3.8	4.4	9.5	7.3	4.3
4.7	6.0	4.2	6.8	5.1	3.6
38	30	30	38	38	37
4	4	4	4	4	- 4
3	3	3	3	3	3
		YIE	LD RANK	4	
5	5	3	3	2	- 4
4	1	5	8	5	2
3	3	2	4	4	6
6	9	9	9	9	8
1	2	3	1	1	3
8	6	6	6	5	7
6	8	7	7	3	1
9	7	8	5	8	9
2	4	1	2	7	5
	1969-	72, 4-	YEAR ME	AN YIELI	<u>0</u>
				а	
38.5	49.8	50.7	45.3	46.5	50.9
40.7	52.5	48.7	44.2	45.2	52.8
40.5	52.7	53.1	40.6	45.9	48.5
41.7	51.7	50.7	45.0	45.4	51.2
	~-•/	30.7	43.0	3017	J1.2
		YIE	LD RANK	<u>c</u>	
4	4	2	1	1	3
2	2	4	3	4	1
	1	1	4	2	4
1	3	2	2	3	2

a Trenton in 1969-70

111.	Minnes			owa	Misso	uri	S. I	akota	Nebra	ska
Carbon-	Lamb-	Wa-	Kan-	Ames	Spick-	Mt.	Brook-	Center-	Con-	Mead
dale	erton	seca	awha		ard	Vernon	ings	ville	cord	I
				19	72 YIELD	(bu/a)				
40.8	45.7	29.2	44.8	58.4	53.6	35.2	18.9	37.0	43.8	46.5
41.3	47.3	31.6	45.6	55.4	45.5	39.5	23.2	35.1	43.7	47.0
33.3	55.1	34.2	55.7	59.9	50.3	31.3	33.7	42.3	48.5	55.1
33.5	48.6	27.5	41.6	53.2	48.9	35.2	26.1	32.6	40.6	43.0
39.4	48.0	30.6	50.1	57.3	48.4	36.7	29.8	36.2	47.4	44.0
39.2	43.6	28.0	45.3	53.6	45.3	38.3	26.2	36.5	42.2	43.7
40.0	42.3	21.1	43.6	51.5	48.6	35.4	18.2	31.8	37.9	40.5
35.6	46.9	28.9	44.2	52.7	45.5	36.7	17.7	35.1	42.4	41.6
37.9	50.6	37.0	53.4	59.7	51.8	33.2	33.6	39.0	50.8	53.1
8.6	8.4	14.2	7.0	3.8	13.1	9.3	9.5	10.6	7.3	8.5
5.5	6.9	7.3	4.8	3.1	n.s.	4.9	5.6	8.8	6.8	6.4
30	30	30	27	27	15	15	30	30	30	30
4	4	4	4	4	4	4	3	3	4	- 1
3	3	3	4	4	4	4	4	4	3	
					YIELD RA	NK				
2	7	5	6	3	1	6	7	3	4	£
1	5	3	4	5	7	1	6	6	5	
9	1	2	1	1	3	9	1	1	2	1
8	3	8	9	7	4	6	5	8	8	3
4	4	4	3	4	6	3	3	5	3	
5	8	7	5	6	9	2	4	4	7	•
3	9	9	8	9	5	5	8	9	9	9
7	6	6	7	8	7	3	9	6	6	
6	. 5	1	2	2	2	8	2	2	1	- 2
			G	1969-72	, 4-YEAR	MEAN YIE	LD			
						69,				
						71-72		70-72		70-72
39.2	40.5	37.4	41.8	48.3	43.8	39.7	27.0	33.1	39.3	45.2
41.3	40.6	39.0	41.7	49.0	40.6	43.9	27.7	32.3	38.8	44.5
35.7	48.5	39.2	47.2	50.7	40.3	35.9	34.1	36.9	39.7	50.3
37.5	42.2	40.3	46.4	48.8	40.6	37.2	31.5	33.0	40.1	45.3
					YIELD RA	NK				
2	4	4	3	4	1	2	4	2	3	3
2 1 4	3	3	4	2	2	2	3 1 2	2	4	- 4
<u>u</u>	3 1 2	3 2	1	2	4	4	1	1	2	1
3	2	1	2	3	2	3	•	3	1	2

		Penn.	Md.	Ontar	io	7 = 3	Ohio	1000	Michi	gan
Strain	Mean	Univ.	Upper-	Ridge-	Har-	Hoyt-	Woos-	Col-	E. Lan-	Dun
		Park	co	town	row	ville	ter	umbus	sing	dee
21	Tests	4.14	MAT	TURITY (r	elative	date)				
	.0010		-	*		*	*	*		
Amsoy 71	+3.5	+ 7	0	- 1	+ 5	+ 2	+ 6	+ 5	0	- 1
Beeson	+5.0	+ 9	0	- 2	+ 6	+ 4	- 1	- 1	+ 2	+ 2
Corsoy†	9-23	9-22	9-27	10-16	9-30	9-21	9-21	9-25	10-4	10-8
Provar	+0.8	+ 4	+ 4	- 8	0	+ 4	+ 4	+ 1	- 4	- 5
Wells	-0.5	+ 2	0	-14	- 1	0	- 1	- 5	- 6	- 7
A66-1441-2	+0.9	+ 4	+ 1	- 5	0	0	+ 2	- 3	- 2	- 2
A66-1746-9	+5.1	+ 6	+ 2	0	+ 9	+ 4	+ 9	- 1	+ 3	+ 4
AX227-31	+4.0	+ 6	+ 5	- 1	+ 1	+ 4	+ 4	+ 4	+ 2	+ 3
Blend 2	+1.9	+ 5	+ 3	- 1	0	+ 1	0	+ 4	+ 1	+ 2
Hark (I)		0		-14	- 1	- 3	- 1	- 4	- 7	- 9
Wayne (III)		+16			+ 6	+ 7		+27		
Date Planted	5-22	5-25	6-6	5-19	6-2			5-8	5-19	5-2
†Days to Mat.	124	120	113	150	120			140	138	13
26	Tests			LODGIN	G (scor	e)	*	*		
	0.0		1.0	2.6	4.3	2.0	1	1.0	3	3.5
Amsoy 71	2.6		1.1	2.9	3.0	1.0	1	1.2	2	3.5
Beeson	2.7		1.3	3.5	3.0	2.0	î	1.2	4	4.0
Corsoy Provar	2.3		1.1	3.0	2.0	2.0	ī	1.5	3	3.5
Wells	1.7		1.0	2.0	1.7	1.0	ī	1.0	2	2.0
A66-1441-2	2.0		1.0	2.0	2.7	1.2	1	1.0	2	3.0
A66-1746-9	2.3		1.0	3.6	3.3	1.7	ī	1.0	3	4.0
AX227-31	2.7		1.0	3.1	3.0	2.0	ī	2.0	3	4.0
Blend 2	2.5		1.0	2.9	3.3	2.0	1	1.0	3	4.0
26 T	ests	-	I	PLANT HE	GHT (in	ches)				
	227		100		100	*	*	*		
Amsoy 71	41	30	33	51	36	39	26	33	40	39
Beeson	38	26	30	48	32	36	26	35	41	37
Corsoy	37	25	30	46	33	37	28	35	44	42
Provar	36	25	28	44	32	36	24	33	43	39
Wells	38	24	28	48	30	36	24	32	42	39
A66-1441-2	39	28	28	48	31	39	26	32	43	40
A66-1746-9	39	28	31	51	33	39	25	34	47	43
AX227-31	40	28	32	49	33	40	25	36	44	42
Blend 2	39	26	29	50	33	38	28	34	44	45

^{*} Not included in the mean

Lafay- Green- Worth-

MATURITY (relative date)

field

Indiana

ette

Bluff-

ton

Wis.

Mad-

ison

ington

111.

kalb

De-

+ 2	+ 1	+ 2	+ 5	+ 2	+ 5
+ 2	+ 1	+ 2	+ 1	+ 2	+ 5
9-20	9-23	9-20	9-13	10-7	10-2
0	- 2	0	0	0	0
- 2	- 4	0	- 4	- 1	- 1
- 1	- 3	- 1	- 2	- 1	0
+ 2	+ 4	0	+ 5	+ 4	+ 6
+ 3	+ 1	+ 2	+ 3	+ 2	0
0	0	+ 1	+ 3	+ 1	+ 2
0	- 5			- 6	- 1
+14	+10	+15	+ 5		+11
5-22	5-22	5-24	5-19	5-22	5-24
121	124	119	117	138	131
	LO	DGING (score)		
			*	*	
2.4	2.9	1.0	4.1	3.8	2.8
1.8	2.1	1.0	3.2	3.8	1.8
2.2	2 11	1.1	4.0	3.4	2.8
	3.4	T. T.			
2.1	1.6	1.0	3.9	3.5	2.0
				3.5	
2.1 1.5 1.6	1.6	1.0	3.9		2.3
	1.6	1.0	3.9 3.1	2.6	1.8 2.5
1.5	1.6 1.2 1.4	1.0 1.0	3.9 3.1 3.2	2.6	2.3

PLANT HEIGHT (inches)

1			inois		
Pon-	Ur-	Gi-	_	Belle-	
tiac	bana	rard	wood	ville	rado
	MATUR	ITY (r	elative	date)	
+ 3	+ 3	+ 5	+ 1	+ 7	
+ 7	+ 6	+ 4	+ 2	+14	
9-21	9-16	9-13	9-16	9-3	
+ 2	0	+ 1	+ 3	+ 7	
+ 2	0	- 1	- 1	+ 7	
+ 2	- 1	+ 3	+ 2	+ 4	
+ 5	+ 2	+ 6	+ 2	+11	
+ 5	+ 5	+ 5	+ 3	+ 8	
+ 3	+ 1	+ 3	+ 1	+ 3	
- 2	- 4	- 5	- 3		
+ 8	+ 9	+ 9	+ 6	+ 3	
5-26	5-12			5-11	5-10
118	127	116	109	115	
		LODGIN	G (scor	re)	
3.2	1.8	3.5	1.9	2.1	2.7
1.8	1.6	3.2	1.3	2.3	2.5
2.8	1.9	3.7	2.2	2.7	2.9
2.2	1.7	3.8	1.8	2.4	2.4
1.7	1.3	3.2	1.1	1.2	1.4
2.0	1.4	3.3	1.5	2.1	2.1
2.2	1.4	3.4	1.3	2.0	2.5
3.0	2.7	3.2	2.6	2.9	2.6
2.8	1.9	3.5	2.3	2.5	2.5
	PLA	ANT HE	GHT (in	ches)	
45	42	47	37	35	38
42	37	42	34	34	36
42	39	42	34	28	31
38	36	40	34	34	34
41	37	44	34	35	38
41	39	45	36	33	35
41	39	43	36	37	38
44	41	43	38	37	36
44	41	43	35	33	35

111.	Minnes	ota	I	owa	Misso	uri	South	Dakota	Nebraska	
Carbon-	Lamb-	Wa-	Kan-	Ames	Spick-	Mt.	Brook-	Center-	Con-	Mead
dale	erton	seca	awha		ard	Vernon	ings	ville	cord	I
				MATUR	ITY (rela	tive dat	<u>e)</u>			
+ 4	+ 6	+ 8		+ 4			+ 8		+ 2	+ 2
+ 5	+ 7	+11		+ 5			+ 9		+ 5	+ 1
8-28	9-23	9-21		9-14			10-27		9-27	9-27
0	+ 3	+ 1		+ 3			+ 2		+ 2	- 4
0	+ 2	0		+ 1			+ 1		0	- 2
0	+ 5	+ 1		+ 3			+ 6		+ 1	- 4
+ 4	+ 7	+13		+ 6			+ 7		+ 5	+ 3
+ 1	+ 7	+13		+ 8			+ 7		+ 2	- 2
+ 2	+ 4	+ 3		+ 4			+ 2		+ 1	- 1
	+ 5	+ 2		0			- 2		- 2	- 5
+10		+13		+13					+17	+ 6
5-12	5-15	5-9	5-9	5-11	5-17	5-10	6-7	5-26	5-26	5-31
108	131	135		126			142		124	119
				1	LODGING (score)				
3.7	3.0	3.0	2.5	2.2	1.2	1.2	4.0	1.5	2.8	3.1
2.3	3.0	3.0	2.2	2.5	1.5	1.4	3.5	1.4	2.5	1.7
4.0	3.0	2.7	2.0	2.4	1.6	1.5	3.4	1.7	3.5	2.0
2.7	4.3	2.3	2.2	2.3	1.2	1.5	2.7	1.4	3.0	2.2
2.0	2.7	2.0	1.8	1.6	1.2	1.1	2.6	1.2	2.5	1.7
2.7	3.7	2.3	2.2	2.3	1.1	1.2	2.8	1.3	2.5	1.9
2.0	3.3	2.7	2.3	2.4	1.5	1.8	3.1	1.3	2.8	2.0
2.7	3.0	4.0	2.6	2.8	2.5	1.5	3.2	1.7	3.0	2.1
3.7	3.0	2.7	2.0	2.4	1.2	1.6	2.7	1.5	3.0	2.6
				PLAN	NT HEIGHT	(inches	<u>)</u>			
39	47	43	47	42		29	30	46	51	48
35	42	43	44	40		30	28	42	47	43
37	38	41	42	35		27	30	42	42	42
35	40	37	40	38		26	31	40	42	40
35	41	41	42	39		26	32	42	48	43
38	42	43	45	40		27	32	44	47	45
36	43	44	45	40		30	32	43	48	42
36	42	45	49	42		28	31	43	46	42
34	46	44	44	39		26	29	43	43	42

		Penn.	Md.	Ontar	rio		Ohio		Michig	gan
Strain	Mean	Univ. Park	Upper-	Ridge- town		Hoyt- ville	Woos- ter	Col- umbus	E. Lan- sing	Dun- dee
	Oli Test			SEED QUAI						
	24 Test	.8		SEED YOU	JIII (S	*	*	*		
Amsoy 71	2.6	1.5		2	3.3	1.0	2.0	4.0		
Beeson	2.3			2	1.7	1.0	1.2	2.0		
Corsoy	2.2	1.0		2	1.7	1.0	1.7	2.2		
Provar	2.1	1.7		2	2.0	1.2	1.5	2.0		
Wells	2.5	1.7		2	2.3	1.2	2.2	3.5		
A66-1441-2	2.1	1.4		1	2.0	1.0	1.5	1.7		
A66-1746-9	2.5	1.7		2	2.7	1.0	2.7	2.0		
AX227-31	2.3	1.9		2	1.0	1.0	1.5	2.0		
Blend 2	2.2	1.2		2	2.0	1.0	2.0	2.2		
2	4 Tests			SEED S	ZE (g/	100)				
-	16565			DDDD O.	(B/ (B/	1007	of:	*		
Amsoy 71	17.9	16.7	18.4	22.0	18.3		18.4	18.4	18.5	20.5
Beeson	19.4	18.9	20.5	21.9	19.4		19.5	23.6	18.2	22.2
Corsoy	16.1	13.7	14.9	18.9	15.9		15.4	18.6	15.8	19.0
Provar	21.4	21.3	19.7	23.6	21.4		21.1	22.6	18.8	22.
Wells	16.4	14.7	16.0	18.3	16.8		16.6	17.2	14.2	18.6
A66-1441-2	20.7	20.3	19.7	23.2	21.6		21.6	22.6	22.2	22.6
A66-1746-9	22.0	19.2	23.2	27.1	22.8		21.0	23.1	20.1	25.1
AX227-31	21.6	21.8	22.4	24.3	20.7		21.7	25.1	21.2	23.5
Blend 2	16.5	14.3	15.0	20.0	16.4		17.1	17.7	16.2	19.4
14	Tests			PRO!	rein (%)				
Amsoy 71	39.9				43.3			42.4		40.
Beeson	40.9				44.2			41.3		42.
Corsoy	40.6				44.1			42.5		42.3
Provar	43.7				46.9			44.8		45.1
Wells	41.9				46.4			42.9		43.
A66-1441-2	42.8				47.2			43.4		43.
A66-1746-9	43.1				46.7			43.9		44.0
AX227-31	44.8				48.9			45.3		47.0
Blend 2	40.5				44.4			42.9		41.
14	Tests			0	IL (%)					
Amsoy 71	22.3				20.0			22.6		22.
Beeson	21.1				19.8			21.5		20.
Corsoy	21.7				18.8			22.1		20.
Provar	20.8				19.0			21.6		19.
Wells	21.4				19.0			24.3		20.
A66-1441-2	21.7				19.9			22.4		20.
A66-1746-9	21.0				19.3			21.4		20.
AX227-31	19.6				17.0			20.8		18.
Blend 2	22.1				19.7			21.8		21.

Wis.

20.5 20.6

19.0 20.6

18.3 18.8

21.5

20.2

Indiana

6651		lana		Wis.	111.
Bluff-	Lafay-		Worth-	Mad-	De-
ton	ette	field	ington	ison	kalb
	SEED	QUALITY	(score)	nor.	
			A	*	
2.5	2.5	4.0	4.5	3	2.3
2.0	1.5	4.0	3.5	2	1.7
2.0	1.5	3.0	4.0	2	1.3
2.0	1.0	2.0	2.0	3	1.5
3.0	1.5	3.5	4.0	3	1.7
2.0	1.5	2.5	2.5	1	1.5
1.5	2.5	4.0	4.5	2	2.2
2.5	2.0	3.0	3.5	2	1.8
2.0	2.0	3.0	4.0	3	1.7
	SEI	ED SIZE	(g/100)		
16.8	17.3	17.9	19.0		16.3
19.0	19.4	20.5	20.8		17.3
14.1	15.4	15.6	16.2		15.0
19.7	21.9	21.9	22.4		21.0
15.2	16.2	16.8	16.3		14.9
18.8	20.8	20.1	19.8		19.8
21.2	22.4	19.8	24.0		20.9
21.8	21.8	22.2	23.0		19.6
15.2	16.6	16.9	17.0		16.1
		PROTEIN	(%)		
38.4	39.7			39.4	38.7
39.3	41.1			42.0	40.2
39.1	40.4			41.3	40.3
40.9	43.6			42.6	43.5
40.8	42.2			42.6	41.3
41.0	43.4			41.9	42.3
41.1	43.1			43.9	42.2
43.3	45.4			45.5	44.5
38.1	40.7			40.8	40.0
		OIL (<u>8)</u>		
24.1	23.4			21.0	21.5
21.8				19.4	21.1
	20.4				
23.4				19.8	20.6
23.4	20.4				20.6

23.7 21.1

20.5

18.8

21.9

23.4

21.0

23.7

	-27-		linois	TALL.	107.0
Pon-	Ur-	Gi-	Edge-	Belle-	Eldo-
tiac	bana	rard	wood	ville	rado
	SE	ED QUA	LITY (s	core)	
2.5	2.8	2.7	2.9	4.9	3.9
1.8	2.4		2.8	4.6	3.4
1.8	3.5	3.2	2.9	3.8	2.4
2.2	1.9		2.9	3.5	2.9
2.5	3.5	3.5	3.2	4.0	2.8
2.0	2.2	2.4	2.6	3.1	2.3
2.5	3.2			3.3	2.7
2.2	2.3		2.6	3.5	2.7
2.0	3.2	3.1	2.8	3.7	2.5
		SEED	SIZE (g	(100)	
18.0	19.2	19.0	16.0	18.1	16.5
19.9	22.0	20.3	16.0	19.9	17.9
14.8	17.9	17.2	14.4	17.3	15.6
22.4	23.0	23.0	19.2	21.3	20.3
17.7	18.2	15.8	15.6	17.0	14.9
21.5	21.2	21.2	18.5	20.3	18.5
24.2	24.1	23.7	19.3	21.5	19.6
22.9	24.6	21.5	18.8	23.0	19.5
16.5	17.9	17.5	14.8	18.0	16.1
		PRO	TEIN (9	3)	
	41.0	41.0			41.2
	40.3				42.1
	39.9	41.4			41.2
	44.0	44.6			45.3
	41.6	42.0			41.8
	42.5	44.0			43.8
	43.5				43.3
	45.0	44.3			45.5
	40.1	41.2			40.9
		C)IL (%)		
	23.4	23.1			23.3
	21.8	22.0			21.6
	22.6				23.1
	21.2	21.3			20.9
	22.6	22.1			22.8
	22.0	22.9			22.3
	22.3	20.9			21.8
	19.9	20.8			20.7
	23.0	22.8			23.1

I11.	Minnes	ota	Io	wa	Misso	ouri	South	Dakota	Nebra	ska
Carbon-	Lamb-	Wa-	Kan-	Ames	Spick-	Mt.	Brook-	Center-	Con-	Mead
dale	erton	seca	awha		ard	Vernon	ings	ville	cord	I
			1111	SE	7 17 1 1 1	Y (score)		7 7 7 9		
F 0			200	44.5		0.7.3		100	2.50	- 5
5.0	2.0	2.3	1	1.4	1.5	3.0	3.0	1.3	2.0	2.
5.0	3.0	2.7	1	1.0	2.0	2.2	2.6	1.4	1.5	1.
5.0	2.0	2.3	1	1.3	1.5	2.0	1.6	1.3	1.5	2.
4.7	3.0	2.7	1	1.0	1.5	2.0	2.2	1.3	2.0	1.
5.0	3.0	3.0	1	1.2	2.0	2.5	1.4	1.5	2.0	2.
4.0	3.0	3.0	1	1.0	2.0	3.0	2.0	1.3	1.5	1.
4.7	2.7	3.0	1	1.0	1.8	2.5	2.8	1.5	1.5	2.
5.0	3.0	3.3	1	1.0	2.0	2.0	2.4	1.4	2.5	2.
5.0	1.7	2.7	1	1.0	1.7	1.5	2.0	1.2	2.0	2.
					SEED SIZ	ZE (g/100)	Υ.			
17.5	16.6	18.0		18.6			13.7	17.7	18.6	20.
18.8	17.8	21.6		19.0			14.4	19.3	20.2	22.
15.3	16.3	16.8		16.2			15.0	15.8	17.7	18.
19.6	21.4	21.2		23.0			17.8	20.9	22.6	24.
15.0	16.0	17.3		16.9			15.0	15.6	18.2	19.
19.2	21.5	21.4		21.4			17.1	20.2	22.1	24.
19.8	22.1	22.6		22.3			16.5	22.3	22.4	26.
19.5	19.7	23.5		21.4			16.0	21.4	21.6	26.
15.3	15.8	16.3		17.4			14.6	15.7	16.4	18.
					PROTEI	N (%)				
	50 H			00.0	INOTE	(0)		38.1		38.
	38.4			38.6				39.3		39.
	39.5			39.2						
	39.1			39.0				39.4		38.
	42.9			44.0				41.8		42.
	40.9			40.5				39.4		40.
	41.8			42.2				41.2		41.
	42.3			42.3				40.6		42.
	43.0			44.1				42.4		42.
	39.0			39.4				39.1		39.
					OIL	(%)				
	21.9			22.2				21.8		22.
	21.1			21.5				21.3		21.
	21.8			22.1				21.8		22.
	20.6			20.9				21.1		21.
	20.6			20.5				21.1		22.
	21.5			21.6				21.8		22.
	20.8			21.0				21.4		21.
	19.6			19.5				19.9		20.
	21.8			22.1				22.7		23.

Stra	in	Parentage				
1.	Beeson					
2.	Corsoy					
3.	C1510	Wayne x Cl317-71(Cl223 ⁸ x Mukden)	F			
4.	C1512	$(F_1 \xrightarrow{Amsoy} x C1253) \times (F_1 \xrightarrow{Wayne} x C1317-71)$	F _e			
5.	L69D-124	Chippewa 64 x Corsoy	F5 F5			
6.	L69D-133	0 (0	F ₅			
7.	L69D-227	Hark x Disoy	F			
8.	M65-19	Anoka x Prize	F			

With Corsoy 2 to 3 bushels ahead in regional mean yield none of these strains appear very promising. A few of the later strains were equal to or slightly above Beeson in yield. C1512 with its PR resistance, good lodging, and seed quality and germination may be worth retesting.

PRELIMINARY TEST II, 1972

Regional Summary

	To ye		Matu-	Lodg-		Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oil
No. of Tests	9	9	7	9	9	9	7	4	4
Beeson	44.8	5	+4.0	1.9	39	1.9	20.5	41.2	20.9
Corsoy	48.1	1	9-19	2.3	38	1.9	16.1	40.9	21.4
C1510	43.4	7	+2.9	1.7	41	1.9	16.8	41.8	20.2
C1512	45.3	3	+3.4	1.5	40	1.7	20.8	41.6	21.3
L69D-124	44.6	6	+3.4	2.3	38	1.8	14.9	40.5	21.2
L69D-133	45.3	3	+2.1	2.7	41	1.8	15.7	41.4	20.8
L69D-227	45.4	2	+5.7	2.5	44	2.0	22.4	43.2	20.5
M65-19	42.0	8	-0.9	2.0	34	1.9	23.8	39.8	23.0

Disease Data

	BB	FE2		BSR		CR		PR		PS	В	
Strain	Ames Iowa n2	Iowa	Laf. Ind. a	Laf. Ind. n	Urb. Ill. n	Ames Iowa n %	Laf. Ind. n	Laf. Ind. a		Stoneville Mississippi n	Laf., mat. n	Ind. late n
Beeson	1	2	28	70	67	50	R	R	1	27	47	
Corsoy	3	4	54	40	68	91	S	S	3	50	72	
C1510	3	1	26	70	53	89	R	R	1	19	39	
C1512	3	5	13	80	50	31	R	R	1	17	36	
L69D-124	4	5	20	90	60	87	S	S	2	58	82	
L69D-133	3	4	17	80	43	50	R	R	1	61	79	
L69D-227	3	3	32	50	53	36	S	S	1	52	68	
M65-19	3	5	47	50	61	86	S	S	1	62	78	

Descriptive and Other Data

Strain	Descri	ptive	Chlorosis	Shatte	ring			Germin	ation
	Code		Ames	Stoneville	Manh	attan	Emergence	Laf.,	Ind.
			Iowa	Mississippi	Kansas			mat.	late
					2 wk	6 wk		%	8
Beeson	PGNBr	SYIb	2.8	1	2	3	5	50	59
Corsoy	PGNBr	DYY	3.0	1	1	1.5	1	44	74
C1510	WGN-	SYBf	3.6	3	1.5	2	2	77	37
C1512	PTN-	SYBL	2.5	1	2	2	4	88	37
L69D-124	PTN-	DYB1	3.6	1	1	1	2	34	38
L69D-133	7	SYY	3.5	1	1	1.5	2	29	55
L69D-227	PGN-	DYY	3 1	3	2	4	3	32	14
M65-19	PTN-	DYB1	1.2	4	3	4	1	9	6

		Ont.	Ohio	Ind.		Illin			owa	Mo.	S. Dak.	
Strain	Mean	Har-	Hoyt-	Lafay	- Mad-	Pon-	Ur-				Center-	
4 9 4 4 4 4	2 (1)	row	ville	ette	ison	tiac	bana	awha		umbia	ville	I
	9 Test	s		Y	IELD (1	ou/a)						
			*		*			1000	50.0	00.0	52.5	72.7
Beeson	44.8		46.6	44.6					50.5		31.8	49.6
Corsoy	48.1		38.8	43.3					58.2		38.2	52.4
C1510	43.4		43.1	44.6	37.5	40.3	50.5	42.0	49.9	43.9	35.3	43.8
C1512	45.3	50.0	44.9	43.9	40.5	42.3	55.6	43.2	55.2	36.4	34.0	47.5
L69D-124	44.6	40.2	36.4	44.6					59.5		35.1	46.0
L69D-133	45.3	41.0	41.6	44.6					53.4		38.0	45.3
L69D-227	45.4	39.9	40.6	46.9					53.3		34.6	47.7
M65-19	42.0	43.2	37.4	41.7	38.8	35.4	48.6	40.2	54.0	39.7	32.4	42.4
C. V. (%)		8.7		7.9	3.1	11.9	2.4	5.3	5.5	9.9	13.1	7.0
L.S.D. (5%)		n.s.		n.s.		11.9	3.0	5.6		n.s.	n.s.	7.3
Row Spacing (in	.)	24	32	38	36	38	30	27	27	15	30	30
Rows/Plot		4	3	3	1	3	4	4	4	4	3	3
Reps		2	2	2	2	2	2	2	2	2	2	2
				Y	IELD R	ANK						
Marie		•			2	2	5	7	7	3	8	2
Beeson	5	2	6	2	5	1	1	í	2	6	1	ı
Corsoy C1510	7	6	3		4	6	7	6	8	1	3	7
C1510	3	1	2	2 6	1	4	2	5	3	7	6	4
L69D-124	6	7	8	2	7	7	3	4	1	8	4	5
L69D-133	3	5	4	2	6	5	4	3	5	3	2	6
L69D-227	2	8	5	î	8	3	6	2	6	2	5	3
L65-19	8	3	7	8	3	8	8	8	4	5	7	8
	-		-		*			_				
	7 Tests		MA'	TURITY	(rela	tive	date)	i.				
Beeson	+4.0	+ 3	0	+ 3	- 1	+ 5	+ 7			+ 3		+ 2
Corsoy	9-19	10-1		9-22	10-12	9-22	9-14		9-14	9-1		9-27
C1510	+2.9	+ 1	+ 7	+ 1	- 7	+ 2	+ 4		+ 6	+ 4		+ 2
C1512	+3.4	+ 1	+ 5	+ 2	- 2	+ 3	+ 7		+ 4	+ 5		+ 2
L69D-124	+3.4	- 1	+ 5	+ 5	+ 2	+ 4	+10		+ 1	+ 2		+ 3
L69D-133	+2.1	+ 1	+ 5	+ 4	+ 4	+ 2	+ 5		0	+ 5		- 2
L69D-227	+5.7		+ 9	+ 8	+ 4	+ 6	+ 9		+ 3	+ 2		+ 3
M65-19	-0.9	- 3	+ 3	- 1	- 7	+ 1	0		+ 2	+ 1		- 6
Hark (I)		- 5	+ 3	- 4	-11	- 3	- 2		0			- 4
Wayne (III)	+8.6	+ 5		+11	- 50	+ 7			+13	+ 8		+ 5
Date Planted	5-22	6-2	7 7	5-22	5-22	5-26	5-12	5-9	5-11	5-20	5-26	5-31

Str	ain	Parentage	Line	Previous Testing*
1.	Calland	C1253(Blackhawk x Harosoy) x Kent	F.,	5
2.	Kanrich	Kanro ² x Richland	F.	PIII
3.	Wayne	L49-4091 x Clark	F'	11
4.	SL11	Wayne-Ir Rps x (Wayne 10 x Kanrich)	3 F ₄ line	s P III
5.	Williams	Wayne x L57-0034(Clark x Adams)	F.	3
6.	L66L-172	0	F	2
7.	L67U-440	Chippewa 64 x Corsoy	F ₆	PII
8.	L67U-1842	Provar x Disoy	F3	PII

Williams has had a higher central regional mean yield in each of the past 4 years and an overall average about 1.5 bushels above Wayne and Calland. It has also shown superior lodging and shattering resistance and seed quality but is about 3 days later than Wayne. L66L-172, from the same cross as Williams, has been tested three years and has equalled Williams in yield and lodging resistance but is 3 days earlier, the same as Wayne and is therefore being considered for release for areas where Williams is too late.

There were three new entries in the test this year. L67U-440 showed no advantage over the check varieties but is almost 3 days earlier than Wayne. L67U-1842 is large-seeded and should be compared with Kanrich. It averaged 2 bushels higher in yield and appreciably more lodging resistant than Kanrich. Its 10% smaller seed and somewhat poorer seed quality are factors that will have to be evaluated when considering L67U-1842 as a replacement for Kanrich. SL11 is the result of adding phytophthora resistance (Rps originally from Mukden), downy mildew (Rpm from Kanrich), and brown hilum (r from T145) to Wayne by backcrossing. This 3-line bulk performed very closely to Wayne with a slightly higher mean yield but slightly later maturity in the central area.

		-	Matu-	Lodg-		Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oil
				1972,	Central				
No. of Tests	19	19	15	19	18	19	16	12	12
Calland	45.0	5	+2.2	2.4	43	2.5	18.3	39.8	21.8
Kanrich	37.8	8	-1.1	3.5	40	2.4	26.9	41.1	20.8
Wayne	46.2	4	9-23+	2.6	42	2.5	18.1	41.5	22.2
SL11	46.9	3	+1.0	2.6	43	2.6	18.1	41.8	22.0
Williams	~49.1	1	+3.4	2.1	43	2.0	18.5	40.2	22.9
L66L-172 - 37	47.8	2	-0.2	2.1	41	2.3	16.2	39.5	22.7
L67U-440	44.2	6	-2.7	2.9	41	2.5	14.0	38.7	22.8
L67U-1842	40.2	7	-2.9	2.0	37	3.1	24.0	42.1	21.5

^{† 127} days after planting

			1970-72,	3-year	mean,	Central			
No. of Tests	64	64	54	60	62	60	52	37	37
Calland	45.2	3	+2.1	2.3	42	2.4	17.8	39.7	21.1
Wayne	44.8	4	9-22+	2.5	41	2.3	17.5	41.4	21.7
Williams	46.7	1	+3.5	1.9	42	1.9	17.6	40.5	22.4
L66L-172	46.7	1	+0.2	1.9	40	2.1	15.5	39.6	22.2

^{† 124} days after planting

		<u>1</u>	969-72, 4	-year m	ean, Cer				
No. of Tests	94	94	78	85	90	86	78	52	52
Calland	45.5	2	+1.9	2.3	42	2.4	17.6	39.8	21.3
Wayne	45.3	3	9-22†	2.5	41	2.2	17.4	41.5	21.9
Williams	47.1	1	+3.3	1.9	42	1.9	17.7	40.7	22.5

^{† 123} days after planting

[‡] Includes 3 East Coast tests in 1969

				1972, Ea	st Coas	t			
No. of Tests	4	4	4	4	4	4	4	2	2
Calland	40.7	1	+1.0	1.7	36	2.0	17.9	40.9	21.2
Kanrich	36.9	7	+0.8	2.4	32	2.6	27.6	41.0	20.2
Wayne	37.2	6	9-30+	1.5	32	2.0	16.9	42.1	21.5
SL11	38.9	4	0.0	1.5	33	1.9	17.6	41.3	21.5
Williams	38.4	5	+1.5	1.1	33	1.9	17.7	41.3	22.4
L66L-172	39.4	2	+0.8	1.3	31	1.8	15.9	40.5	22.3
L67U-440	39.4	2	+0.3	2.0	33	2.1	13.4	38.8	22.4
L67U-1842	34.6	8	-1.5	1.2	30	3.1	24.8	41.8	21.5

^{† 116} days after planting

Disease Data

Strain	Am	B es wa	BP Ames Iowa	BS Ames Iowa	FE ₂ Laf. Ind.	PM Har. Ont.
210 0111	nl	n2	n	n	a	а
Calland	2.0	2	2.5	4.0	5	R
Kanrich	2.5	. 3	.4.0	3.5	.1	· S
Wayne	3.5	3	1.0	2.5	2	R
SL11	3.5	1	1.0	3.0	2	R
Williams	4.0	2	2.0	3.0	4	R
L66L-172	4.0	2	4.0	4.0	5	R
L67U-440	3.5	3	4.0	3.5	5	S
L67U-1842	4.0	2	4.0	3.0	4	S

			BSR	v	CR		PR		S	MV	PS	SB
Strain	Laf.		St. Paul Minn.	Ames	Laf. Ind.			Stoneville Mississippi		nes	Laf.,	Ind.
	n . g	n n % %		n %	n %	а	a	n	n	a %	n %	n %
Calland	24	60	95	84	41	R	R	1	1	80	30	29
Kanrich	14	80	100	. 59	.29	S	S	1	.2	65	13	41
~ Wayne	19	60	100	57	47	S	S	1	.2	67	45	.68
SL11	21	90	100	60	63	R	R	1	2	74	43	38
∨ Williams	6	50	100	33	40	S	S	1	-1	65	4	32
L66L-172	17	30	100	36	57	S	S	2	1	55	30	34
L67U-440	9	20	95	50	78	S	S	1	1	58	65	67
L67U-1842	33	60	100	41	53	R	S	1	1	68	36	42

Descriptive and Other Data

			Chl	orosi	s	Fluor-			Shatte	ring	Germin	ation
Strain	Descrip- tive		Crkstn Minn.			escent Light		Perox- idase	Strvle. Miss.	Lubbock Texas	Laf.,	late
_	Code										70	8
Calland	PTNBr	DYB1	4	1.7	2.6	L	1	L	2.0	2.0	35	58
Kanrich	PGNBr	DYY	5	1.7	.2.4	·L	3	·L	.5.0	3.0	65	47
Wayne	WTNBr	SYBL	. 5	2.3	3.9	L	1	L	3.0	2.3	37	15
SL11	WTNBr	SYBr	1	1.7	3.5	L	1	L	3.0	2.0	32	27
Williams	WTNTn	SYLb	1 1	3.0	3.2	L	1	H	1.0	1.3	91	77
L66L-172	WTNTn	DYB1	1	2.0	3.8	L	2	L	2.5	2.0	72	40
L67U-440	PT+GNBr	DYY	3	1.7	3.4	E	2	L+H	2.0	2.0	47	30
L67U-1842		DYBf	2	2.3	2.5	L	3	Н	4.0	2.3	61	10

	East		N.J.		arylan		Cen-	Oh:		Ind.	
Strain	Coast	Landis	-Adel	-Clarks	-Queen	s-Quan-	tral	Hoyt-		Bluff	
	Mean	ville	phia	ville	town	B tico W	Mean	ville	umbus	ton	
	4 Tests			1972 Y	IELD (bu/a)	19 Tests	*	*		
Calland	40.7	47.0	35.2	47.5	25.1	32.9	45.0	21.8	43.8	44.0	
Kanrich	36.9	40.2	33.1	41.4	24.9	32.8	37.8	18.2	31.8	37.3	
Wayne	37.2	45.8	36.0	38.6	26.1	28.4	46.2	28.0	48.6	44.2	
SL11	38.9	45.6	37.2	39.3	21.9	33.3	46.9	35.2	42.8	52.4	
Williams	38.4	42.8	38.3	40.5	20.2	32.1	49.1	36.5	55.0	45.7	
L66L-172	39.4	50.0	34.8	39.6	22.3	33.2	47.8	30.2	47.7	39.4	
L67U-440	39.4	52.8	38.7	36.3	26.0	29.7	44.2	23.3	36.0	42.7	
L67U-1842	34.6	43.1	34.1	36.3	14.6	24.8	40.2	24.1	44.5	31.4	
c. v. (%)		9.9	7.4	8.6	19.6	6.4				11.1	
L.S.D. (5%)	6.7	5.0	5.0	7.8	3.4				6.9	
Row Sp. (in		30	30	30	30	30	1	32	28	30	
Rows/Plot	V	3	3	3	3	3		3	3	3	
Reps		4	4	4	4	3		4	4	4	
				YIE	LD RAN	ĸ					
Calland	1	3	5	1	3	3	5	7	5	4	
Kanrich	7	8	8	2	4	4	8	8	8	7	
Wayne	6	4	4	6	1	7	4	4	2	3	
SL11	4	5	3	5	6	1	3	2	6	1	
Williams	.5	7	2	3	7	5	1	1	1	2	
L66L-172	2	2	6	4	5	2	2	3	3	6	
L67U-440	2	1	1	7	2	6	6	6	7	5	
L67U-1842	8	6	7	7	В	8	7	5	4	8	
	14 Tests	19	70-72	, 3-YEA	R MEAN	YIELD	64 Test	s			
		71-72			71-72	a					
Calland	42.0	46.6	37.0	48.4	37.6	38.8	45.2	26.8	52.9	50.4	
Wayne	37.7	44.8	32.4	41.4	36.5	32.8	44.8	31.2	50.8	49.2	
Williams	41.5	44.6	38.2	46.4	36.3	40.3	46.7	32.8	54.1	49.0	
L66L-172	38.7	44.0	33.5	44.9	33.2	36.0	46.7	29.5	47.2	50.2	
				YIE	LD RAN	ĸ					
Calland	1	1	2	1	1	2	3	4	2	1	
Wayne	4	2	4	4	2	4	4	2	3	3	
Williams	2	3	1	2	3	1	1	1	1	4	
L66L-172	3	4	3	3	4	3	ī	3	4	2	
								3	7	2	

a Poplar Hill in 1970

	Indi									
Lafay-	Green-	Worth-		Ky.						
			Evans-	Hend-						
ette	field	ington	_ville_	erson						
	1972	YIELD (b	u/a)							
45.0	35.8	38.4	36.2	50.0						
41.1	28.9	37.5	31.0	44.6						
49.4	32.6	34.4	40.9	49.4						
45.9	31.6	34.7	45.2	50.8						
47.6	35.4	41.7	43.7	56.9						
49.3	33.4	45.2	39.9	55.4						
45.4	29.8	33.8	33.0	46.8						
39.2	23.1	40.6	32.2	45.8						
7.7	5.8	17.1	13.2	7.1						
5.1	2.7	n.s.	7.3	6.2						
38	38	38	38	30						
3	3	3	3	4						
4	4	4	4	3						
	YIELD RANK									
6	1	4	5	4						
7	7	5	8	8						
1	4	7	3	5						
4	5	6	1	3						
3	2	2	2	1						
2	3	1	4	2						
5	6	8	6	6						
8	8	3	7	7						
19	70-72, 3	-YEAR ME	AN YIELD							
44.0	41.2	45.7	42.3	52.0						
47.0	36.8	45.9	42.3	50.1						
48.6	39.8	50.5	44.8	54.4						
48.9	39.5	52.7	39.5	51.5						
	YI	ELD RANK								
4	1	4	2	2						
3	4	3	2	4						
2	2	2	ī	1						
ī	3	1	4	3						
	-	7,5000								

		Illino		
Ur- bana	Gir- ard	Edge- wood	Belle- ville	Eldo- rado
	197	2 YIELD	(bu/a)	
56.7	49.6	42.8	44.7	48.7
47.2	44.3	36.4	34.8	40.1
54.3		43.7	40.9	39.2
56.9	54.2	44.8	40.9	42.3
59.7	56.1	45.7	50.5	50.9
63.5	56.5	41.4	44.3	45.7
59.4	58.5	42.8	41.6	43.0
53.5	48.8	39.7	37.0	39.2
5.1	5.9	6.3	6.3	3.8
5.1	5.5	4.7	4.6	2.9
30	30	38	38	37
4	4	4	4	4
3	3	3	3	3
		YIELD R	ANK	
5	6	4	2	2
8	8	8	8	6
6	3	3	5	7
4	5	2	5	5
2	4	1	1	1
1	2	6	3	3
3	1	4	4	4
7	7	7	7	7
	1970-72,	3-YEAR	MEAN YIE	LD
			Ъ	
53.0	44.7	46.5	47.6	53.4
50.1	50.2	47.1	46.4	47.4
55.4	49.2	47.9	50.3	54.3
56.4	49.2	46.0	49.2	51.3
		YIELD R	ANK	
3	4	3	3	2
4	1	2	4	4
2	2	1	1	1
1	2	14	2	3

llinois			Miss		S. D.	Neb.		Ka	ansas		
arbon-	Stuart		Spick-		Elk	Mead	Pow-	Man-	Manhat-	Ot-	Col-
ale		mwa	ard	Vernon	Point	I	hattan	hattan	tan I	tawa	umbu
				1972 Y	IELD (b	u/a)				7.3	
				-	*			*			*
36.5	37.7	41.2	41.7	40.4	30.6	45.9	53.6	22.9	65.9	39.0	21.
32.2	34.6	34.0	38.1	35.3	33.3	40.6	34.8	21.0	43.6	39.2	22.
33.1	37.9	44.0	45.5	52.3	35.5	47.6	52.3	21.9	62.3	51.5	25.
34.8	40.0	41.7	49.4	49.7	32.0	48.5	50.7	22.3	62.5	49.2	24.
46.5	40.7	44.1	45.9	49.7	31.8	46.8	54.6	29.3	64.1	48.7	30.
42.3	42.4	43.3	44.0	50.8	40.9	46.5	52.9	24.4	67.5	49.0	21.
34.4	43.2	44.3	38.7	38.7	39.9	48.3	45.9	24.3	59.3	44.0	24.
31.3	36.6	34.0	40.4	40.5	34.1	43.0	44.9	23.8	60.2	43.7	24.
6.5	8.1	9.8	12.8	10.7	16.9	4.4	5.1	17.1	12.1	10.0	16.
4.0	4.5	5.7	8.1	7.0	n.s.	3.3	4.3	n.s.	12.9	7.9	n.s
30	27	27	15	15	40	30	30	30	30	30	30
4	4	4	4	4	3	4	4	4	4	4	4
3	4	4	4	4	4	3	3	3	3	3	3
					YIELD R	ANK					
			1.4				1.2	0.0	140	5	112
3	6	6	5	6	8	6	2	5	2	8	7
7	8	7	8	8	5	8	8	8	8	7	6
6	5	3 5	3	1	3 6	3	4 5	7	5	1 2	2
1 2	3	2	2	3	7	4	1	1	3	4	1
2	2	4	4	2	1	5	3	2	1	3	8
5	1	1	7	7	2	2	6	3	7	5	3
	7	7	6	5	4	7	7	4	6	6	4
				1970-72,	3-YEAR	MEAN	YIELD				
								71-72			
47.3	39.0	45.2	36.8	39.8	32.5	45.3	43.3	25.1	73.6	41.9	18.
41.3	38.6	47.2	38.0	44.7	33.6	48.2	40.6	26.3	65.8	44.0	20.
49.6	40.7	48.3	39.3	43.9	29,6	43.3	44.2	26.1	71.0	44.8	22.
45.6	40.5	49.2	37.2	46.0	35.6	46.5	42.6	26.7	73.1	45.0	18.
					YIELD R	ANK					
			7.		3	3	2	4	1	п	
2	3	4	4	-)	2	1	4	2	4	3	
4	4	3	2	2	4	4	1	3	3	2	
1	1	2	3	1	1	2	3	1	2	1	
3	2	1	3		-						

	East	Penn.	N.J.		arylan	Cen-	Ohio		Ind. Bluff-	
Strain	Coast	Landi	s-Adel-			tral	Hoyt- Col-			
	Mean	ville	phia ville town B ticoW			Mean	ville umbus		ton	
	4 Tests		MATURI	TY (re	lative	date)	15 Tests	*	n	
Calland	+1.0	+ 1	+ 2	- 1	+ 3	+ 2	+2.2	0	+ 2	+ 4
Kanrich	+0.8	0	+ 2	- 1	- 1	+ 2	-1.1	0	0	+ 3
Wayne†	9-30	9-26	9-23	9-27	10-7	10-15	9-23	9-28	10-22	10-4
SL11	0.0	- 1	+ 1	- 1	+ 1	+ 1	+1.0	+ 3	- 2	+ 4
Williams	+1.5	+ 1	+ 3	0	+ 4	+ 2	+3.4	+ 5	+ 2	+ 4
L66L-172	+0.8	0	0	+ 1	+ 1	+ 2	-0.2	0	+10	- 3
L67U-440	+0.3	- 1	0	0	+ 1	+ 2	-2.7	- 3	+ 4	- 3
L67U-1842	-1.5	-10	+ 2	0	+ 1	+ 2	-2.9	- 3	+ 6	- 6
Beeson (II)		-11	- 4					- 3	-28	-12
Cutler 71 (IV)	+7.0	+ 7	+ 7	+ 4	+ 6	+10			+ 8	+11
Date Planted	6-7	5-23	6-2	5-24	6-15	7-10	5-19		5-8	5-22
†Days to Mat.	116	126	113	126	114	97.	127		167	135
Calland Kanrich Wayne	1.7 2.4 1.5	1.5 2.0 1.4	1.8 2.5 1.6	1.8 3.6 1.5	1.6 2.2 2.3	1.5 1.4 1.3	2.4 3.5 2.6	2.0 2.0 2.0	1.0 2.0 2.0	2.6 2.8 3.0
SL11	1.5	1.6	1.4	1.5	2.0	1.3	2.6	2.0	2.0	3.1
Williams	1.1	1.2	1.1	1.0	1.0	1.0	2.1	2.0	2.2	1.4
L66L-172	1.3	1.4	1.3	1.3	1.2	1.0	2.1	2.0	1.5	1.9
L67U-440	2.0	1.9	2.8	2.1	2.0	1.2	2.9	2.0	2.2	2.8
L67U-1842	1.2	1.1	1.6	1.1	2.1	1.0	2.0	1.5	2.0	1.2
ļ	4 Tests		PLAI	NT HEIG	GHT (ĭn	ches)	18 Tests	*	*	
1511.53					177	00	1.4			
Calland	36	41	38	36 32	32 26	28	43	38	39	43
Kanrich	32	38	35			23	40	37	34	40
Wayne	32	38	35	29	30	27	42	41	36	41
SL11	33	38	36	34	30	25	43	40	36	45
Williams	33	36	35	33	30	26	43	40	36	39
L66L-172	31	37	33	32	31	23	41	38	36	40
L67U-440	33	40	35	35	30	23	41	39	39	43
L67U-1842	30	37	33	31	29	20	37	36	34	32

UNIFORM TEST III, 1972

	Illinoi		
Gir-	Edge-	Belle-	Eldo
ard	wood	ville	rado
MATURIT	Y (relat	tive date)
+ 1	+ 2	+ 2	+ 4
+1	- 2	- 1	- 3
9-22	9-22	9-19	9-12
+ 1	0	+ 1	+ 2
+ 5	+ 2	+ 3	+ 6
+ 1	- 1	0	+ 2
- 1	- 2	- 3	- 3
0	- 2	- 1	- 4
- 4	- 4	- 2	
+ 9	+10	+10	+ 9
5-20	5-30	5-11	5-10
125	115	131	125
3.1	DGING (s	2.5	3.7
3.8	3.5	4.5	4.8
2.7	1.8	2.8	3.4
3.2	2.1	2.7	3.2
3.1	1.2	2.0	2.8
3.1	1.1	2.5	2.6
3.5	2.0	3.5	4.4
3.2	1.3	1.6	3.0
- Ec. (0.00.1	Tiesdash		
PLANT	HEIGHT	(inches)	
48	42	43	43
43	39	39	39
48	41	41	40
51	41	40	41

UNIFORM TEST III, 1972

Lafay- ette	Green- field	Worth- ington	Evans- ville
	MATURITY	(relat	ive dat
+ 2	+ 2	+ 1	+ 2
+ 2	- 3	+ 3	- 3
10-3	10-5	9-18	9-20
+ 1	- 1	- 1	+ 2
+ 3	0	0	+ 2
0	- 1	0	0
- 2	- 3	0	- 3
- 5	- 5	0	- 3
- 9	-13	- 4	
+ 7		+11	+ 7
5-22	5-24	5-19	5-25
134	134	122	118

2.8

3.1

3.0

2.8

2.8

3.2

46

44

44

45

46

44

45

45

2.8

2.0

1.0

1.0

1.2

1.2

1.0

1.2

1.1

1.0

31

30

31

31

31

30

30

25

3.1

4.2

3.6

3.6

2.4

2.9

3.9

3.4

PLANT HEIGHT (inches)

47

41

44

48

45

42

47

42

Indiana

He er

5

2.

3.

3.

3. 4.

3.

4

2.4

3.2 2.2

2.8

2.0

2.0

3.0

2.9

42

37

39

43

40

38

40

Illinois	Iowa Stuart Ottu-			ouri		Neb.	Kansas				
	Stuart		Spick-		Elk	Mead	Pow-	Man-	Manhat-	Ot-	Col-
dale		mwa	ard	Vernon	Point	I	hattan	hattan	tan I	tawa	umbus
				MATUR	ITY (rel	ative	date)	C-0			
				-	n	active	date	*			*
+ 4		+ 1			+ 4	0	+ 3	0	+ 1	- 2	- 1
+ 4		0			+ 1	- 1	- 7	- 7	- 1	- 5	- 1
9-7		9-19			10-16	10-3	9-23	9-21	9-22		10-8
+ 2		+ 1			- 1	0	0	0	+ 1	- 1	+ 1
+ 7		+ 5			+ 5	+ 1	+ 5	+ 5	+ 2	- 3	+ 1
+ 1		- 1			- 7	- 1	0	+ 1	0	0	+ 3
- 3		- 3			- 5	- 1	- 7	- 9	- 2	- 5	- 8
- 1		- 1			- 3	- 1	- 7	+ 3	- 2	- 5	+ 3
- 5		- 8				- 5	15	11	10		
+10		+ 9				- 5	-15 +11	-11 +12	-10 +11	- 9 + 9	+ 4
. 10	F 10	- 10	2.54	9-42		2.2					
5-12 118	5-17	5-19 123	5-17	5-10	5-26 143	5-31	5-17	5-19	5-9		5-31
110		123			143	125	129	125	136	120	130
					ODGING (
				<u> 11</u>	#	score)		*			*
2.0	2.6	2.8	1.8	1.6	2.4	2.9	1.9	1.0	3.0	1.7	1.3
4.3	2.8	3.0	3.6	3.5	3.2	4.2	2.8	1.0	4.0	4.0	2.5
3.3	2.8	2.7	2.0	1.6	2.0	3.3	1.9	1.0	3.2	1.7	1.2
3.3	2.5	2.7	2.4	1.6	2.2	2.6	1.9	1.0	3.1	2.0	1.0
2.0	2.5	2.5	1.4	1.2	1.6	2.5	1.7	1.0	2.4	1.4	1.3
2.7	2.8	2.4	1.8	1.4	1.4	2.1	1.3	1.0	2.3	1.3	1.0
3.3	2.6	2.8	2.5	1.8	2.2	3.8	1.6	1.0	2.4	2.8	1.0
2.3	2.2	2.3	1.8	1.5	1.4	2.9	1.2	1.0	2.0	1.3	1.0
				PLAN'	r HEIGHT	(inch	es)	*			*
40	41	46		39	40	48	40	33	46	41	27
38	42	45		33	35	44	37	32	42	39	25
39	43	48		37	42	45	41	33	47	40	26
43	45	44		38	40	46	41	33	45	42	26
40	45	45		38	43	44	40	34	47	44	25
40	42	43		36	41	43	38	31	43	41	25
35	42	46		35	41	45	37	31	44	41	25
33	40	40		28	39	40	36	31	42	37	23

	East	Penn.	N.J		Marylan	Cen-	Ohio		Ind.	
Strain	Coast	Landi				ns-Quan-	tral	-	Col-	
Oracle V	Mean	ville	phi	a vill	Le town	B ticoW	Mean	ville	umbus	ton
	4 Tests			SEED	QUALITY	(score)	19 Tests	*	*	
Calland	2.0	2.8	2.0	2	2.0	1	2.5	1.0	2.0	1.5
Kanrich	2.6	2.8	2.5	3	1.0	2	2.4	1.0	2.2	2.0
Wayne	2.0	2.5	1.5		1.0	2	2.5	1.5	2.0	2.0
SL11	1.9	2.2	1.5	2	1.0	2	2.6	1.2	2.2	2.5
Williams	1.9	2.6	1.8	2	1.0	1	2.0	1.0	2.0	1.5
L66L-172	1.8	2.4	1.8	2	1.3	1	2.3	1.0	2.0	2.0
L67U-440	2.1	2.5	1.8	2	1.0	2	2.5	1.0	2.2	3.0
L67U-1842	3.1	2.5	3.0	3	1.3	4	3.1	1.0	2.5	3.0
	4 Tests			CET	ED SIZE	(=/100)	10 m			
	4 lests			SEI	* SIZE	(g/100)	16 Tests	*	*	
Calland	17.9	17.2	19	17.4	19.0	17.9	18.3	16.8	22.9	18.3
Kanrich	27.6	29.0	27	27.6	23.3	26.7	26.9	27.1	33.3	27.6
Wayne	16.9	19.6	18	14.6	18.3	15.4	18.1	17.6	21.0	17.6
SL11	17.6	19.6	18	15.6	18.3	17.2	18.1	18.7	20.6	18.4
Williams	17.7	19.2	19	16.0	18.9	16.4	18.5	18.6	21.8	19.7
L66L-172	15.9	17.9	17	13.8	16.9	14.7	16.2	16.1	18.4	15.5
L67U-440	13.4	13.3	14	12.1	15.3	14.0	14.0	12.6	17.7	13.8
L67U-1842	24.8	25.9	26	27.0	22.5	20.2	24.0	24.2	34.4	23.2
	2 Tests				PROTEIN	(%)	12 Tests			
Calland	40.9		40.7	41.0			39.8		42.3	
Kanrich	41.0			41.2			41.1		43.1	
Wayne	42.1			41.2			41.5		43.8	
SL11	41.3		41.6	40.9			41.8		44.0	
Williams	41.3		41.9	40.6			40.2		40.9	
L66L-172	40.5			40.0			39.5		41.0	
L67U-440	38.8		38.9	38.6			38.7		41.1	
L67U-1842	41.8		42.0	41.6			42.1		44.3	
	2 Tests				OIL (%)	10 m			
0-113			00.0	01.0		-7	12 Tests	4		
Calland Kanrich	21.2			21.6			21.8		21.3	
Wayne	21.5			21.6			20.8		20.6	
Wayne SL11	21.5			21.6			22.2		22.1	
							22.0		21.5	
Williams	22.4			22.4			22.9		22.5	
L66L-172	22.3			22.1			22.7		22.6	
L67U-440	22.4			22.1			22.8		21.0	
L67U-1842	21.5		21.3	21.6			21.5		21.9	

	India	ina		Ky.
Lafay- ette	Green- field	Worth- ington	Evans ville	Hend- erson
	SEED QU	JALITY (s	core)	
	-	*		
2.0	4.0	2.0	3.0	2
1.5	4.0	3.5	1.5	4
2.5	4.0	2.0	2.5	3
3.0	4.0	2.5	3.0	4
1.0	4.0	1.5	2.0	2
2.0	4.0	2.5	2.5	2
2.0	4.0	3.0	2.5	3
3.0	4.0	3.0	3.0	4
	SEED	-0	100)	
		*		
17.9	19.2	15.3	17.8	19.0
28.9	23.6	27.6	24.8	29.3
18.2 19.0	17.5	13.7 14.7	16.7	20.8
18.4	19.7	14.4	18.0	20.4
16.4 13.7	16.4 13.3	14.4	15.4	17.7
25.0	23.6	23.8	22.9	26.8
	PF	ROTEIN (%)	
40.3	-	40.2		38.0
40.6		42.2		39.8
41.3		41.5		41.5
42.3		41.6		42.0
40.2		40.3		40.1
39.2		39.9		40.1
39.3		40.1		38.3
42.9		42.4		42.6
		OIL (%)		
21.5		21.3		21.9
20.0		21.0		21.4
21.9		21.5		22.6
21.5		22.1		21.7
22.0		23.9		23.9
22.0		23.6		23.0
21.3		22.5		24.1
21.0		22.4		22.4

A		Illinoi		
Ur- bana	Gir- ard	Edge- wood	Belle- ville	Eldo- rado
	SEED	QUALITY	(score)	
2.2	2.1	2.5	3.7	3.4
2.0	2.2	2.4	3.1	3.2
1.7	1.8	2.7	4.0	4.0
1.4	1.8			
1.4	1.4	1.9	3.3 4.5	3.2
1.3	1.8	1.8	4.1	4.1
2.3	3.5	3.3	4,4	4.3
	SE	ED SIZE ((g/100)	
19.9	17.6	16.7	16.9	18.1
29.0	28.4	24.1	25.4	25.4
19.8	17.7	15.8	16.7	16.5
19.0	17.6	16.2	16.7	17.1
19.8	19.2	16.3	16.9	16.7
17.1	16.6	14.4	15.7	15.5
14.8	13.0	13.1	14.2	13.3
26.0	25.6	21.4	20.4	21.0
		PROTEIN	(%)	
40.1	40.0			41.6
42.7	40.8			42.0
43.0	41.7			44.4
42.6	42.1			45.2
40.6	41.9			42.2
39.7	40.7			42.6
39.3	39.2			41.2
40.9	42.6			44.5
		OIL (9	<u>b)</u>	
21.2	22.4			21.8
20.8	21.8			21.6
21.6	22.3			22.7
21.8	22.1			21.8
22.9	23.3			22.9
22.9	23.0			22.4
22.3	22.6			23.9
21.0	21.8			21.9

Illinois	Io		Miss		S. D.	Neb.			Kansas		
Carbon-	Stuart	Ottu-	Spick-		Elk	Mead	Pow-	Man-	Manhat-	Ot-	Col-
dale	-00.	mwa	ard	Vernon	Point	I		hattan			umbus
					- V-V-1						
				SEED	QUALIT	Y (sec	re)	72			
20.50	10.50							*			te
4.7	1.0	1.4	1.8	2.5	2.0	2.7	2.1	2.9	2.0	2.4	3.7
4.3	1.0	1.2	2.3	2.0	2.6	2.5	2.1	3.6	2.5	2.4	3.5
5.0	1.0	1.0	1.5	2.0	1.8	2.5	1.9	3.3	2.5	2.1	3.2
5.0	1.0	1.1	1.5	2.0	2.2	2.0	1.8	2.8	2.3	2.0	3.0
4.3	1.0	1.0	1.2	1.8	1.4	1.8	1.2	2.3	1.8	1.7	2.8
4.3	1.0	1.2	1.2	2.5	1.4	2.3	1.5	2.8	2.1	1.9	3.9
4.7	1.0	1.0	1.3	2.5	1.7	2.7	2.2	3.3	2.8	2.1	4.0
5.0	1.6	2.5	2.0	3.0	2.6	3.0	1.9	3.0	3.0	2.1	3.6
											3.0
					DD 0155						
				SE	ED SIZE	(g/10	0)	*			*
								**			26
16.9		20.4			17.8	21.2	18.9	15.3	20.1	14.3	16.5
23.3		30.8			24.4	27.6	28.0	19.8	30.2	23.4	22.5
16.9		19.8			17.5	19.9	17.9	13.3	21.1		18.5
17.4		20.5			17.1	19.5	18.1	13.1	21.1	13.9	19.0
17.4		21.2			16.1	20.1	17.9	15.7	19.5	14.4	19.5
16.4		17.8			14.9	17.6	15.8	12.4	18.3		16.0
13.4		13.8			14.8	15.6	15.8	11.3	16.4		09.5
21.5		26.4			23.3	28.2	25.0	20.6	26.7		17.5
					PROTEIN	(%)					
					100						
		40.0			38.5	39.3	38.1		39.0		
		40.2			39.3	39.8	40.5		41.6		
		40.1			39.7	40.9	39.4		41.1		
		39.1			40.3	40.5	40.2		41.3		
		38.9			39.4	39.9	38.9		39.4		
		37.9			37.7	39.3	37.7		38.7		
		35.9			36.7	37.8	37.3		38.3		
		42.0			40.7	41.0	40.0		41.0		
					144 0						
					OIL (77: 0	39.5		Q346.		
		21.8			22.4	21.1	22.1		22.4		
		20.6			19.6	20.4	20.9		20.6		
		23.1			21.2	21.6	23.4		22.1		
		22.4			20.9	22.3	22.9		22.8		
		24.1			21.1	22.0	23.4		23.3		
		23.2			22.2	21.5	23.5		22.5		
		23.9			22.4	22.7	23.4		23.3		
		20.8			20.3	20.4	22.3		22.0		

Stra	iin	Parenta	ge	Line
1.	Calland			
2.	Kanrich			
3.	Wayne			
4.	Williams			
5.	C1502	C1317-7	1(C1223 ⁸ x Mukden) x Amsoy	Fa
6.	C1503		200	F3
7.	C1504	19	11.	F ₃
8.	C1505	••	и.	F3 F3 F3 F3
9.	C1506	H.		Fa
10.	C1507	C1317-73	1 x C1253(Blackhawk x Harosoy)	F
11.	C1508	H	and the state of t	F
12.	C1509		(4)	F ₃ F ₃ F ₃
13.	C1513	(F, Amso	by x C1253) x (F, Wayne x C1317-71)	F
14.	L67U-1630	Provar	x Magna	F
15.	L69-20	Hark x 1	Wayne	F
16.	L69U-182	Chippewa	a 64 x Corsoy	F6 F3 F4 F5 F5
17.	L69U-188	6,	W	F

Only a few of the 13 experimental strains had higher regional mean yields than Williams. C1504 averaged 2 bushels higher and 4 days earlier than Williams and had excellent lodging resistance and Phytophthora resistance. Its only apparent drawback is a tendency to shatter, which, however, was no worse than that of Wayne. L69-20 was the same maturity as Williams and yielded a bushel more. Other strains that outyield at least some of the checks were C1502, C1505, C1507, and C1508.

L67U-1603 was relatively low in yield, but since it is large-seeded it should be compared with Kanrich. It was well ahead of Kanrich in yield (7 bushels), but 2.8 days later and only slightly less lodging resistant. As with L67U-1842 in Uniform Test III, its somewhat smaller seed with poorer quality than that of Kanrich will have to be weighed in considering this strain as a substitute for Kanrich.

PRELIMINARY TEST III, 1972

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	osition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oîl
No. of Tes	ts 9	9	8	9	9	9	7	5	5
Calland	44.8	11	+1.0	2.8	45	2.2	18.4	39.9	21.9
Kanrich	35.1	17	-1.8	3.8	39	2.5	28.0	40.6	20.5
Wayne	44.9	10	9-25	2.9	44	2.2	18.3	40.9	22.5
Williams	47.7	4	+3.3	2.3	44	1.6	18.3	39.9	22.8
C1502	45.9	8	-1.3	2.0	44	1.9	18.4	39.6	22.4
C1503	42.3	16	+0.4	2.1	44	2.2	16.5	39.3	22.0
C1504	49.7	1	-1.3	2.1	44	2.4	19.0	39.7	22.7
C1505	46.3	7	+0.9	2.8	49	2.5	19.5	38.1	23.3
C1506	48.2	3	+1.9	2.4	49	2.2	17.8	38.1	23.2
C1507	46.9	6	+1.0	2.3	49	1.8	19.2	40.1	22.2
C1508	47.7	4	-0.3	1.9	42	1.9	18.7	38.8	22.5
C1509	45.1	9	+0.3	2.4	44	1.8	19.5	40.5	21.5
C1513	44.2	13	-1.1	2.7	45	2.5	18.3	39.0	23.1
L67U-1630	42.5	15	+1.0	3.1	46	3.1	24.4	42.2	21.0
L69-20	48.8	2	+3.4	3.0	43	2.0	15.3	40.6	21.9
L69U-182	43.2	14	+0.9	3.6	45	2.3	18.2	40.8	21.2
L69U-188	44.5	12	0.0	3.5	44	2.2	17.4	40.1	21.7

Disease Data

	BB	FE2		BSR		CR		PF		PS	B
Strain	Ames Iowa n2	Laf. Ind. a	Laf. lnd. n	Urb. Ill. n	Ames Iowa n	Laf. Ind. n	Laf. Ind. a	Ames Iowa a	Stoneville Mississippi n	Laf. mat. n	Ind. late n
Calland	3	5	24	70	69	41	R	R	1	30	29
Kanrich	2	1	14	80	55	29	S	S	1	13	41
Wayne	2	2	19	60	52	47	S	S		45	68
Williams	1	4	6	70	+0	40	S	S	1	4	32
C1502	3	1	21	60	44	86	R	R	1	17	25
C1503	2	4	24	80	1.9	59	R	R	1	7	11
C1504	2	1	24	60	26	89	R	H	1	22	41
C1505	2	1	46	70	42	88	R	R	1	20	40
C1506	1	1	48	50	40	95	R	R	1	7	13
C1507	3	4	62	70	35	ц.	R	R	1	31	18
C1508	2	5	46	90	46	45	R	R	1	30	35
C1509	3	3	24	80	46	64	R	R	1	17	8
C1513	3	3	35	90	25	89	R	R	1	64	68
L67U-1630	2	5	÷ .	70	22	63	S	S	1	72	41
L69-20	3	5	4	20	55	17	H	S	1	10	18
L69U-182	2	4	63	00	:9	60	S	S	1	51	48
L69U-188	3	5	FB	1:04	27	61	R	H	1	46	59

		Md.	Ohio	Indi	ana	11	linois	Io	wa	Neb.	Kansas
Strain	Mean	Clarks- ville	Col- umbus		Worth- ington			Stuart	Ot- tumwa	Mead I	Manhat- tan I
9	Test	s		YI	ELD (bu	/a)					N. P.
			*								
Calland	44.8	38.7	43.8	42.8	46.9	46.0	41.4	40.0	42.3	42.1	63.1
Kanrich	35.1	35.9	29.2	40.6	32.6	39.1	24.8	32.4	31.9	34.1	44.9
Wayne	44.9	41.6	40.5	45.6	40.4	52.9	33.5	40.8	40.6	46.3	62.4
Williams	47.7	36.4	53.5	52.1	49.2	52.3	43.1	40.0	42.4	48.6	65.4
C1502	45.9	39.9	47.0	44.4	55.7	44.0	43.9	38.8	37.7	46.0	62.5
C1503	42.3	33.7	48.2	47.5	38.1	50.6	36.1	34.7	37.6	44.3	58.2
C1504	49.7	42.3	44.4	48.5	54.8	53.1	41.0	42.5	45.4	52.6	67.2
C1505	46.3	42.9	43.3	46.2	43.7	51.7	39.3	37.4	41.2	46.7	68.0
C1506	48.2	42.7	54.6	44.8	59.6	55.4	40.8	39.2	44.9	45.4	61.1
C1507	46.9	41.5	54.9	47.6	54.7	48.5	39.7	39.6	38.7	48.5	63.2
C1508	47.7	42.3	53.3	48.4	47.4	51.7	38.0	43.5	40.4	48.6	69.4
C1509	45.1	35.3	44.5	43.9	47.4	47.8	37.1	42.0	41.8	49.4	61.4
C1513	44.2	41.9	41.2	45.2	42.0	45.8	33.8	39.6	39.0	47.7	62.5
L67U-1630	42.5	39.4	38.9	42.9	43.2	50.4	31.5	37.1	33.6	43.5	60.5
L69-20	48.8	34.4	47.5	50.6	50.4	50.6	41.6	45.9	45.0	51.1	70.0
L69U-182	43.2	40.4	48.4	44.2	40.9	47.4	36.5	40.1	38.2	45.1	56.1
L69U-188	44.5	39.3	39.9	46.4	43.5	49.0	35.5	41.6	41.2	47.3	56.4
c. v. (%)		8.9		5.5	12.1	7.3	4.1	11.4	7.1	7.0	4.2
L.S.D. (5%)		7.5		5.3	12.0	7.6	3.3	9.5	6.1	7.9	5.6
Row Sp. (in.)		30	28	38	38	30	38	27	27	30	30
Rows/Plot		3	3	3	3	4	4	4	4	3	4
Reps		2	2	2	2	2	2	2	2	2	2

Descriptive and Other Data

	Descri	ptive	Chlorosis	Shattering	Germina	tion
Strain	Code		Ames Iowa	Stoneville Mississippi	Lafayette, mat. %	Indiana late %
Calland	PTNBr	DYB1	2.9	3.0	35	58
Kanrich	PGNBr	DYLbf	2.4	4.5	65	47
Wayne	WTNBr	SYB1	3.9	5.0	37	15
Williams	WTNTn	SYLbl	3.2	1.0	91	77
C1502	PGN-	SYBf	3.4	4.0	81	49
C1503	W+PGN-	SYY	2.9	3.5	89	67
C1504	WGN-	SYBF	2.4	4.5	83	35
C1505	WGN-	SYBf+Y	3.5	3.0	86	33
C1506	WGN-	SYBf+Y	2.4	3.0	89	78
C1507	PGN-	SYID	3.1	2.5	76	37
C1508	PGN-	SYID	2.2	2.5	80	28
C1509	WGN-	D+SYBf	2.9	3.0	88	39
C1513	WTN-	-YB1	2.2	3.0	34	17
L67U-1630	PGN-	DYBf	3.4	3.5	29	15
L69-20	PTN-	DYBr	3.1	2.5	95	85
L69U-182	PTN-	SYY	3.4	2.5	79	54
L69U-188	PTN-	SYB1+G	3.8	2.0	71	51

		Md.	Ohio	Indi	ana	11:	linois	Io	ra .	Neb.	Kansas
Strain	Mean	Clarks- ville	Col- umbus		Worth- ington			Stuart	Ot- tumwa	Mead I	Manhat- tan I
	9 Tests		*	Y	IELD RA	NK					
Calland	11	12	11	16	9	14	4	8	5	16	7
Kanrich	17	14	17	17	17	17	17	17	17	17	17
Wayne	10	6	14	9	15	3	15	6	9	10	10
Williams	4	13	3	1	6	4	2	8	4	4	5
C1502	8	9	8	12	2	16	1	13	14	11	8
C1503	16	17	6	6	16	7	12	16	15	14	14
C1504	1	3	10	3	3	2 5	5	3	1	1	4
C1505	7	1	12	8	10	5	8	14	7	9	3
C1506	3	2	2	11	1	1	6	12	3	12	12
C1507	6	7	1	5	4	11	7	10	12	6	6
C1508	14	3	4	4	7	5	9	2	10	4	2
C1509	9	15	9	14	7	12	10	4	6	3	11
C1513	13	5	13	10	13	15	14	10	11	7	8
L67U-1630	15	10	16	15	12	9	16	15	16	15	13
L69-20	2	16	7	2	5	7	3	1	2	2	1
L69U-182	14	8	5	13	14	13	11	7	13	13	16
L69U-188	12	11	15	7	11	10	13	5	7	8	15

Date Plante	d 5-19	5-24	58	5-22	5-19	5-20	5-11	5-17	5-19	5-31	5-9
Cutler 71 (+ 3	+ 7	+11	+ 8	+ 8		+ 9		+10
Beeson (II)			-33	- 9	- 4	- 5	- 4		- 8	- 3	-11
L69U-188	0.0	0	+ 6	+ 2	+ 2	- 1	- 1		- 1	0	- 1
L69U-182	+0.9	+ 2	+ 5	+ 3	+ 3	+ 1	0		_		- 2
L69-20	+3.4	- 2	+ 6	+ 4	+ 4	+ 1	+ 3			+ 2 + 1	13 3
L67U-1630	+1.0	- 1	+ 7	0	+ 2	+ 2	- 1			+ 2	+ 1
C1513	-1.1	- 1	+ 6	- 2	+ 2	- 2	- 1		- 2 + 3	0	- 3
C1509	+0.3	0	+ 3	+ 1	+ 2	0	- 2		- 1	+ 2	0
C1508	-0.3	0	+ 5	- 3	+ 2	- 1	- 2		- 1	+ 2	+ 1
C1507	+1.0	+ 1	+ 1	0	+ 2	+ 1	- 1		0	+ 3	+ 2
C1506	+1.9	0	- 1	+ 3	+ 2	+ 1	- 1		+ 5	+ 4	+ 1
C1505	+0.9	- 2	+ 3	+ 1	+ 3	+ 1	+ 1		+ 1	+ 2	0
C1504	-1.3	- 1	+ 2	- 1	+ 1	- 1	- 2		- 5	+ 2	- 3
C1503	+0.4	- 1	+ 1	- 1	+ 1	+ 1	- 1		+ 1	+ 3	0
C1502	-1.3	- 2	+ 6	- 3	0	0	- 2		- 2	+ 2	- 3
Williams	+3.3	0	+ 5	+ 3	+ 3	+ 5	+ 4		+ 5	+ 4	+ 2
Wayne	9-25	9-27	10-27	10-3	9-18	9-23	9-21		9-19	10-2	9-23
Kanrich	-1.8	- 4	- 2	+ 3	+ 4	- 2	- 2		- 3	0	- 3
Calland	+1.0	- 2	- 3	+ 1	+ 4	0	+ 2		+ 1	+ 2	0
	8 lests		* 111	TUKITI	(retai	ive da	ite)				
	8 Tests		MA	TURITY	(relat	ive da	tel				

Stra	in	Parentage	Line	Previous Testing*
1.	Bonus	Cl266R(Harosoy x Cl079) x Cl253(Blackhawk x Harosoy)	F.	3
2. 3.	Cutler 71 Kent	Cutler4 x Kent-Rps rxp(SL5) Lincoln x Ogden	6 F ₃ lines F ₇	3 18
4.	L66-1359	Wayne x L57-0034(Clark x Adams)	F ₆	2
5. 6.	Md66-1024 Md66-1258	2nd cycle intermates 2nd cycle intermates	F ₆	P IV

The three check varieties may be compared in the 4-year means on pages 80 and 81. Cutler 71 shows a slight yield advantage in the East, but Bonus had a small lead in the Central mean. Bonus was distinctly ahead of other strains in this test in protein content and did not show a corresponding decrease in oil.

L66-1359 has been in this test for three years and topped the test in yield in each year in both the central region and the East. Besides its high yield, it has good lodging resistance and one of the highest oil contents in the Uniform Tests. It is early Group IV in maturity, and therefore an appendix table (see pages 114-115) has been prepared to compare it with Group III strains using data from locations where both Uniform Tests III and IV were grown. This table shows that L66-1359 is less than two days later than Williams and averaged about the same in yield performance over these locations. L66-1359 has the same parentage as Williams.

Md66-1258 has been in the test two years, but has yielded slightly below L66-1359 in both regions and no better than Bonus in the central region. Md66-1024 was advanced from last year's Preliminary IV. Because of its relatively late maturity it should be compared to Kent, and Kent has equaled or outyielded it at most locations.

UNIFORM TEST IV, 1972

Disease Data

	E	BB	BP	BS	FE2	PM			BSR	
Strain		nes wa	Ames Iowa	Ames	Laf. Ind.	Har. Ont.	Laf. Ind.	Urb.	St. Paul Minnesota	Ames Iowa
	nl	n2	n	n	а	a	n %	n %	n %	n %
Bonus	2.5	1	3.0	4.0	5	S	41	50	80	49
Cutler 71	2.5	1	2.5	3.0	1	R	48	50	80	21
Kent	3.0	1	4.0	5.0	1	R	88	70	90	45
L66-1359	3.0	2	3.5	4.5	4	R	13	50	95	55
Md66-1024	3.5	2	3.0	5.0	4	R	22	80	95	33
Md66-1258	3.0	3	4.0	3.5	1	R	16	50	95	39

	CR		PR		SMV		PSB		
Strain	Laf. Ind.	Laf. Ind.	Ames Iowa	Stoneville Mississippi	Ап	es wa	Lafayette, mat.	Indiana late	
	n g	a	a	n	n	a %	n g	n %	
Bonus	10	R	R	1	.1	44	4	26	
Cutler 71	68	R	R	1	.1	55	8	22	
√Kent	19	S	S	2	.1	45	0	.10	
L66-1359	16	S	S	1	1	39	5	22	
Md66-1024	0	S	S	2	1	44	6	15	
Md66-1258	30	S	S	1	1	45	6	15	

Descriptive and Other Data

			Ch1	orosi	s	Fluor-	Emer-	Perox-	Shatte	ering	Germin	ation
Strain	Descri tive Code	ip-	Crkstn Minn.			escent Light	gence	idase	Stnvl. Miss.	Lubbock Texas	Laf., mat.	Ind. late
Bonus	PGNBr	DYIb	1	2.7	2.1	L	5	L	4.5	2.0	92	81
Cutler 71	PTNBr	SYB1	1	1.7	2.6	L	5	L+H	4.0	1.0	93	87
Kent	PTNBr	1YB1	2	2.3	3.6	L	4	H	4.0	2.0	98	87
L66-1359	WTNTn	DYB1	1	2.3	4.0	L	1	L	3.0	2.0	92	68
Md66-1024	WTNTn	DYB1	2	3.0	2.9	L	5	L	1.5	1.0	95	83
Md66-1258	PTNBr	SYBL	2	2.7	2.0	L	5	L	2.5	1.5	95	83

East Coast Regional Summary

			Matu-	Lodg-	7.18.07	Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oil
				197	2				
No. of Tests	7	7	7	6	7	7	7	3	3
Bonus 43.1	37.6	6	-2.0	1.5	36	2.0	17.7	43.1	21.7
Cutler 71 43.4	40.5	3	10-6+	1.6	36	2.0	19.6	40.9	22.3
Kent 42.4	40.7	2	+5.3	1.4	35	2.2	19.6	41.1	22.2
L66-1359 45.8~	40.8	1	-2.0	1.4	32	1.9	19.1	40.2	22.9
Md66-1024	40.3	4	+2.4	1.5	35	2.1	17.8	39.3	23.2
Md66-1258 43 6	-40.2	5	+0.4	1.5	33	2.1	19.4	40.6	21.9

†122 days after planting

1970-72, 3	year mean
------------	-----------

No. of Tests	22	22	21	21	22	22	22	12	12
Bonus	39.6	4	-1.6	1.6	37	2.3	17.9	43.0	21.7
Cutler 71	41.0	2	10-5+	1.9	37	2.4	19.4	41.4	21.7
Kent	40.0	3	+3.2	1.5	36	2.3	18.7	41.2	21.7
L66-1359	43.2	1	-3.0	1.6	34	2.2	19.3	40.4	22.7

†121 days after planting

			The State of the S	
٦	969	-72	4-veam	mean

					_			
28	28	26	27	28	28	28	15	15
40.5	2	-1.6	1.8	39	2.3	17.7	42.7	22.0
41.3	1	10-3+	1.9	39	2.3	19.1	40.9	21.9
40.5	2	+3.3	1.6	38	2.2	18.4	41.0	21.9
	40.5 41.3	40.5 2 41.3 1	40.5 2 -1.6 41.3 1 10-3†	40.5 2 -1.6 1.8 41.3 1 10-3† 1.9	40.5 2 -1.6 1.8 39 41.3 1 10-3† 1.9 39	40.5 2 -1.6 1.8 39 2.3 41.3 1 10-3† 1.9 39 2.3	40.5 2 -1.6 1.8 39 2.3 17.7 41.3 1 10-3† 1.9 39 2.3 19.1	40.5 2 -1.6 1.8 39 2.3 17.7 42.7 41.3 1 10-3† 1.9 39 2.3 19.1 40.9

†121 days after planting

UNIFORM TEST IV, 1972

Central Regional Summary

		_	Matu-	Lodg-		Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oil
				197	12				
No. of Tests	18	18	15	18	18	18	16	10	10
Bonus	45.8	2	-2.9	2.1	45	2.3	17.1	42.7	22.3
Cutler 71	44.8	4	9-29+	2.1	45	2.4	18.0	40.9	22.1
Kent	43.6	5	+4.5	1.9	42	2.5	17.7	40.5	22.5
L66-1359	48.3	1	-2.9	2.1	41	2.4	18.8	39.9	23.5
Md66-1024	41.2	6	+4.0	1.8	43	2.7	16.6	39.3	23.0
Md66-1258	45.8	2	+0.7	2.0	43	2.5	18.3	41.2	22.3

†135 days after planting

			197	0-72, 3-	year mean				
No. of Tests	54	54	48	52	53	54	46	32	32
Bonus	44.7	2	-3.0	2.2	45	2.2	16.9	42.7	22.1
Cutler 71	44.2	3	9-27+	2.2	44	2.3	17.6	41.0	21.9
Kent	42.9	4	+5.0	2.0	41	2.4	17.5	40.6	22.3
L66-1359	46.4	1	-3.4	2.0	40	2.3	18.0	40.0	23.3

†130 days after planting

				1969	9-72, 4-	year mean				
No. of To	ests	75	75	65	71	72	75	64	41	41
Danua		115 2	1	-3.5	2.2	46	2.2	17.0	43.0	22.3
Bonus Cutler 7	1	45.3	2	9-28†	2.1	44	2.3	17.7	41.0	22.0
Kent	1	43.5	3	+4.2	2.0	41	2.4	17.6	40.8	22.4

†130 days after planting

	East	Penn.	N. J.	Del.		М	aryland		
Strain	Coast	Landis-	Center-	George-		Queens-	Queens-		Quant
	Mean	ville	ton	town I	ville	town	town B	wood	ico W
	7 Tests		19	72 YIELD	(bu/a)				
			*						
Bonus	37.6	42.1	31.9	50.7	34.1	36.6	28.4	39.3	31.9
Cutler 71	40.5	44.2	33.7	50.5	38.8	37.8	33.3	44.7	34.4
Kent	40.7	48.4	35.3	51.4	33.2	44.5	35.9	42.8	28.6
L66-1359	40.8	45.3	32.4	53.5	36.4	34.1	36.0	43.3	36.7
Md66-1024	40.3	45.8	26.6	49.8	37.8	41.6	28.0	42.4	37.0
Md66-1258	40.2	44.5	30.3	52.9	33.8	39.0	32.5	45.6	33.4
c. v. (%)		7.1	17.5	11.2	6.5	9.0	13.0	7.1	4.5
L.S.D. (5%)	n.s.	10.3	6.2	5.6	4.8	4.0	3.9	2.6
Row Sp. (in		30	30	36	30	30	30	30	30
Rows/Plot	20,0	3	3	3	3	4	3	. 4	3
Reps		4	4	4	4	3	4	3	3
				YIELD RA	NK				
Bonus	6	6	4	4	4	5	5	6	5
Cutler 71	3	6 5 1	2	5	1	4	3	2	3
Kent	2	1	1	3	6	1	2	4	6
L66-1359	1	3	3	1	3	6	1	3	2
Md66-1024	4	2	6	6	2	2	6	. 5	1
Md66-1258	5	4	5	2	5	3	4	1	4
			312.37	V 40-14	Carlot Bas				
11	7 Tests		1970-72	, 3-YEAR	MEAN YIE	LD			
		71-72							а
Bonus	39.6	46.6	34.6	50.4	39.1	36.0	33.5	39.5	36.8
Cutler 71		48.5	33.1	46.9	42.4	38.1	33.3	42.5	39.7
Kent	40.0	51.3	32.6	48.8	38.2	41.3	35.9	39.5	36.8
L66-1359	43.2	48.9	34.3	51.5	43.9	37.9	36.8	41.9	41.4
				Action Fi	17500				
	. 1	8.0		YIELD RA	- 0		4		2.
Bonus	4	4	1	2	3	4	3	3	3
Cutler 71	2	3	3	4	2	2	4	1	2
Kent	3	1	4	3	4	1	2	3	3
L66-1359	1	2	2	1	1	3	1	2	1

a Poplar Hill in 1970

Indiana

Ohio

6 2

tral Mean	Col- umbus	Lafay- ette	Worth- ington	Evans- ville
18 Test	s 197	2 YIELD	(bu/a)	2-17172
	*		*	
45.8	49.3	40.6	40.3	36.6
44.8	46.4	45.5	46.1	40.3
43.6	47.9	41.4	42.8	37.0
48.3	48.4	46.9	47.3	44.9
41.2	48.1	41.1	40.1	35.3
45.8	51.9	45.2	47.3	41.5
		6.0	15.8	9.7
		3.9	n.s.	5.7
	28	38	38	38
	3	3	3	3
	4	4	4	4
		YIELD I	RANK	
2	2	6	5	5
4	6	2	3	3
5	5	4	4	4

5 3

44.7	52.1	42.2	46.1	44.9	
44.2	46.9	47.3	49.7	46.3	
42.9	51.6	42.8	47.9	42.6	
46.4	45.0	47.7	51.9	47.2	
		YIELD RA	NK		
2	1	4	4	3	
3	3	2	2	2	
4	2	3	3	4	
1	4	1	1	1	

		YIELD RANK
2	1	4
3	3	2
4	2	3
1	4	1

1 6 2

Ky.			Illino	is	
Hend-	Ur-	Gir-		Belle-	Eldo-
erson	bana	ard	boow	ville	rado
		1972 Y	IELD (bu/a)	
50.0	55.1	55.4	41.9	50.2	47.4
57.1	60.0	50.3	42.1	45.5	49.2
38.3	54.2	49.4	39.0	45.4	47.7
58.3	60.2	54.1	46.2	50.4	48.6
	53.4	45.8	30.5	38.3	44.3
54.6	56.7	54.9	41.7	43.9	51.3
8.2	5.8	5.0	12.0	5.6	4.8
7.6	6.0	4.7	8.8	4.6	4.2
30	30	30	38	38	37
4	4	4	4	4	4
3	3	3	3	3	3
		YIE	LD RAN	<u>K</u>	
4	4	1	3	2	5
2	2	4	2	3	2
6	5	5	5	4	4
1	1	3	1	1	3
5	6	6	6	6	6
3	3	2	4	5	1
	1970-	72, 3-	YEAR M	EAN YIEL	.D
	-			a	
49.3		49,9	47.9	49.3	50.3
49.5	54.1	44.0	45.2	48.6	51.9
46.9	52.2	41.0	44.6	48.5	53.1
50.7	55.4	49.9	46.3	50.3	52.3
		YIE	LD RAN	ĸ	
	2		1	2	100
3	3	1	1	2	14
2	2	3	3	3	3

2

1

a Trenton in 1970

Illinois	Io			souri		Kar	nsas	300		Texas	
Carbon-	Stuart	Ottumwa	Mt.	Portage-	Pow-	Man-	Manhat-	Ottawa	Col-	Lub-	
lale			Vernon	ville I	hattan	hattan				bock :	
				1972 YI	ELD (bu	/=1			7/1		
				13/2 11	LLD (DG	/4/				*	
43.9	38.3	52.8	45.2	39.7	53.2	30.8	63.0	51.3	28.5	50.7	
37.8	38.8	43.4	42.1	40.1	55.8	26.9	60.7	45.6	25.4		
36.3	36.2	39.3	44.8	49.0	56.6	35.0	57.6	50.6	27.5		
43.9	40.0	42.4	48.3	49.7	56.0	28.8	62.6	56.4	31.7	46.4	
39.0	32.4	32.6	44.6	40.3	49.7	36.8	56.3	47.7	26.3		
40.1	40.6	41.5	48.9	44.8	56.0	27.9	60.1	53.7	21.3		
8.2	8.1	9.8	10.9	14.0	5.1	7.9	5.9	6.4	12.6	8.6	
5.7	4.5	5.7	n.s.	9.3	n.s.	4.5	n.s.	5.9	n.s.	4.7	
30	27	27	15	30	30	30	30	30	30	40	
4	4	4	4	3	4	4	4	4	4	4	
3	4	4	4	4	3	3	3	3	3	3	
				VIE	D DANK						
				TILL	D RANK						
1	4	1	3	6	5	3	1	3	2	3	
5	3	2	6	5	4	6	3	6	5	4	
6	5	5	4	2	1	2	5	4	3	1	
1	2	3	2	1	2	4	2	1	1	6	
4	6	6	5	4	6	1	6	5	4	5	
3	1	4	1	3	2	5	4	2	6	2	
			19	70-72, 3-Y	FAR MEA	N VIELD					
	71-72	71-72			J.1 (.D.1.	71-72				70,72	
47.0	35.5	48.1	38.1	35.0	40.6	27.6	68.4	43.5	24.5		
46.0		44.0	40.9	34.7	41.2				21.2		
45.9		40.0	44.0	37.8	41.3		61.6	40.3		48.1	
48.8	39.0	43.9	42.7	37.9	42.1	25.4	69.2	46.9	24.7		
	33.0	40.5	3211		72.02		-		-		
				YIEL	D RANK						
2	3	1	4	3	4	1	2	2	2	3	
3	2	2	3	4	3	4	3	4	4	2	
4	4	4	1	2	2	3	4	3	3	1	
1	1	3	2	1	1	2	1	1	1	4	

	East	Penn.	N. J.	Del.		Mar	ryland		
Strain	Coast Mean	Landis- ville		George- town I	Clarks- ville	Queens- town	Queens- town B	Link- wood	Quant-
	Tests		MATURIT	Y (relati	ve date)				
Bonus	-2.0	- 2		- 3	- 2	- 3	- 1	- 2	- 1
Cutler 71†	10-6	10-3		10-5	9-30	9-27	10-13	10-2	10-25
Kent	+5.3	+10		+ 4	+ 6	+ 9	+ 2	+ 6	0
L66-1359	-2.0	- 2		- 2	+ 1	- 3	- 5	- 1	- 2
Md66-1024	+2.4	+ 2		0	+ 5	+ 6	0	+ 3	+ 1
Md66-1258	+0.4	0		+ 1	+ 3	- 1	0	+ 1	- 1
Calland (III)		- 6			- 4		- 3		- 8
Hill (V)				+19		+15	+ 9	+14	
Date Planted	6-7	5-23	6-5	6-2	5-24	5-26	6-15	6-9	7-10
†Days to mat.	122	133		125	129	124	120	115	107
6	Tests		LC .	DGING (sc	core)				
Barania .		ı			1.2	1.3	1.5	2.2	1.0
Bonus Cutler 71	1.5		1.3	1.8	1.8	1.5	1.2	1.5	1.5
Kent	1.4		1.5	1.9	1.2	1.2	1.4	1.5	1.0
L66-1359	1.4		1.8	1.8	1.3	1.3	1.0	2.2	1.0
Md66-1024	1.5		1.1	2.0	1.4	1.3	2.0	1.5	1.0
Md66-1258	1.5		1.4	1.9	1.4	1.3	1.7	1.8	1.0
,	Tests		PLANT	HEIGHT (inches)				
	322.42		*		THE REAL PROPERTY.				
Bonus	36	45	33	34	38	36	30	39	31
Cutler 71	36	42	31	35	38	37	31	37	29
Kent	35	38	30	35	36	34	32	39	29
L66-1359	32	39	28	32	34	33	29	33	27
Md66-1024	35	40	27	33	38	36	30	37	28
Md66-1258	33	37	27	33	35	33	30	35	29

Cen-	Ohio		Indiana						
tral	Col-		Worth-						
Mean	umbus	ette	ington	ville					
15 Tests	MATU	RITY (r	elative	date)					
-2.9	+ 2	- 3	- 4	- 3					
9-29	10-30	10-10	9-29	9-27					
+4.5	+ 2	+ 4	+ 7	+ 7					
-2.9	+ 5	- 4	- 6	- 4					
+4.0	+ 4	0	+ 5	+ 9					
+0.7	+ 3	0	+ 2	+ 1					
	- 6	- 5	-10	- 5					
5-18	5-8	5-22	5-19	5-25					
135	175	141	133	125					
18 Tests	* TO	DGING (score)						
2.1	1	2.9	3.0	2.6					
2.1	1	2.8	3.1	2.0					
1.9	1	1.9	2.0	1.8					
2.1	1	2.4	3.6	2.0					

1.5

2.2

PLANT HEIGHT (inches)

1.5

2.2

1.8

2.0

18 Tests

2.0

Ky.		200	Illino	is	1
Hend-		Gir-		Belle-	
erson	bana	ard	wood	ville	rad
	MATUR	ITY (r	elativ	e date)	
	- 2	- 2	- 9	- 8	- 1
	10-7	10-1	10-2	9-29	9-2
	+ 1	+ 6	+ 5	+ 5	+ 7
	- 5	- 3	-10	- 6	- 2
	+ 3	+ 5	+ 2	+ 4	+ 6
	+ 1	+ 2	+ 1	+ 1	+ 2
	- 5	- 8	- 8	- 8	- 5
	+21				+13
5-17	5-12	5-20	5-30	5-11	5-3
	148	134	125	141	134
		LODGIN	IG (sco	re)	
	8.7.			110	
	2.0	2.7	1.6	2.0	2.1
	2.2	2.8		2.5	2.2
3.3	1.4	3.0	1.3	1.7	2.1
3.2	2.1	3.3	1.3	2.4	2.5
Larry I	2 2	4 12	4 4		100

2.8 1.2 3.2 1.3 2.8 1.5 1.7 2.01 1.8 4.3 1.8

PLANT HEIGHT (inches)

2.3

Illinois	Iowa			ssouri	NA.	Kansas				
Carbon-	Stuart	Ottumwa	Mt.	Portage-	Pow-	Man-	Manhat-	Ottawa	Col-	Texas Lub-
dale	19.6		Vernon	ville I	hattan	hattan	tan I		umbus	bock !
			M	ATURITY (relative	date)				*
+ 1		0		- 1	- 3	- 5	- 3	- 2	- 3	- 6
9-17		9-18		9-13	10-4	10-3	10-3	9-22	10-12	9-17
+ 4		+ 4		- 1	+ 4	+ 5	+ 3	+ 7	+ 6	+ 2
0		- 4		- 1	- 1	+ 1	- 1	- 2	- 2	0
+ 5		+ 4		- 2	+ 3	+ 5	+ 5	+ 9	+ 2	+ 1
0		0		- 3	+ 1	+ 2	+ 1	0	+ 1	0
- 6		- 8			- 8	-12	-10	-11	- 5	- 1
				+17	1 - 1 - 1					+21
5-12	5-17	5-19	5-10	5-10	5-17	5-19	5-9	5-16	5-31	5-20
128		132		126	140	137	147	129	134	120
				LODGI	NG (scor	e)				
										*
3.7	2.7	2.6	1.6	1.5	1.2	1	1.8	2.1	1.3	2.0
2.7	2.6	2.6	1.5	1.8	1.7	1	1.8	1.6	1.8	2.0
2.7	2.2	2.5	1.5	2.1	1.8	1	1.5	1.7	1.5	2.0
2.3	2.6	2.6	1.4	1.4	1.9	1	1.6	2.0	1.5	1.5
2.3	2.4	2.4	1.5	1.6	1.2	1	1.9	1.6	1.3	1.3
2.3	2.5	2.6	1.5	1.9	1.5	1	1.7	1.5	1.3	2.0
				PLANT HE	TCHT (in	ches)				
				I HANT HE	1911 (111	CHES /				*
48	45	47	39	35	45	35	50	46	28	30
47	47	50	44	37	45	35	49	47	28	27
40	46	46	40	37	43	33	45	45	27	28
40	45	45	36	35	41	34	45	44	27	26
43	45	47	42	38	44	36	51	46	27	27
41	49	46	41	38	44	34	48	46	25	27

7-00-	East	Penn.	N. J.	Del.		Mar	yland	7,76	
Strain	Coast Mean	Landis- ville	Center- ton	George- town I	Clarks- ville	Queens- town	Queens- town B	Link- wood	Quant-
7	Tests			QUALITY	(score)				
	M		*						
Bonus	2.0	2.0	2.3	2.3	1	3	2	3	1.0
Cutler 71	2.0	2.0	2.0	2.3	1	3	2	3	1.0
Kent	2.2	2.4	2.0	2.1	2	3	2	3	1.0
L66-1359	1.9	2.1	2.0	2.1	1	3	2	2	1.0
Md66-1024	2.1	2.1	2.5	2.4	1	3	2	3	1.4
Md66-1258	2.1	2.2	2.3	2.5	1	3	2	3	1.0
	m			(- /2 003				
7	Tests		* SE	ED SIZE (g/100)				
Bonus	17.7	17.7	20	19.2	14.9	18.5	18.4	19.2	16.0
Cutler 71	19.6	18.8	23	21.5	17.2	20.0	19.7	21.3	18.5
Kent	19.6	19.2	24	19.1	16.3	21.4	21.3	22.2	17.4
L66-1359	19.1	19.5	20	20.7	15.6	18.3	19.7	20.6	19.0
Md66-1024	17.8	18.2	22	17.0	15.6	19.1	17.8	20.1	16.7
Md66-1258	19.4	18.2	23	20.0	17.1	20.0	20.4	21.6	18.4
3	Tests			PROTEIN	(%)				
	0.00		14.2						
Bonus	43.1		43.6	42.2	43.5				
Cutler 71 Kent	40.9		40.5	41.2 41.7	41.1 41.2				
	- P. C. C.								
L66-1359	40.2		40.2	40.1	40.2				
Md66-1024 Md66-1258	39.3		39.4 40.7	39.4 41.0	39.2 40.2				
Md00-1238	40.0		40.7	41.0	40.2		-		
3	Tests			OIL (%)				
Bonus	21.7		22.5	21.5	21.0				
Cutler 71	22.3		23.0	22.0	22.0				
Kent	22.2		22.6	21.6	22.4				
L66-1359	22.9		22.9	23.5	22.3				
Md66-1024	23.2		23.5	23.0	23.0				
Md66-1258	21.9		22.4	21.8	21.6				

Cen-	Ohio	I	ndiana	
tral	Col-	Lafay-	Worth-	Evans-
Mean	umbus	ette	ington	ville
18 Tests	SEED	QUALIT	(score)
100			*	
2.3	1.7	1.5	3.5	3.0
2.4	2.0	1.0	4.0	3.5
2.5	2.0	1.0	4.0	4.0
2.4	2.0	1.5	3.0	2.5
2.7	2.0	1.5	3.5	4.0
2.5	2.0	1.5	3.5	3.0
16 Tests	SEE	D SIZE	(g/100)	
17.1	21.5	18.4	17.6	15.5
18.0	21.6	19.4	18.6	17.4
17.7	22.7	19.4	17.8	16.1
18.8	21.7	19.9	17.1	16.9
16.6	19.2	18.2	15.5	15.4
18.3	23.0	20.0	18.2	17.4
10 Tests	<u> P</u>	ROTEIN	(%)	
42.7	43.6			44.2
40.9	41.7			41.4
40.5	40.8			41.4
39.9	40.5			39.4
39.3	38.4			40.8
41.2	42.1			41.3

.1	21.5	18.4	17.6	15.
.0	21.6	10 1	10 0	
		13.4	18.6	17.
.7	22.7	19.4	17.8	16.
.8	21.7	19.9	17.1	16.
.6	19.2	18.2	15.5	15.
.3	23.0	20.0	18.2	17.
	.7 .8 .6 .3	.8 21.7 .6 19.2	.8 21.7 19.9 .6 19.2 18.2	.8 21.7 19.9 17.1 .6 19.2 18.2 15.5

OIL (%)

22.1 22.3

22.1

24.0

23.4

22.9

10 Tests

21.8

21.6

22.4

22.3

23.4

21.4

22.3

22.1

22.5

23.5

23.0

22.3

0 = 0	East	Penn.	N. J.	De1	Ку.			Illino		15.70
Strain	Coast Mean	Landis- ville	Center- ton	Geor	Hend- erson		Gir- ard	Edge- wood	Belle- ville	Eldo- rado
7	Tests		SEED.	QUAL		SE	ED QUA	LITY (score)	
Bonus	2.0	2.0	2.3	2.	3	1.8	1.4	2.4	2.2	3.5
Cutler 71	2.0	2.0	2.0	2.	2	1.7	1.6	3.5	3.1	3.3
Kent	2.2	2.4	2.0	2.	2	1.6	1.7	3.7	2.8	3.0
L66-1359	1.9	2.1	2.0	2.	3	1.6	1.5	2.1	2.6	3.9
Md66-1024	2.1	2.1	2.5	2.	3	2.1	2.0	3.9	3.8	4.3
Md66-1258	2.1	2.2	2.3	2.	3	1.8	1.5	3.1	3.7	3.8
	121100		- 142	ai si						
7	Tests		* SE	ED SI		9	SEED S	IZE (g/	100)	
Bonus	17.7	17.7	20	19.	18.6	18.4	17.4	15.3	15.3	16.2
Cutler 71	19.6	18.8	23	21.	19.5	20.0	17.7	16.1	17.2	18.1
Kent	19.6	19.2	24	19.	19.2	18.6	17.6	16.0	17.4	18.7
L66-1359	19.1	19.5	20	20.	23.1	20.3	18.9	17.0	17.6	17.2
Md66-1024	17.8	18.2	22	17.	16.5	16.8	16.0	14.1	15.1	15,6
Md66-1258	19.4	18.2	23	20.	20.8	19.8	18.0	17.0	17.8	17.7
3	Tests			PROT			PF	ROTEIN	(%)	
Bonus	43.1		43.6	42.	42.1	43.6	43.4			44.3
Cutler 71	40.9		40.5	41.	39.9	42.0	40.4			42.2
Kent	41.1		40.3	41.	39.0	40.4	40.8			43.2
L66-1359	40.2		40.2	40.	39.6	40.8	39.6			41.8
Md66-1024	39.3		39.4	39.	38.1	39.3	39.4			41.8
Md66-1258	40.6		40.7	41.	39.5	42.0	41.8			43.4
3	Tests			01)IL (%)		
Bonus	21.7		22.5	21.	20.0	01.0	- 44-15	111 (0)	9	01 0
Cutler 71	22.3		23.0	22.	22.9	21.2	21.9			21.8
Kent	22.2		22.6	21.	22.5	21.5	22.2			21.9
L66-1359	22.9		22.9	23.	23.0	22.7	24.4			23.5
Md66-1024	23.2		23.5	23.	24.1	23.3	23.4			22.8
Md66-1258	21.9		22.4	21.	22.9	21.4	21.9			21.8

Illinois		owa	Mi	ssouri			Kansas			
Carbon-	Stuart	Ottumwa	Mt.	Portage-	Pow-	Man-	Manhat-		Col-	Texas Lub-
dale			Vernon	ville I	hattan	hattan		7 3 5 7 7		bock :
				SEED QUAI	ITY (sc	ore)			1111	
5.0	1.0	1.3	2.0	3.3	1.4	2.9	2.3	1.3	2.0	3.0
4.3	1.0	1.2	1.7	4.0	1.4	2.7	1.9	1.5	3.3	2.0
5.0	1.5	2.3	2.3	2.9	1.4	2.2	1.8	1.7	3.7	3.0
4.7	1.0	1.0	2.5	3.8	1.3	3.5	1.8	1.6	3.5	3.0
4.0	1.0	3.0	1.6	2.6	1.4	2.2	2.0	1.8	4.0	3.0
4.7	1.0	1.4	1.8	3.8	1.4	2.8	2.0	1.6	3.7	2.5
				THE STATE OF						
				SEED SI	ZE (g/1	00)				
V2.12		Zanat		22.7						*
16.1		20.7		16.1	17.6	15.8	20.2	14.9	17.0	21.6
17.6		20.4		15.7	19.0	16.2	19.7	15.9	18.5	23.2
15.1		19.5		16.5	18.6	20.7	18.2	16.1	16.0	23.4
17.1		21.4		19.9	18.7	16.0	22.5	16.4	17.5	24.5
15.8		18.0		15.8	17.0	20.5	20.2		17.0	22.4
17.7		21.4		16.7	18.3	16.4	19.9	17.3	16.5	23.7
				PROT	EIN (%)					
		41.8		42.6	40.1		41.5			
		40.0		42.2	38.6		40.6			
		40.2		40.8	38.4		39.6			
		39.3		41.1	37.2		39.5			
		41.6		38.9	37.2		37.8			
		41.1		41.5	39.3		40.0			
				01	L (%)					
					F-2-7-7		22.0			
		22.8		22.5	22.9		22.9			
		22.4		21.3	22.4		22.5			
		23.6		24.0	24.0		23.8			
		21.8		21.1	23.3		23.7			
		22.3		22.3	22.6		23.0			

Stra	in	Parentage					
1.	Cutler 71						
2.	Kent	Control of Control of Control (R) of Control of	-				
3.	C1511	Wayne x C1317-71(C1223 ⁸ x Mukden)	F_3				
4.	K1001	at the same of the	F 6				
5.	K1002	0	F3 F6 F6 F4 F4 F4				
6.	K1003	C1266(Harosoy x C1079) x C1264(Harosoy x C1079)	F,				
7.	K1004	C1266 x C1265(Harosoy x C1079)	F.,				
8.	K1005	Cutler x CX405B(Lincoln x Ogden)	F.,				
9.	K1006	The state of the s	F4				
10.	K1007	Bonus x Cutler	F,				
11.	L69L-208	L66-531(Clark-dt ₁ E ₁ t e ₂) x L66-1322-1(Hawkeye x Lee) (Clark ⁵ x L49-4091) x (Clark ⁶ x Blackhawk)	F ₂				
12.	Clark 63	(Clark ⁵ x L49-4091) x (Clark ⁶ x Blackhawk)	13 F3 lines				
13.	L70-4170	Clark-Ir Rps rxp(L12) x (Clark 637 x Kanrich)	F.,				
14.	L70-4180	1985 T. C.	F.4				
15.	SL13	ii ii	10 F. lines				
16.	SL14	10	12 Fu lines				

Several strains in this test outperformed the check varieties. K1007 was highest in mean yield, was among the highest in protein and oil content, and carries Phytophthora resistance. K1003 and K1004 also yielded well and were almost as late as Kent. They had excellent lodging resistance but were susceptible to Phytophthora rot. K1003 appeared to be segregating for hilum color. K1005 and K1006 were very late IV and yielded well in a few of the environments. They were reported as having Phytophthora resistance, but the source of this is not apparent from the listed parentage. C1511 was only slightly above the checks in mean yield.

L69L-208 represents an attempt to develop a determinate (dt₁) variety of Group IV maturity. It was almost as early as Cutler 71 and had the best lodging resistance and seed quality in the test. Although it had a higher mean yield than Clark 63, it was somewhat below both Cutler 71 and Kent.

The four Clark isolines, L70-4170, L70-4180, SL13, and SL14, were developed cooperatively by Missouri and Illinois by backcross downy mildew resistance (Rpm) from Kanrich to Clark 63. The final cross was made to L12 ("yellow hilum Clark 63"), and SL13 and SL14 are composites of lines with yellow hilum (genes I and r) whereas L70-4170 and 4180 are black hilum lines selected for yield and similarity to Clark from a test of many such lines. In this test the strains tended to be higher in yield and later in maturity than Clark (this was also true for the L12 parent line, see 1965-66 UT IV). The higher yield may be partly due to downy mildew resistance but is more likely associated with the late maturity and other genetic differences transferred from the donor parents. L70-4180 is the highest in yield and closest to Clark 63 in maturity and therefore represents the best of the group although its isogenicity to Clark may not be as close as desired.

Regional Summary

			Matu-	Lodg-		Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	011
No. of Tests	9	9	9	9	9	9	7	5	5
Cutler 71	43.9	8	9-27	2.1	43	2.8	18.1	41.1	22.1
Kent	43.6	10	+6.0	1.9	40	2.7	17.6	40.6	22.0
C1511	44.4	5	+0.7	2.3	44	2.6	17.1	41.0	22.4
K1001	40.1	16	+5.1	2.4	45	3.1	15.4	40.1	21.8
K1002	43.5	11	+6.0	2.5	48	2.6	17.0	41.1	21.4
K1003	46.2	2	+4.9	1.9	44	3.1	16.3	41.8	21.0
K1004	45.5	3	+5.0	1.6	40	2.9	17.8	41.0	22.3
K1005	43.8	9	+7.9	2.6	44	2.9	17.1	40.7	22.2
K1006	44.3	6	+7.7	2.1	47	3.0	18.4	40.9	21.8
K1007	46.4	1	+2.9	2.2	43	2.8	16.6	41.2	22.7
L69L-208	42.9	12	+1,1	1.4	29	2.3	15.3	40.9	21.1
Clark 63	40.9	14	-0.1	2.1	41	3.4	16.3	41.1	22.0
L70-4170	44.1	7	+2.2	2.3	41	3.1	17.5	41.1	22.3
L70-4180	45.2	4	+1.6	2.2	41	3.3	17.5	40.9	22.2
SL13	41.7	13	+4.4	2.8	45	3.4	17.7	42.2	21.3
SL14	40.9	14	+3.4	2.7	43	3.5	17.5	41.7	21.4

Disease Data

	BB	FE ₂		BSR		CR		P	2	PS	В
Strain	Ames Iowa n2	Laf. Ind. a	Ind.	Urb. Ill. n	Ames Iowa n	Laf. Ind. n	Laf. Ind. a		Stoneville Mississippi n	n	late
			8	%	76	8				8	8
Cutler 71	2	1	48	60	28	68	R	R	1	8	22
Kent	3	1	88	40	53	79	S	S	2	0	10
C1511	2	2	29	70	28	52	R	S	1	9	15
K1001	2	1	48	50	71	11	R	Н	1	9	14
K1002	3	1	26	50	48	44	R	R	1	2	4
K1003	4	1	10	60	58	11	S	S	2	1	23
K1004	2	1	17	80	49	35	S	S	3	5	16
K1005	2	1	49	50	37	85	R	R	1	2	17
K1006	3	1	16	100	57	33	H	H	1	1	19
K1007	3	5	15	80	56	83	R	R	1	13	23
L69L-208	3	4	36	90	67	77	R	S R	1	1	16
Clark 63	4	5	26	100	62	100	R		1	25	42
L70-4170	3	5	63	80	45	82	Н	S	1	22	45
L70-4180	2	5	29	100	54	84	H	H	1	24	48
SL13	3	5	21	90	59	73	R	R	1	14	40
SL14	3	5	59	80	55	23	R	R	1	24	44

		Del.	Maryl	and	Indi	ana	Illi	nois	Missouri	Kansa	S
Strain	Mean	George- town I	Clarks ville		Worth- ington				Portage- ville I	Manhat- tan I	Ot- tawa
	9 Tes	ts			YIELD *	(bu/a)					
Cutler 71	43.9	44.3	34.4	40.6	37.5	38.2	41.5	51.8	39.1	61.6	43.6
Kent	43.6	37.8	33.7	43.4	42.1	37.0	38.5	46.8	40.2	66.9	48.2
C1511	44.4	46.7	41.3	45.0	49.9	39.3	41.2	46.1	39.1	57.0	44.3
K1001	40.1	39.5	34.5	46.2	44.7	40.1	34.1	42.6	27.2	55.0	41.3
K1002	43.5	40.0	42.5	41.4	29.2	38.0	37.7	45.1	38.8	57.7	50.7
K1003	46.2	41.1	34.5	48.6	24.9	42.8	39.5	46.6	39.2	66.6	56.8
K1004	45.5	46.6	35.2	45.6	36.3	36.4	41.0	47.4	44.0	57.0	56.6
K1005	43.8	38.4	28.9	45.4	34.2	41.3	40.8	48.6	37.3	61.5	52.4
K1006	44.3	41.5	33.4	42.9	30.7	49.7	36.2	44.0	36.4	66.1	48.1
K1007	46.4	44.7	31.0	41.6	37.3	43.7	40.5	48.4	41.0	61.3	65.3
L69L-208	42.9	43.5	40.3	41.8	45.4	37.1	35.1	45.4	38.4	52.1	52.1
Clark 63	40.9	44.5	29.5	41.0	28.5	35.9	31.2	42.6	42.7	57.3	43.8
L70-4170	44.1	47.5	39.3	42.0	36.9	38.0	38.6	47.9	37.2	60.2	45.8
L70-4180	45.2	45.2	43.8	42.8	36.7	39.3	37.5	49.7	40.1	62.2	46.2
SL13	41.7	40.1	33.3	40.2	23.4	35.6	35.6	45.1	45.6	54.9	44.5
SL14	40.9	44.4	41.4	38.4	28.7	37.2	34.1	41.9	37.7	55.2	38.2
C.V. (%)		9.2	14.2	8.6	24.2	12.5	7.6	3.6	13.8	7.8	12.4
L.S.D. (59	b)	8.4	10.9	3.7	n.s.	n.s.	6.1	3.5	11.4	n.s.	12.9
Row Sp. (J. 74 Con.	36	30	30	38	38	38	37	30	30	30
Rows/Plot		3	3	3	3	3	4	4	3	4	4
Reps		2	2	2	2	2	2	2	2	2	2

Descriptive and Other Data

					Germin	ation
Strain	Descr: Code	iptive	Chlorosis Ames Iowa	Shattering Stoneville Mississippi	Laf., mat.	Ind. late
Cutler 71	PTNBr	SYB1	2.6	3.0	93	87
Kent	PTNBr	IYB1	3.6	4.0	98	87
C1511	WGN-	SYBf	3.2	4.5	91	62
K1001	WGN-	SYBf+Ib	3.9	1.5	79	84
K1002	WGN-	SYBF	3.9	1.5	94	94
K1003	PGN-	DYBf+Ib	2.5	2.0	94	89
K1004	PTN-	DYB1	2.9	3.5	98	86
K1005	PTN-	SYB1	3.0	2.0	96	90
K1006	PTN-	SYB1	2.9	2.0	96	83
K1007	PTN-	DYB1	2.1	3.0	88	82
L69L-208	PGN-	SYIb	3.1	3.0	98	85
Clark 63	PTNBr	DYB1	2.4	1.0	51	68
L70-4170	PTNBr	DYB1	3.1	1.5	64	56
L70-4180	PTNBr	DYB1	3.0	1.5	68	50
SL13	PTNBr	DYY	3.7	1.0	74	67
SL14	PTNBr	DYY	2.5	1.0	50	68

		700	Del.	Maryl	and	India	ana	Illi	nois	Missouri	Kansas	S
Strain		Mean	George- town I	Clarks ville			Evans- ville			Portage- ville I	Manhat- tan I	Ot- tawa
	9	Test	s			YIELD	RANK					
Cutler	71	8	8	10	14	5	8	1	1	9	5	14
Kent		10	16	11	6	4	13	8	7	5	1	7
C1511		5	2	4	5	1	6	2	9	8	11	12
K1001		16	14	8	2	3	5	14	14	16	14	15
K1002		11	13	2	12	12	9	9	11	10	9	6
K1003		2	11	8	1	15	3	6	8	7	2	2
K1004		3	3	7	3	9	14	3	6	2	11	3
K1005		9	15	16	4	10	4	4	3	13	6	4
K1006		6	10	12	7	11	1	11	13	15	3	8
K1007		1	5	14	11	6	2	5	14	4	7	1
L69L-20	8	12	9	5	10	2	12	13	10	11	16	5
Clark 6		14	6	15	13	14	15	16	14	3	10	13
L70-417	0	7	1	6	9	7	9	7	5	14	8	10
L70-418		4	4	1	8	8	6	10	2	6	4	9
SL13		13	12	13	15	16	16	12	11	1	15	11
SL14		14	7	3	16	13	11	14	16	12	13	16

Date Plnt	. 5-20	6-2	5-24	6-9	5-19	5-25	5-11	5-10	5-10	5-9	5-16
Calland (Hill (V)	111)	+20	- 5	+15	- 9	- 4	- 7	+11	+17	-10 0	
SL14	+3.4	+ 5		1 2				- 22	7		30.00
SL13	+4.4	+ 5	- A- 2	+ 2	0	+ 6	+ 4	+ 2	0	+ 3	+ 3
L70-4180	+1.6			+ 4	+ 2	+ 8	+ 4	+ 4	- 1	+ 2	+ 7
L70-4170	+2.2		+ 4	+ 2	0	+ 6	+ 2	+ 1	- 2	- 1	- 1
			+ 6	0	+ 3	+ 6	+ 3	+ 2	- 1	0	+ 1
Clark 63	-0.1	+ 1	+ 1	0	0	+ 1	0	- 2	- 2	0	0
L69L-208	+1.1	+ 3	0	+ 4	+ 2	+ 2	+ 1	- 2	- 2	+ 1	+ 3
K1007	+2.9	+ 1	+ 8	+ 3	- 1	+ 4	+ 2	+ 2	- 2	+ 2	+ 6
K1006	+7.7	+ 6	+ 5	+ 9	+ 8	+10	+ 8	+ 9	+ 1	+ 7	+14
K1005	+7.9	+ 7	+10	+ 8	+ 8	+10	+ 7	+ 8	+ 2	+ 6	+13
K1004	+5.0	+ 4	+ 8	+ 8	+ 4	+ 8	+ 5	+ 2	3	100	+ 7
K1003	+4.9	+ 4	+ 2	+ 6							
K1002	+6.0	+ 3	+ 5	+ 6	+ 8	+ 4	+ 8 + 7	+ 4	+ 1	+ 7 + 3	+16
K1001	+5.1	+ 4	+ 5	+ 6	+ 6						100.00
C1511	+0.7	+ 1	+ 4	+ 2	- 2	+ 3	+ 1 + 3	- 2 + 2	- 2	+ 9	+ 2
Kent	+6.0	+ 3	+ 8	+ 8		+11		+ 6	- 2	+ 4	
Cutler 71	9-27	10-4	9-30	10-2	9-28	9-26	9-28	9-23	9-13 - 1	10-3	9-22
					*	W. SAY		2.02	1211	50.5	
9	Tests			MATU		elative	date)	<u>Y</u> .			

The following notes provide information useful in interpreting strain performance at the individual test locations.

University Park, Pennsylvania. Wet, cold, cloudy weather was common through mid-July. The remainder of the season was warm and dry with cool nights. Early plant growth was reduced but soybeans matured on the expected dates. The Uniform III Test was destroyed by the June flood. In adjacent tests only the later maturing Group III varieties were adversely affected by the first killing frost.

Cooperator: Rock Springs Research Center, L. D. Hoffman, Superintendent

Soil Type: Duffield Silt Loam

Fertilizer: 0-100-100/A

Herbicide: Alachlor 1#/A preemergence

Soil Analysis: pH, 6.3; P, Medium; K, Medium; Mg, Low; Ca, Medium.

Landisville, Pennsylvania. Plant growth was excellent the early part of the growing season, although temperatures during June were below normal and rainfall was 10.69 inches above normal. Temperatures the rest of the growing season were slightly above normal, but rainfall after July 18 was only 21 percent of normal. This prolonged drought restricted pod filling.

Cooperator: Southeastern Field Research Laboratory, J. O. Yocum, Superintendent

Soil Type: Hagerstown Silt Loam

Fertilizer: None for the past two years

Herbicide: Vernolate plus trifluralin 3+3/4#/A. preplant incorporated Soil Analysis: pH, 6.8; P, High; K, Very high; Ca, Medium; Mg, High.

Hopewell, New Jersey. This trial was destroyed by ground hogs and deer.

Cooperator: James R. Justin

Adelphia, New Jersey. The trial was planted on June 2 with good soil moisture, followed by 0.31 inches of rain within 24 hours. Rainfall during the rest of June and early July was much over average with temperatures below normal, however, growth was good. Rainfall during the latter half of July, August and September was deficient by more than 8 inches. Harvest was delayed until November 13 by excessive and continued rains through October and November. Even with the extremes in weather, growth was good, and yields were quite good. Diseases and insects were not problems in the field.

Cooperator: Soils and Crops Research Farm, E. C. Visinski, Superintendent

Soil Type: Freehold Loam Fertilizer: 25-50-50

Herbicide: Treflan 3/4# a.i./A. ppi.

Centerton, New Jersey. The trial was planted on June 5 in soil a little drier than optimum. Little rain fell for nearly two weeks, but the rest of June and early July were very wet with nearly 11 inches in six weeks. August and September were very dry with the exception of two rains which totaled over 2.5 inches (August 28 and September 2). Growth was quite good despite the extremes in precipitation. Harvest was delayed until November 17 due to wet soil in October and November. Insects were not a factor at this location, but pod and stem blight (Diaporthe phaseolorum var. sojae) was apparent in nearly all plots.

Cooperator: South Jersey Research Center, Stanton Sheppard, Farm Supervisor

Soil Type: Sassafrass Sandy Loam

Fertilizer: 15-60-60

Herbicide: 1.5# Lasso a.i. + 0.75# Lorox a.i. pre-emergence.

Georgetown, Delaware. An extremely wet and cool June with 9.24" of rain was followed by only 1.50" of rain in July with 12 days in succession of 90° weather from the 15th through the 26th. The beans were irrigated July 20 and August 2; each application about 2". September also was cool and growth throughout the season was good. Mexican bean beetles were a severe problem very early in the season and again, but less severe, during late September. Sevin was applied at each time. October was also cool with a freeze of 23° occurring on October 21 which killed the Group V maturity lines. Most varieties, however, were fairly well mature. October and most of November remained damp and harvesting was severely delayed.

Cooperator:

Soil Type: Norfolk Sandy Loam

Fertilizer: 400#/A 10-10-10 topdress on cover crop and plowed down

Herbicide: Treflan 3/4#/A

Soil Analysis: pH, 6.5; OM, 1.0; P, VH; K, M.

Upperco, Maryland. Growing conditions were good for early growth, however a drought reduced growth and adversely affected pod set during August. Rainfall was above normal for September and enhanced pod filling. Mexican bean beetles were controlled with an application of Sevin before severe damage occurred. Lodging was not severe and weed control was generally very good.

Cooperator: Sparks & Hare Soil Type: Glenelg Loam Fertilizer: 0-80-80

Herbicide: 11/2 quarts Vernam

Soil Analysis: pH, 6.6; P, 75 M; K, 72 L; Mg, 200 H.

Reistertown, Maryland. This test was demolished by hail.

Cooperator: J. A. Schillinger

Clarksville, Maryland. After a successful establishment, the plot area was deluged with rainfall as Hurricane Agnes dominated the weather from June 18-20. Some 8 inches of rain fell during the three-day period. July and August turned very dry with below normal rainfall during these months. A heavy freeze hit these plots on October 13. Weed control was only fair with smartweed infesting the area.

Cooperator:

Soil Type: Manor Silt Loam Fertilizer: 500#/A 5-20-20 Herbicide: Treflan l qt./A

Soil Analysis: pH, 6.5; P, 125 M; K, 213 H; Mg, 188 H.

Queenstown-B, Maryland. Early growing conditions were excellent and all plots were off to a good start. However, July and August turned very dry and the plots suffered from lack of water. The rains of August 30 salvaged some of the yield. Weed control was excellent throughout the season. A killing frost on October 13 cut short the podfilling process on late maturing varieties.

Cooperator: Perry Blades

Soil Type: Sassafras Sandy Loam

Fertilizer: 300#/A 0-15-30 Herbicide: Treflan 1#/A

Soil Analysis: pH, 6.0; P, 195 H; K, 153 M; Mg, 86 M.

Quantico, Maryland--After Wheat. Despite the very late date of planting, the soybean growth was excellent up until October 13 when the first frost stopped growth. A second frost on October 20 completely killed the soybean plants. An excellent rainfall distribution kept the soybeans growing steadily. Later maturing varieties (Group V) were seriously hurt by the early frost. Most group V lines had green colored seeds at harvest. Mexican bean beetles had to be controlled by two sprayings of Guthion and Sevin. They still caused some damage to late genotypes.

Cooperator: Ron Mulford

Soil Type: Downer Fine Sandy Loam

Fertilizer: 500#/A 10-20-20

Soil Analysis: pH, 5.6; P, 295 H; K, 126 M; Mg, 48 L.

Queenstown, Maryland. Conditions were excellent for germination. Soon after germination excessive rainfall left water standing in the field for 1 to 2 weeks depending on the contours of the land. Plant growth was retarded until the excess moisture was removed. Normal growth was resumed and plants progressed well until a dry spell in August placed the plants under water stress. Rainfall on August 30 salvaged some of the yield. A killing frost on October 13 affected pod filling on later maturing lines.

Cooperator: John Schillinger

Soil Type: Sandy Loam
Fertilizer: 500#/A 0-15-30
Herbicide: Treflan 1#/A

Soil Analysis: pH, 5.7; P, 140 H; K, 207 H; Mg, 150 H.

Linkwood, Maryland. The seeding was made on June 9, 1972, in warm moist soil. Stands were good. Growth during the season was good. Temperatures were normal and rainfall was above normal for the growing season, with especially heavy rainfall during June and heavy rainfall during August. An infestation of Mexican bean beetles was controlled by spraying during August. A light frost occurred on October 11; a killing frost on October 20. Harvest season was excessively wet and humid, but cool temperatures prevented germination of seed in pods.

Cooperator: Dr. James C. Johnson Soil Type: Sassafras Silt Loam

Fertilizer: 300#/A 0-15-30

Soil Analysis: pH, 6.0; P205, N 185 (H): K-O, 222 (H); Mg 104 (M).

Ottawa, Ontario. The test was planted on May 26 and harvested November 2 - both dates being 7-10 days later than normal. Germination, emergence and early season growth was normal. However, beginning in late June there began a prolonged period of below normal temperatures and above normal rainfall that essentially lasted until the end of the season.

Soil Type: Grenville Loam

Fertilizer: 300# 0-15-30 and 300# of amonium nitrate

Herbicide: Lasso and linuron mix

Soil Analysis: pH, 6.0

Kemptville, Ontario. Planting was on June 8. There was a killing frost on September 23.

Cooperator: Kemptville College of Agricultural Technology

Soil Type: Grenville Loam

Fertilizer: 100#N plus 500#/A 0-15-30.

Elora Research Farm, Ontario. Soybeans were planted May 19, 1972. Emergence was uneven because of lack of moisture at planting time. During the growing season normal amounts of precipitation were received. Temperatures were below normal during June, the first two weeks of July, and during all but the last two weeks of August. A frost occurred on June 11. There were cloudy weather conditions during much of the growing season, but particularly during June where less than 4 hours of bright sunshine occurred in 12 of 30 days. Maturity was slightly delayed, however, yields were nearly normal. No irrigation was applied.

Cooperator: University of Guelph

Soil Type: Tile drained silty clay loam

Fertilizer: 400#/A 5-20-20 applied in the fall of 1971. Also in the spring of 1971

200 #/N, 320 of P and 136# of K/A as liquid manure were applied.

Herbicide: 1/2# (active)/A Treflan preplant incorporate 1/2# (active)/A Patoran preem

Soil Analysis: pH, 7.5; OM, Medium; P, High; K, High; Mg, High.

Ridgetown, Ontario, Canada. Good stands were established even though emergence was slow because of the cool damp spring. Most of the tests were frozen back to the cotyledons by the June 10th frost. However, the plots recovered but there was a high incidence of two-stemmed plants. No variety differences were found in frost damage. Temperature was below normal but moisture was abundant throughout the growing season causing excessive vegetative growth and severe lodging. A frost on October 10 affected the maturities of some varieties. Yields were below normal for the maturity groups I and II.

Cooperator: Ridgetown College of Agricultural Technology

Soil Type: Brookston Clay Loam Fertilizer: 900# 3-11-11/A Herbicide: Amiben, 3#/A.

Harrow, Ontario. Stands were good. Precipitation, temperature and growth during June and July were slightly below average. Precipitation in August was almost three times the normal and caused severe lodging. This in combination with lower than average temperatures during September resulted in delayed maturity. All plants had matured before the first killing frost on October 18. Variability in tests was low and yields were normal.

Cooperator: C. D. A. Research Station

Soil Type: Brady Sandy Loam Fertilizer: 500#/A 5-10-15 Herbicide: Amiben, 2#/A.

Hoytville, Ohio. Adequate soil moisture and below normal temperatures prevailed throughout the growing season. Excessive wet fall delayed harvest considerably.

Soil Analysis: pH, 7.0; P, 56#/A; K, 347#/A.

Wooster, Ohio. Adequate soil moisture and below normal temperatures prevailed throughout the growing season. Excessive wet fall delayed harvest considerably.

Soil Analysis: pH, 7.3; P, 94#/A; K, 267#/A.

Columbus, Ohio. Adequate soil moisture and below normal temperatures prevailed throughout the growing season. Excessive wet fall delayed harvest considerably.

Soil Analysis: pH, 7.1; P, 41#/A; K, 253#/A.

East Lansing, Michigan. Harvest of Groups I and II was delayed about two weeks due to a wet fall. Temperatures throughout the growing season averaged about three degrees below normal, but seemed to have little effect on yield when compared to previous seasons. Rainfall was normal during June and July but 4" above normal during late July and August.

Cooperator: Dept. of Crop and Soil Sciences (Michigan State University)

Soil Type: Conover Clayloam Fertilizer: 200#/A 10-20-20

Herbicide: Amiben

Soil Analysis: pH, 6.4; P, 35#; K, 210.

<u>Dundee</u>, <u>Michigan</u>. Temperatures throughout the growing season averaged about three degrees below normal. Rainfall in late July and August was about 3" above normal. Because of rain, harvest was delayed about two weeks.

Cooperator: Mr. Anthony Ivan (Ivan Brothers Farms)

Soil Type: Loamy Clay

Fertilizer: 200#/A 10-20-20

Soil Analysis: pH, 6.6; P, 40#; K, 230#.

Knox, Indiana. This test location was lost because of flooding.

Bluffton, Indiana. Planting on May 22 was normal for the location. Rainfall was 2.65, 3.04, and 2.34 inches for June, July, and August, which was below normal for each month. Adverse weather delayed harvest until November 6. Yields were variable and below average for this location.

Cooperator: Gerald and Larry Bayless

Soil Type: Nappanee Silt Loam Fertilizer: 100#/A 5-27-9 Herbicide: 6 qts. Amiben/A

Soil Analysis: pH, 6.7; P, 62#/A; K 300#/A.

Lafayette, Indiana. Planting on May 22 was normal for this location. There were 5.32, 4.83, and 2.75 inches of rain in June, July, and August. Plant growth was about average and there was very little lodging in the plots. Harvest of uniform tests was completed October 19. Yields were below average for the location.

Cooperator: O. W. Luetkemeier

Soil Type: Chalmers Silty Clay Loam

Fertilizer: 800#/A 0-26-26 plowdown. 175#/A 5-20-20 + 5% mn in row.

Herbicide: 1 qt. Treflan/A

Soil Analysis: pH, 6.7; P, 87#/A; K, 240#/A.

Greenfield, Indiana. Planting May 24 was normal for this location. Rainfall averaged 5.02, 2.63, and 2.43 inches for June, July, and August. Plants were very short and yields were much below average for this location.

Cooperator: Mrs. Raymond Roney

Soil Type: Brookston - Crosby complex

Fertilizer: 165#/A 6-24-24

Soil Analysis: pH, 5.6; P, 20#/A; K, 128#/A.

Worthington, Indiana. Planting May 19 was normal for this location. There were 3.48, 1.41, and 5.66 inches of rain in June, July, and August. Extremely adverse weather delayed harvest and resulted in excessive lodging of all plots. Yields were extremely variable and below average for the location.

Cooperator: William Hinricksen Soil Type: Genesee Silt Loam Fertilizer: 100#/A 6-24-24 Herbicide: 1 qt. Treflan/A

Soil Analysis: pH, 7.8; P, 101#/A; K, 195#/A.

Evansville, Indiana. Planting May 25 was average for this location. Rainfall averaged 3.98, 3.39, and 3.88 inches for June, July, and August. Plants were shorter than normal and yields were below average for this location.

Cooperator: Bernard Wagner

Soil Type: Montgomery Silty Clay Loam

Fertilizer: 400#/A 3-10-10 plow down, 150#/A 7-27-7 in row

Herbicide: 1 qt. Treflan/A; 1 gal. Dynap/A overspray

Soil Analysis: pH, 5.5; P, 69#/A; K, 425#/A.

Henderson, Kentucky. The test was planted on May 17, 1972 in an excellent seed bed. Emergence and early growth were rapid and excellent stands were obtained. Weed control was nearly perfect and there was no evidence of disease or insect infestations. Temperatures and precipitation were slightly below normal, but the precipitation was well distributed and probably was not limiting. The soybeans made excellent vegetative growth, and early lodging may have limited the yields on some varieties.

Cooperator: William Hendrick and Huston Ginger

Soil Type: Patton Silt Loam

Herbicide: Lasso (2# A.I./acre preemergence.

Ashland, Wisconsin. The growing season was cool as temperatures averaged below normal for every month except May and August. The last killing frost in the spring (28° or lower) occurred on June 10 and caused considerable damage to the gardens. Most corn was not far enough along to be severely affected by the frost. Rainfall was below normal for the first three months of the growing season and this resulted in uneven germination and short first crop hay. Because hay growth was slow and short, some people delayed first crop hay making and had harvest problems as July and August were above normal in rainfall. August being the second wettest on record. This also made it almost impossible to harvest oats and second crop hay. September was again slightly below normal in rainfall. The first killing frost occurred on September 22, which was very close to the normal date of September 20. However, with the early months dry and the cool temperatures during the season, many of the crops were behind in maturity for this time of year. Not harvested because it was too immature at frost.

Cooperator: University of Wisconsin Experimental Farm Ashland

Soil Type: Clay Loam

Fertilizer: 400#/A 6-24-24.

Spooner, Wisconsin. Planted on May 25. There was a killing frost of 25° on September 30.

Cooperator: C. O. Rydberg Soil Type: Pence Loamy Sand.

<u>Durand</u>, <u>Wisconsin</u>. Durand test planted May 25. Emergence good. Temperatures below normal during entire growing season. Moisture below normal in May but near or above normal during rest of growing season. Disease or insects not a factor.

Cooperator: Anton Sam Soil Type: Sandy Silt Loam.

Madison, Wisconsin. Madison test planted May 22. Emergence somewhat irregular due to dry soil. As a result of rain a week after planting, final stands were satisfactory. Temperatures during the growing season averaged slightly below normal. From planting to July 15, rain about one-third of normal. Plants wilted daily during first two weeks of July. Rain during the remainder of growing season averaged 50% above normal with excellent distribution. Yields reduced due to early drought. No disease or insect problems.

Cooperator: University of Wisconsin, Charmany Farm

Soil Type: Miami Silt Loam Fertilizer: 200-0-20-20 Herbicide: 2# Amiben.

DeKalb, Illinois. Planting was on May 23 in a good seedbed. The plants showed considerable yellowing and were held back due to the cool, wet weather during June. Rainfall on May, June, July, August, and September was .78, 7.85, 5.91, 7.89, and 4.00 inches. There was phytophthora rot in some plots due to the excess moisture throughout the growing season. The yields were down because of the large amounts of rainfall this year. Plots were harvested in good conditions on October 22.

Cooperator: R. R. Bell, Northern Illinois Research Center

Soil Type: Flanagan Silt Loam

Herbicide: Amiben - Sprayed on after planting.

Pontiac, Illinois. Planting was May 24 in a good seedbed. The plots showed some herbicide damage during June but disappeared later in the season. Moisture was good throughout the growing season. Plots were harvested October 4 in good condition.

Cooperator: Donald Alltop

Soil Type: Dodgeville Silt Loam

Fertilizer: 500#/A of 3-9-9 applied in spring

Herbicide: 21/2 qt/A Lasso preplant

Soil Analysis: pH, 6.2; P1, 13; P2, 23; K, 234.

Urbana, Illinois. Planting was on May 12 in a good seedbed with moisture to the surface. Moisture was inadequate during May, June, and July. Lodging was not too severe. Powdery mildew was moderate to severe on some strains late in the growing season. Harvest was timely.

Cooperator: M. G. Oldham, Illinois Agricultural Experiment Station

Soil Type: Flanagan Silt Loam

Fertilizer: 0-117-117

Herbicide: 15#/A granular treflan, broadcast incorporated

Soil Analysis: pH, 6.7; P1, 111; P2, 204; K, 340.

Girard, Illinois. Planting was on May 20, about average for this location. Emergence and stands were good to excellent. There were a few phytophthora killed plants. Growth and yields were very good. Harvest was timely.

Cooperator: Lloyd Bros.

Soil Type: Harrison silt loam

Herbicide: Amiben

Soil Analysis: pH, 6.4; P₁, 40; P₂, 107; K, 260.

Edgewood, Illinois. Planting was on May 30 in a mellow and moist seedbed. Emergence and stands were excellent. Growth was good with lodging differentials between strains. There were small areas showing potassium deficiency. Harvest was a little late for U. T. II, but timely for U. T. III and IV.

Cooperator: John Wilson and Ed and Ron York

Soil Type: Cisne Silt Loam

Fertilizer: P. & K.

Herbicide: Amiben banded, 8#/A

Soil Analysis: pH, 6.7; P1, 38; P2, 117; K, 146.

Belleville, Illinois. Planting was a little earlier than average for this location on May 11 in a rough seedbed. Emergence and stands varied from poor to good. It was very dry through mid-July. Downy mildew was moderate and scattered. Virus was prevalent. There was severe pod mottling before maturity on some strains from unknown causes. Seed quality was poor. Most of the Uniform Test strains were harvested time-ly. The Preliminary Test strains were harvested later than optimum.

Cooperator: George Kapusta, Belleville Research Center

Soil Type: Ebbert Silt Loam

Fertilizer: None Herbicide: Treflan

Soil Analysis: pH, 6.0; P₁, 35; P₂, 108; K, 178.

Eldorado, Illinois. Planting was a little earlier than average for this location on May 10 in a good seedbed. There was never enough rain early in the season to set the herbicide and weeds were a problem. Stands were good to excellent. There was slight hail damage the end of June. Moisture was adequate to surplus from mid-July through harvest. There was slight downy mildew and scattered stem canker. Rugose leaf, stem stunting, and duddiness were very prevalent. Harvest of Uniform and Preliminary Tests was timely.

Cooperator: Marshall Grisham Soil Type: Harco Silt Loam Fertilizer: 600#/A 5-15-20 Herbicide: 11/3#/A Planovin

Soil Analysis: pH, 6.5; P1, 74; P2, 148; K, 272.

Carbondale, Illinois. Planting was on May 12 in a good seedbed. Emergence was quite good and growth excellent. Above average rainfall during the late part of the growing season no doubt reduced seed quality. Excess rainfall delayed harvest of the Group II and III varieties. Yields were fair.

Cooperator: D. R. Browning Soil Type: Weir Silt Loam Fertilizer: 0-75-145

Herbicide: Treflan - 1 qt/A - broadcast - incorporated Soil Analysis: pH, 6.5; OM, 1.3%; P1, 66; K, 175.

Crookston, Minnesota. A generally favorable year at this location. Good seedbed, good stands, good weed control, adequate rainfall, and a later than average killing frost date. Yield levels were not especially high but typical for this far northern location.

Cooperator: Dr. L. J. Smith Soil Type: Beardon Silty Clay

Fertilizer: 50#P

Herbicide: Treflan 2/3 qt/A preplant; Amiben 2#/A preemergence

Soil Analysis: pH, 7.8; OM, High; P, 45; K, 200.

Morris, Minnesota. Excessive soil moisture in May delayed land preparation. Planting was June 1, about two weeks later than normal for this location. Emergence was good. Weed control was satisfactory and growing conditions were near optimum for most of the summer. All varieties ripened before frost.

Cooperator: Dr. D. D. Warnes Soil Type: La Prairie Silty Clay Herbicide: 3# Amiben preemergence

Soil Analysis: pH, 7.8; OM, High, P 18; K, 170.

Rosemount, Minnesota. Earlier than average planting (May 10). Good seedbed. Good stands. Excellent weed control. Adequate moisture. Wide range in summer temperatures but generally favorable. Good plant development with only moderate lodging. Varieties all ripened ahead of frost.

Soil Type: Waukegan Silt Loam

Herbicide: 2/3 qt/A Treflan preplant; 2#/A Amiben preemergence; Bas 3512 at second

trifoliolate stage for velvet leaf

Soil Analysis: pH, 6.5; OM, Medium; P, 100; K, 370.

Lamberton, Minnesota. Planted at normal date (May 15) in good seedbed. Good stands. Good weed control. Generally good growing conditions throughout the summer. Considerable lodging. Yields good. Some Group II varieties slightly immature at frost.

Cooperator: Dr. W. W. Nelson Soil Type: Nicollet Silty Clay

Herbicide: 2/3 qt/A treflan preplant; 2#/A amiben preemergence

Soil Analysis: pH, 6.7; OM, High; P, 24; K, 220.

Waseca, Minnesota. Planting on May 9 was earlier than normal at this location. Stands were good, weed control was good. Growth was luxuriant. Slight drought stress in mid-August. Brown stem rot was unusually heavy in the Uniform Tests at this location, probably affecting yield and seed quality. Some Group II varieties slightly immature at frost.

Cooperator: Dr. W. E. Lueschen Soil Type: LeSeuer Silt Loam

Herbicide: 2/3 qt/A Treflan preplant; 2#/A Amiben preemergence

Soil Analysis: pH, 6.4; OM, High; P, 42.

Sutherland, Iowa. This nursery was planted May 10, with good soil moisture. Precipitation was above average in June and nearly average during the rest of the growing season. Temperatures were above average in June but July and August were well below normal. Weed control was excellent and general growth response and yield were good. This nursery was considered adequate for making strain comparison.

Cooperator: Northwest Iowa Experiment Association

Soil Type: Primghar Silt Loam

Herbicide: Treflan

Soil Analysis: pH, 6.6; P, 12; K, 112.

Kanawha, Iowa. The nursery was planted May 9 with good soil moisture. May was below average for precipitation with normal temperatures while June had above average temperatures and near average rainfall. July and August were cool and August was rather dry. Plots were kept weed free and growth was good. The location was considered good for making strain comparisons.

Cooperator: Northern Iowa Experimental Association

Soil Type: Webster Silty Clay Loam

Fertilizer: 0-40-40 Herbicide: Treflan

Soil Analysis: pH, 5.9; P, 60; K, 144.

Ames, Iowa. Soil moisture was good at planting time, May 11. June was above average for temperature and the remainder of the growing season was below average with July averaging 7° below normal. August was rather dry averaging 4 inches below normal. The plots were kept weed free. The location was considered adequate for strain comparisons.

Cooperator: Agronomy Farm, Agricultural Experiment Station

Soil Type: Nicollet Silt Loam

Fertilizer: 0-80-80

Herbicide: Amiben broadcast

Soil Analysis: pH, 7.0; P, 51; K, 130.

Stuart, Iowa. This nursery is located in south central Iowa. Planting was completed on May 17. Moisture for the growing season was slightly below average to dry. Temperatures were below normal throughout the growing season. The location was considered adequate for making strain comparisons.

Cooperator: Eugene Kading Soil Type: Sharpsburg Silt Loam

Herbicide: Treflan

Soil Analysis: pH, 6.0; P, 26; K, 326.

Ottumwa, Iowa. This nursery is in southeastern Iowa on flat, productive Haig silty clay loam. The nursery was planted May 19. Temperatures throughout the growing season were below normal with the exception of June where temperatures averaged nearly 5° above normal. July temperatures averaged 5° below normal. The location was below normal for precipitation during the growing season. Weed control in Uniform Test III was spotty causing concern for the making of adequate strain comparisons.

Cooperator: Phillip Newquist Soil Type: Haig Silty Clay Loam

Herbicide: Treflan

Soil Analysis: pH, 6.2; P, 45; K, 188.

Spickard, Missouri. Planting was perhaps slightly late but in a good seedbed. Weed control was good. Summer rainfall was much better than 1971 but still less than optimum.

Cooperator: University of Missouri

Soil Type: Seymour Silt Loam Herbicide: Treflan-Lorox.

Columbia, Missouri. Stands and weed control were good. The late summer and fall drouth was the severest in years. Temperatures during the drouth were slightly above average.

Cooperator: University of Missouri

Soil Type: Mexico Silt Loam

Herbicide: Amiben

Mt. Vernon, Missouri. Stands from May 10 planting were good. Weed control was good. Late summer rainfall was slightly less than sufficient.

Cooperator: University of Missouri Soil Type: Huntington Silt Loam

Herbicide: Treflan-Lorox.

Portageville, Missouri. Adverse factors affecting the 1972 Uniform Tests at Portage-ville, Missouri were almost non-existing. Seedbed preparation and planting were normal. Early in the growing season, a few weeds and volunteer grain sorghum had to be removed from the tests. Supplementary water was added twice and plants did not suffer from drouth stress. No disease or insect incidence was noticed. Uniform Group IV was harvested at a normal date, however later tests received excessive rainfall delaying harvest two to four weeks. Delayed harvest and excessive moisture probably caused seed qualities poorer than normal.

Cooperator: University of Missouri Soil Type: Tiptonville Silt Loam

Soil Analysis: pH, 4.8; OM, Low; N, Low; P, Very High; K, Medium; Ca, Medium; Mg,

High.

Portage la Prairie, Manitoba. Warm weather conditions during May and June got this crop off to a good start with good plant development. July, however, was cooler than normal, but high temperatures during August and early September got this crop well matured before frost. Moisture conditions appeared to be adequate all summer.

Cooperator: Tom Chesney, Portage la Prairie, Substation, C.D.A.

Soil Type: Riverdale Silty Clay Loam.

Morden, Manitoba. The warm weather during May and June got the soybeans off to a good start. Plant growth was good until July when the crop suffered from drouth. For the period June and July only 2.9 inches of rain fell compared to a long-term average of 6.1 inches for these two months. The crop was saved from serious damage by relatively cool weather for most of July. The daily mean for this month was 4 degrees below average. Adequate rains and warmer weather in August helped the crop to recover and give fairly good yields.

Cooperator: Research Station, Canada Department of Agriculture, Morden, Manitoba.

Soil Type: Medium Heavy Clay Loam

Fertilizer: 500# 27-14-0 ammonium phosphate.

Fargo, North Dakota. An abnormally wet spring delayed planting 2 to 4 weeks. Fortunately, a warm June and plentiful moisture in August (along with nine days of 90° temperatures) allowed varieties to partially compensate for delayed planting. Heavy selection pressure was placed on resulting lodging susceptibility. Yields in the 40-50 bu/A range were frequent despite a killing frost on September 29 which probably prevented higher yields of varieties normally grown in this area. Weed control with liquid and granule Ramrod was excellent.

Soil Type: Fargo Clay

Herbicide: Ramrod (4#/A - broadcast)

Soil Analysis: pH, 7.2; N, 14; P, 26; K, 410.

Oakes, North Dakota. No data.

Revillo, South Dakota. Severe hail and windstorm damage in late June and late planting caused some stand loss and extremely high variability in the field. Yields were about 20 to 40% less than normal and severe lodging was caused from hail induced stem breakage.

Cooperator: James Street, Revillo, South Dakota

Soil Type: Forman Clay Loam

Fertilizer: 10-40-0

Herbicide: Lasso granules

Soil Analysis: pH, 6.7; OM, 3.3; P, 6; K, 297.

Brookings, South Dakota. Heavy spring rainfall and cold weather delayed planting two weeks and very cool summer temperature caused slow plant growth but early varieties yielded well because of favorable moisture throughout the summer. Delayed maturity caused poor seed quality and severe lodging.

Cooperator: A. O. Lunden Soil Type: Vienna Loam Fertilizer: 0-30-0 Herbicide: Lasso

Soil Analysis: pH, 6.9; OM, 3.9; P, 22; K, 254.

Centerville, South Dakota. Moisture and growing conditions near normal after wet weather caused a one week delay in planting.

Cooperator: A. O. Lunden

Soil Type: Poinsett Silty Clay Loam

Herbicide: Lasso

Soil Analysis: pH, 6.6; OM, 3.0; P, 105; K, 682+.

Elk Point, South Dakota. Yields were limited from dry conditions in late spring to early summer which also caused high field variability and poor seed quality.

Cooperator: Forrest Fennel, Elk Point, South Dakota

Soil Type: Haynie Silty Loam Herbicide: Lasso granules

Soil Analysis: pH, 7.6; OM, 1.7; P, 62; K, 682+.

Concord, Nebraska. Soil moisture was good when the soybeans were planted. June was an abnormally dry month but the condition was reversed in July when rainfall was 4 inches above normal. July and August were cooler than normal. Disease and insect infestations were not a factor. Weed control was excellent. No supplemental irrigation was applied. Because of the favorable moisture and temperature conditions, soybeans grew quite tall. Lodging scores were higher than usual.

Cooperator: University of Nebraska Northeast Station

Soil Type: Judson Silt Loam

Herbicide: Amiben 1.5#/A + Sencor 0.33#/A

Soil Analysis: pH, 6.3; OM, 2.5; N, Medium; P, Medium; K, Very High.

Mead, Nebraska. Planting was delayed until May 30 by cool wet weather. Excellent seedbed conditions at planting resulted in rapid emergence and good stands. Good weed control was obtained. Rainfall was about normal for June but was below normal in July and August. Tests were irrigated in late July and early August. September rainfall was above normal. Temperatures were cooler than normal during entire growing season. Light frost occurred on September 30 and freeze on October 6. Good yields were obtained but lodging appeared more than usually expected, especially for the full season varieties.

Cooperator: University of Nebraska, Mead Field Laboratory

Soil Type: Sharpsburg Silty Clay Loam

Fertilizer: 60#/A P₂O₅ Herbicide: Amiben 2#/A

Soil Analysis: pH, 6.3; N, Medium; P, Medium; K, Very High

Powhattan, Kansas. Even emergence gave good plant stands. Moisture supply was below normal, but well distributed throughout the growing season. Rains during September, and October delayed harvest. Pests were not a problem during 1972.

Cooperator: R. Sloan

Soil Type: Grundy Silt Clay Loam Fertilizer: 16#N, 64# P205, 32# K20

Herbicide: Treflan 1#/A (A.I.) Amiben 2.5#/A (A.I.) Soil Analysis: pH, 5.9; OM, 3.3; P, 39; K, 413.

Manhattan, Kansas. Rainfall during June, July, and early August was approximately 3 inches below normal. Early varieties (Group III) were lower yielding than the later varieties (Group IV). September, October, and November were extremely wet, causing late harvest. Pests were not a problem.

Cooperator: C. Swallow Soil Type: Smolan Silt Loam

Herbicide: Treflan 1#/A, Amiben 2.5#/A.

Manhattan (Irrigated), Kansas. Seedling growth was slow during mid-May because of wet, cool weather. Water was applied through trenches at 4 inches/acre on 7/5, 7/17, and 8/14. Pests were not a factor during 1972.

Cooperator: C. Swallow Soil Type: Eudora Silt Loam Fertilizer: 32# N, 96# P₂O₅/A

Herbicide: Treflan 1#/A (A.I.) Amiben 2.5#/A (A.I.) Soil Analysis: pH, 7.8; OM, 1.17; P, 46; K, 418. Ottawa, Kansas. Seedling emergence was uniform. Dry and hot weather during late August caused yields to be low for early group III varieties (Calland). Late season rains delayed harvest of group IV varieties until December 1, 1972. Pests were not a problem.

Cooperator: C. Gruver

Soil Type: Woodson Silt Loam Fertilizer: 32#N, 96# P₂05/A

Herbicide: Treflan 1#/A, Amiben 2.5#/A

Soil Analysis: pH, 5.7; OM, 2.6; P, 74; K, 338.

Columbus, Kansas. Seedbed was dry at planting, giving only fair stands. Adequate rainfall during June provided good early season growth. August was dry causing late maturity varieties to yield better than early maturity varieties.

Cooperator: Southeast Kansas Experiment Station

Soil Type: Cherokee Silt Loam

Fertilizer: 20# N/A, 50# P205/A, 40# K20/A

Herbicide: 1#/A Trifluralin

Soil Analysis: pH, 6.1; OM, 1.0%; P, 20; K, 100.

Lubbock, Texas. Tests were planted on May 20, 1972 in warm moist soil (Field 207). Stands were excellent. Temperatures during the season were near normal to slightly below normal. Rainfall in May and June totaled 7.50 inches. Rainfall the first 21 days of July totaled 5.23. Plots were irrigated on August 2 with approximately 4 acre inches of water. Seasonal rainfall was above normal with 18.45 inches total at the end of August. Rain and cloudy weather during the first 8 days of September delayed maturity on some entries. Bacterial blight caused moderate leaf drop on nearly all entries. Insects were of no major problem. Seed quality was lowered by humid conditions after maturity. Some purple stain present.

Cooperator: Raymond D. Brigham

Soil Type: Amarillo Loam

Soil Analysis: pH, 8.2; N, 14#/A, P, 55#/A, K, 1200#/A; Ca, 11900#/A; Mg, 250 ppm.

Ontario, Oregon. Plant stand, emergence, and growth throughout the season were good. Excellent weed control was achieved with a pre-plant incorporated broadcast application of \$1/2#/A\$ Treflan plus \$2#/A\$ Lasso. Spider mites were not a problem this season --apparently being effectively controlled by an early July application of Kelthane applied to the soil and the under-sides of the bottom foliage. Group 00 varieties received 5 irrigations between June 2 and August 20 plus a pre-plant irrigation to fill the soil reservoir. Approximate useable water added would be 24". Group 0 varieties received one extra irrigation on August 26 to total approximately 28" of useable water applied to this maturity group. Tests were considered very good for making strain comparisons at this location this year.

Cooperator: Luther A. Fitch, Malheur Experiment Station

Soil Type: Owyhee Silt Loam

Fertilizer: 100# P₂O₅ applied in fall, 1971 Herbicide: 1/2#/a.i./A Treflan + 2# a.i./A Lasso

Soil Analysis: pH, 7.6; OM, 2.1%; N, adequate; P, 35; K, 400+; Ca, adequate,

Mg, adequate.

WELLS (C1470) -- Group II

- 1962 -- The Cross CX403 which was Cl266R (sel. from Harosoy x Cl079) x Cl253 (sel. from Blackhawk x Harosoy) made by A. H. Probst, D. T. Cooper, and K. Edmondson in the spring greenhouse at the Purdue Agricultural Experiment Station. Cl079 is a selection from Lincoln x Ogden.
 - F, five plants grown at the Purdue Agronomy Farm.
 - F_2 1330 plants were grown in the fall greenhouse with 9 plants per 6-inch pot. The population was advanced from F_2 to F_6 by single seed descent (i.e. one seed per plant produced the next generation).
- 1963 -- F3 860 plants grown in the spring greenhouse with 5 plants per 6-inch pot.
 - F, 840 plants grown at the Purdue Agronomy Farm.
 - F₅ 837 plants grown in the fall greenhouse with 9 plants per 6-inch pot and inoculated with Phytophthora megasperma var. sojae by K. L. Athow and F. A. Laviolette. 451 resistant plants retained.
- 1964 -- F₆ 451 plants grown in the spring greenhouse with 2 plants per 6-inch pot.

 F₇ Seed from 364 resistant plants grown in 3-foot rows at the Purdue Agronomy
 - Fárms.
- 1965 -- F_g grown in CX403 High Protein Yield Trial at the Purdue Agronomy Farm.
 This was a two-replicate test with 357 entries in 21 blocks. CX403-141
 ranked second in yield among 38 of the early maturing strains retained
 for further testing.
- 1966 -- F_g grown in CX403IIA High Protein Test at the Purdue Agronomy Farm.
 This was a four-replicate test with 40 entries. CX403-141 ranked third in yield.
- 1967 -- F₁₀ 20 selections grown in CX403IIB, a four-replicate test at Bluffton and Lafayette, Indiana. CX403-141 ranked fourth in yield at Bluffton and second in yield at Lafayette.
- 1968 -- F₁₁ 14 selections grown in CX403IIC, a four-replicate test at Bluffton and Lafayette, Indiana. CX403-141 ranked ninth at Bluffton and second at Lafayette in yield. Also entered in regional Preliminary Test II as C1470.
- 1969 -- C1470 entered in Uniform Test II. 44 single plant selections grown at the Purdue Agronomy Farm to produce 136 pounds of breeders seed.
- 1970 -- C1470 grown in Uniform Test II.
- 1971 -- C1470 grown in Uniform Test II. The 136 pounds of 1969 breeders seed was divided among the states electing to participate in its release as follows:

State	Pounds Allotted
Illinois	47
Indiana	24
Iowa	55
Ontario	5
South Dakota	3
Wisconsin	2

1972 -- C1470 grown in Uniform Test II. The variety was named WELLS and released to seed producers August 1, 1972.

APPENDIX: UNIFORM TESTS III AND IV

1970-72, 3-year mean of locations growing both tests

			Matu-	Lodg-		Seed	Seed	Seed Compo	sition
Strain	Yield	Rank	rity	ing	Height	Quality	Size	Protein	Oil
No. of Tests	50	50	42	48	49	50	43	24	24
Calland	46.3	4	+2.0	2.4	42	2.4	17.7	39.7	21.5
Wayne	45.7	7	9-19	2.5	41	2.3	17.6	41.6	22.2
Williams	48.4	1	+3.8	1.9	41	1.9	17.6	40.6	22.9
L66L-172	47.8	3	+0.3	1.9	39	2.1	15.6	39.6	22.6
Bonus	46.2	5	+6.2	2.3	46	2.3	17.2	42.6	22.1
Cutler 71	45.9	6	+9.1	2.3	45	2.3	17.9	40.7	22.0
L66-1359	48.0	2	+5.5	2.1	41	2.3	18.2	39.9	23.3

1970-72, 3 YEAR MEAN YIELD

			Indiana		Kentucky		Illino	is
	Mean	Lafayette	Worthington	Evansville	Henderson	Urbana	Girard	Edgewood
	50 Test	s						
Calland	46.3	44.0	45.7	42.3	52.0	53.0	44.7	46.5
Wayne	45.7	47.0	45.9	42.3	50.1	50.1	50.2	47.1
Williams	48.4	48.6	50.5	44.8	54.4	55.4	49.2	47.9
L66L-172	47.8	48.9	52.7	39.5	51.5	56.4	49.2	46.0
Bonus	46.2	42.2	46.1	44.9	49.3	53.4	49.9	47.9
Cutler 71	45.9	47.3	49.7	46.3	49.5	54.1	44.0	45.2
L66-1359	48.0	47.7	51.9	47.2	50.7	55.4	49.9	46.3
			v	IELD RANK		•		
			-	TEBB IGHIN				
Calland	4	6	7 .	5	2	6	6	4
Wayne	7	5	6	5	5	7	1	3
Williams	1	2	3	4	1	2	4	1
L66L-172	3	1	1	7	3	1	4	6
Bonus	5	7	5	3	7 ·	5	2	1
Cutler 71	6	4	4	2	6	4	7	7
		3	2	1	4	2	2	5
L66-1359	2	3	2	1	4	2	۷	5

a Trenton in 1970

1970-72, 3 YEAR MEAN YIELD

	Illinoi	s	Io	wa	Misso	uri	Neb.	Kansas			
Belle- ville a	Eldo- rado	Carbon- dale	Stuart 71-72	Ottu- mwa 71-72	Colum- bia 70-71	Mt. Vernon	Mead I 70-71	Pow- hattan	Man- hattan I	Ott- awa	
47.6	53.4	47.3	36.9	42.7	40.9	39.8	45.0	43.3	73.6	41.9	
46.4	47.4	41.3	37.0	46.1	38.7	44.7	48.5	40.6	65.8	44.0	
50.3	53.4	49.6	39.0	45.1	41.2	43.9	41.5	44.2	71.0	44.8	
49.2	51.3	45.6	38.6	44.9	40.1	46.0	46.5	42.6	73.1	45.0	
49.3	50.3	47.0	35.5	48.1	40.2	38.1	37.5	40.6	68.4	43.5	
48.6	51.9	46.0	36.3	44.0	40.2	40.9	36.6	41.2	65.5	40.0	
50.3	52.3	48.8	39.0	43.9	41.3	42.7	38.8	42.1	69.2	46.9	
					YIELD RA	NK					
6	1	3	5	7	3	6	3	2	1	6	
7	7	7	4	2	7	2	1	6	6	4	
1	1	1	1	3	2	3	4	1	6 3 2	3 2	
1	5	6	3	4	6	1	2	3	2	2	
3	6	4	7	1	4	7	6	6 5	5	5	
5	4	5	6	5	4	5			7		
1	3	2	1	6	1	4	5	4	4	1	