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A B S T R A C T

Preparation of commercial supplements from botanical ingredients results in a change in the chemical com-
position that is easily followed with flow injection mass spectrometry. Spectral fingerprints (counts vs ion with
no chromatographic separation) were acquired by flow injection mass spectrometry (FIMS) for aerial parts of 16
Echinacea purpurea botanical ingredients (BIs) and 18 commercial botanical supplements (BSs) whose labels
claimed or suggested E. purpurea aerial content. One class modeling of the BI spectral fingerprints showed them
to be different from the BIs at the 95% confidence limit. The spectral components (ions) that provided dis-
crimination between the BSs and BSs were identified using analysis of variance to obtain an F-value for each ion
and produce an F-test spectrum. Ions found in both BI and BS spectra were identified by multiplication of the
spectra to yield a correlation spectrum. The correlation spectra obtained from multiplication of the average BI
spectrum and 6 single-ingredient BS spectra showed only one supplement to be significantly different. These
correlation spectra verified the presence of the BI in the BSs and indicated that the analytical extraction and the
BS preparation procedures used by 5 of the manufacturers were similar. Correlation spectra for 13 mixed or
unknown ingredient BSs showed that 6 could be verified to contain E. purpurea aerial material.

1. Introduction

Sale of botanical supplements (BSs) is a billion dollar, world-wide
industry that has grown at an incredible rate in the last two decades.
Unfortunately, economically motivated adulteration of BSs has grown
at an equal pace. Consequently, there is an increased demand for
analytical methods to verify (i.e. authenticate) the content of BSs. BSs
are the finished commercial products composed of one or more bota-
nical ingredients (BIs). BIs may be whole plants or plant parts with
purported health-promoting properties. In general, extracts of BIs are
used either directly (liquid form) or added to an excipient and en-
capsulated or pressed into a tablet (solid form). Thus, BSs will consist of
a subset of the components of the BIs and will differ in composition
from BIs depending on the extraction process. Development of analy-
tical and statistical methods that can relate the composition of the BSs
to the original BIs are an analytical challenge.

Fig. 1 provides an overview of the transition of BIs to BSs and the
analysis of both materials. BSs are prepared through what is often a
complex preparation process that is inevitably proprietary (Upton,
2016). Compounds may be lost (through extraction) and gained

(through addition of other ingredients). Analytically, the standard
procedure is to prepare both BIs and BSs in the same manner, usually
employing an aqueous alcohol solvent optimized for the extraction of
small molecules, leaving proteins, nucleic acids, and complex carbo-
hydrates behind. If the BS preparation process matches the analytical
extraction, then the fingerprints of the BI and BS will match; i.e. both
the analytical extraction and the BS preparation will select the same
compounds with similar efficiencies.

Every manufacturer will expect some variation of BSs from lot to lot
because of the natural variation of the BIs. However, there can be sig-
nificant variation between manufacturers because they either start with
different BIs or employ a different preparation process. Since the
commercial processes are proprietary, it is impossible to determine the
source of the differences. This problem is further complicated because
many manufacturers acquire extracted BIs from brokers (Upton, 2016).
Thus, it is inevitable that the fingerprints of the BIs cannot be used as
reference samples to authenticate BSs using non-targeted analysis. In
principle, only historical BSs from a manufacturer can be used as re-
ference samples for their newest products.

The identity of a complex BI material is best confirmed using non-
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targeted fingerprinting methods coupled with chemometric analysis.
The approach is conceptually simple. Reference samples (for the BI of
interest) are collected and analyzed, a model is constructed, statistical
limits are established, and the unknown BI is determined to be the same
as (within the statistical limits) or different from (outside the limits) the
reference samples. Regardless which BI is of interest, the approach is
the same logistically, analytically, and chemometrically.

Logistically, the collection of BI reference samples should account
for as much of the natural variation of the plant or plant part as pos-
sible. This includes variables associated with genetics (species, cultivar,
hybrid), environment (geographic location, climate, season, growing
conditions), and management (harvesting, processing, storage)
(Walthall et al., 2012). Certified botanical reference materials from
metrological organizations, such as the National Institutes of Standards
and Technology, have limited value. They are intended for quantitative
validation. While they can validate the general composition of the
collection of reference samples (falling within the range of the reference
samples), they cannot provide insight into the natural variability of a
botanical material.

A large collection of authentic materials is ideal, but it will often
reveal a lack of homogeneity. For example, systematic differences have
been observed for American ginseng (Panax quinquefolius) grown in the
US, Canada, and China (Sun et al., 2013) and black cohosh (Actaea
racemosa) grown at 22 sites in the eastern US (Harnly et al., 2016).
Thus, a conscientious effort to characterize variability may, in fact,
produce unanswered questions due to incomplete metadata, i.e. full
background information for the samples.

Analytically, the chosen method must be non-targeted and as
comprehensive as possible. While targeted methods have been used to
characterize different species (e.g. ginsenoside ratios for Panax species,
Chan et al., 2000), genetic and metabolite fingerprinting methods are
much more robust. The cost of genetic testing is decreasing, but con-
tamination, low quality of the DNA, and inability to differentiate be-
tween plant parts (a common form of adulteration) can be problematic.
Second generation sequencing can provide considerably more in-
formation but is still fairly expensive. In general, however, chemical
and genetic methods are complimentary.

Metabolite fingerprinting is commonly used as a rapid method for
high throughput qualitative screening, particularly when the primary
aim is sample comparison and there is no initial interest in identifying
the metabolites (Hall, 2006). Both chromatographic (LC, UHPLC, CE)
and spectral (MS, NIR, Raman, UV) fingerprints have been used for this
purpose. Flow injection mass spectrometry (FIMS) has been found to be
particularly useful. This method provides counts vs ions with no chro-
matographic separation, avoids the necessity of retention time align-
ment for chromatograms, provides analytical results in a matter of
minutes (following sample extraction), and offers the possibility of
identifying discriminating masses, whether that is the main goal or not.

Chemometrically, the objective is to determine whether the

fingerprint of an unknown sample matches those of the reference
samples. There are numerous statistical and chemometric methods for
analyzing the data patterns of the fingerprints. For authentication (or
adulteration), there are two common approaches: one-class modeling
(soft modeling) and classification (hard modeling) (Brerton, 2009). The
chemometric methods most commonly associated with these two ap-
proaches are principal component analysis (PCA) and partial least
squares-discriminant analysis (PLS-DA), respectively.

One-class modeling applies PCA to a specified class of samples. If
more than one class is identified, a PCA model is applied independently
to each class. Thus, there is a model for each class that is based only on
the features (variables) of the samples in that class. For cases of more
than one class, soft independent modeling of class analogy (SIMCA)
compares the model parameters of each class and determines whether
they are statistically different. An unknown sample may be found to
belong to a single class, to more than one class, or to none of the classes.
This approach is ideal for authentication (adulteration) because a PCA
model is only needed for the authentic, or reference, samples. A one-
class model applied to authentic Echinacea purpurea samples will allow
the analyst to determine if the unknown sample is E. purpurea (within
limits) or not (outside limits). Thus, an unknown sample of black co-
hosh (Actaea racemosa) will be classified as not E. purpurea.

Classification models are applied to two or more classes. The classes
are identified in advance and reference samples are required for each
class. The model is then constructed using all the classes, incorporating
all the features (variables) of all the reference samples. An unknown
sample will be assigned to one of the classes used to construct the
model. It is not possible for the unknown sample to belong to more than
one class or to none of them. This makes the classification approach
unsuited for non-targeted analysis since it is impossible to anticipate
and collect reference samples for the infinite number of possible classes.
A classification model constructed using fingerprints for E. purpurea and
E. angustifolia will assign an unknown sample of black cohosh to one of
the two classes. Correct classification can occur only if the model was
constructed including black cohosh as one of the classes.

Confidence limits can be constructed around each class of samples
to help statistically evaluate their separation from other samples.
However, an influence plot, the Q statistic plotted as a function of the
Hotelling T2 statistic, provides a more systematic and meaningful ap-
proach to determining the relationship between the samples (Brerton,
2009). This approach also fits well with the challenge of authentication.
A PCA model is fit to the reference samples and all the samples are
evaluated with respect to that model. The Hotelling T2 statistic accounts
for the variance associated with the model, the Q statistic accounts for
the variance outside the model. Samples lying outside the 95% con-
fidence limit for the Hotelling T2 statistic have common features with
the rest of the samples, but are more extreme. Samples outside the 95%
limit for the Q statistic generally contain features missing from the
reference samples. In general, the Q statistic takes precedence over the
Hotelling T2 statistic.

The purpose of this study was to develop a method for verifying the
presence of BIs in BSs and to apply the method to a series of com-
mercially available BSs. In this study, 16 Echinacea purpurea (L.)
Moench aerial (EPA) samples comprised the BIs and 6 EPA single-in-
gredient solid and liquid supplements (EPAS and EPAL) and 13 mixed
or unidentified ingredient supplements comprised the BSs (Table 1)
that were analyzed by flow injection mass spectrometry (FIMS). PCA
score plots were used to compare the BI and BS samples, PCA loadings
and F-test spectra were used to identify discriminating ions, correlation
spectra were used to identify common ions, and correlation spectra
were used to verify the presence of EPA in the single-ingredient and
mixed or unidentified ingredient BSs.

Fig. 1. Schematic for preparation of commercial botanical supplements from botanical
ingredients and their analysis.
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2. Materials and methods

2.1. Solvents and plant material

2.1.1. Solvents
Water, acetonitrile, and methanol were of optimal grade (Fisher

Scientific, Pittsburgh, PA, USA). Formic acid was of mass spectrometry
grade (Sigma-Aldrich, St. Louis, MO, USA).

2.1.2. Echinacea ingredients
Sixteen Echinacea purpurea (L.) Moench aerial samples (coded EPA1-

EPA16) were obtained from and authenticated by the Missouri
Botanical Gardens (St. Louis, MO, USA) (Table 1). The vouchers for all
standards are resident at the Food Composition and Method Develop-
ment Laboratory, Beltsville Human Nutrition Research Center, Agri-
cultural Research Service, United States Department of Agriculture
(Beltsville, MD, USA).

2.1.3. Echinacea supplements
Thirteen liquid and solid (tablets and capsules) supplements were

purchased from local drug stores in Beltsville, MD, USA (Table 1). Six
were single-ingredient supplements and were labeled as containing
only E. purpurea aerial material. The other seven were mixed or un-
known Echinacea supplements; labeled to contain mixtures of E. pur-
purea with Echinacea angustifolia DC or Echinacea pallida (Nutt.) Nutt,
mixtures of aerial and root parts, or with no information regarding the
species or plant part (Table 1). A 4-part code was assigned to each BI
and BS; genus, species, plant part, and form. All genus were Echinacea
(E). Species were either E. angustifolia (A), E. purpurea (P), E. purpurea
and E. angustifolia (M1), E. purpurea and E. pallida (M2), or unknown
(X). Plant parts were aerial (A), root/rhizome (R), aerial and root/rhi-
zome (M), or unknown (X). BS form was either liquid (L) or solid (S)
and was left blank for BIs (powdered). Thus, EPA was an E. Purpurea
aerial ingredient, EPAS was an E. Purpurea aerial solid supplement,
EPAL was an E. Purpurea aerial liquid supplement, EM1ML was a mixed
E. Purpurea and E. angustifolia, mixed aerial and root, liquid supple-
ment. There were 6 single-ingredient supplements and 13 mixed or
unknown supplements.

2.2. Sample preparation, solid samples

Roots were dried and ground, tablets were ground, and capsules
were emptied and ground if necessary. One hundred mg of each dried
ground sample was mixed with 5 mL of methanol: water (6:4, v:v) in a
15 mL centrifuge tube. All samples were sonicated for 20 min at room
temperature. The sample extract was centrifuged at 5000g for 20 min
(IEC Clinical Centrifuge, Danon/IEC Division, Needham, MA, USA). The
supernatant was filtered through a 17 mm (0.45 μm) PVDF syringe
filter (VWR Scientific, Seattle, WA, USA).

2.3. Sample preparation, liquid samples

50 μL of sample was mixed with 5 mL of methanol: water (6:4, v:v)
in a 15 mL centrifuge tube. All samples were sonicated for 20 min at
room temperature. The sample extract was centrifuged at 5000g for
20 min. The supernatant was filtered through a 17 mm (0.45 μm) PVDF
syringe filter. Sample extracts were stored at 4 °C immediately and
analysis was finished within 24 h of the extraction to avoid potential
degradation. Each sample was analyzed three times for the FIMS ex-
periment and all samples were run in randomized order. The injection
volume was 5 μL for all samples.

2.4. Flow injection mass spectrometry

The FIMS system consisted of a LCQ DecaXP ion-trap mass spec-
trometer (Thermo Fisher Scientific Inc., San Jose, CA, USA) with an
Agilent (Santa Clara, CA, USA) 1200 HPLC system (a binary pump with
a vacuum degasser, a thermostated column compartment, an auto-
sampler, and a diode array detector (DAD). Samples were injected
through a guard column (Adsorbosphere All-Guard Cartridge, C18,
5 μm, 4.6 × 7.5 mm, Alltech Associates, Inc., Deerfield, IL, USA) to
minimize potential contamination of the MS system. The mobile phases
consisted of 0.1% formic acid in H2O (phase A) and 0.1% formic acid in
acetonitrile (phase B) with isocratic elution at 60:40 (v v-1) at a flow
rate of 0.5 mL min-1. Electrospray ionization (ESI) was performed in
the negative ion mode from m/z 150 to 1500 to obtain the FIMS fin-
gerprints. The following conditions were used for the DecaXP mass
spectrometer: sheath gas flow rate, 80 (arbitrary units); auxiliary gas
flow rate, 10 (arbitrary units); spray voltage, 4.50 kV; heated capillary
temperature, 220 °C; capillary voltage, 4.0 V; tube lens offset, 25 V.
Spectra were collected over the 1.0 min interval that contained the
sample bolus. Five repeat analyses of the 29 different samples provided
145 fingerprints.

2.5. Data processing for FIMS fingerprint

The mass spectrum for each sample consisted of a one-dimensional
matrix (ion counts versus mass-to-charge ratio (m/z) from 150 to 1500.
The 145 spectra acquired were exported to Excel (Microsoft, Inc.,
Bellevue, WA, USA) from Xcalibur for data pre-processing. The pre-
processing in Excel involved combining the 145 spectra, sorting the
data by sample names, deleting unnecessary and redundant information
(headers, sample information, instrument information, etc.), and
aligning the masses (each spectrum was a different length because not
all m/z have ion counts in each spectrum) using a MS Excel macro
written in house. The resulting two-dimensional 145 samples by
1351 m/z matrix was then exported to Solo (Eigenvector Research, Inc.,
Wehnatchee, WA, USA) for chemometric analysis. PCA (Wold et al.,
1987) and SIMCA (Wold and Sjostrom, 1977) were used to analyze the
data. Pre-processing consisted on normalization of the 145 spectra (sum
of counts2 = 1) and mean centering of the 1351 variables. PCA pro-
vided an initial look at sample similarity. SIMCA, used as a one-class
classifier, provided a statistical evaluation of their similarity. The Q
statistic was used as the primary statistic to characterize the statistical
variation of the samples (Brerton, 2009).

Table 1
Botanical ingredients and supplements.a

Sample
Code

Genus, Species Plant Part Form of
Ingredient or
Supplement

Number of
Samples

Botanical Ingredients (BI)
EPA E. purpurea aerial powder 16

Single Ingredient Botanical Supplements (BS)
EPAS E. purpurea aerial capsule 5
EPAL E. purpurea aerial liquid 1

Mixed Ingredient/Unknown Botanical Supplements (mBS)
EXAS Not listed aerial capsule 3
EXRS Not listed root capsule 3
EM1RS E. purpurea& E.

angustifolia
root capsule 1

EM2RS E. purpurea& E.
pallida

root capsule 1

EPML E. purpurea aerial & root liquid 1
EM1ML E. purpurea& E.

angustifolia
aerial & root liquid 2

EM1XL E. purpurea& E.
angustifolia

not listed liquid 2

a A 4-part code was assigned to each BI and BS; genus, species, plant part, and form. All
genus Echinacea (E). Species were either E. angustifolia (A), E. purpurea (P), E. purpurea
and E. angustifolia (M1), E. purpurea and E. pallida (M2), or unknown (X). Plant parts were
aerial (A), root/rhizome (R), aerial and root/rhizome (M), or unknown (X). Supplement
form was liquid (L) and solid (S). Form for all ingredients were powder and left blank in
the code.
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2.6. Analysis of variance (ANOVA)

This method, as applied to full matrices, has been previously de-
scribed (Harnly and Harrington, 2013). In brief, classic ANOVA is
performed for every ion in the MS spectra and the resulting F-values
were used to construct an F-test spectrum.

2.7. Spectral correlation

Correlation coefficients are a classic statistical method of judging
the similarity of two sets of data. Perhaps the best known is Pearson's
correlation coefficient (Lane, 2016). Mathematically, this is expressed
as:

(1) rXY = n (xi-xave) (yi-yave)/(√S(xi- xave)2 √Σ(yi-yave)2)

where, rXY is the correlation coefficient between spectra X and Y, n is
the number of spectral variables, and x and y are variables in the X and
Y spectra, respectively. The numerator is the product of the 2 spectra,
for mass spectrometry, a mass-by-mass multiplication. The denomi-
nator is the normalization factor that assures that the value of rXY ap-
proaches 1 as the spectra approach perfect, positive correlation or −1
as they approach perfect, negative correlation. Thus, the correlation of
a reference spectrum with spectra for a series of test samples will give a
single value for rxy varying from 1 to −1. An alternative approach is to
use PCA of the denominator arrays, n(xi-xave)(yi-yave), computed for
each sample and the reference standard. Normalization is not neces-
sary. Samples with similar arrays will cluster together.

3. Results and discussion

Fig. 2A shows the 2 dimensional PCA score plot (PC2 versus PC1)
for the FIMS fingerprints for the 16 Echinacea purpurea aerial BIs, 5 E.
Purpurea aerial solid BSs, and 1 E. Purpurea aerial liquid BS listed as
EPA, EPAS, and EPAL in Table 1. Each sample was analyzed 5 times.
Each of the 3 classes were assigned a separate symbol to facilitate re-
cognition. It can be seen that the EPA samples are well separated from
the EPAS and EPAL samples. Fig. 2B shows the same score plot in 3
dimensions to include PC3. In this case, the separation of the clusters in
Fig. 2A and B are similar. However, significant differences are fre-
quently found with higher principal components; clusters that appear to
be overlapping in 2 dimensions may be found to separate in the 3rd or
4th dimension (PC3 or PC4). Higher PCs are not commonly used for fear
of over fitting the data.

PCA also allows identification of ions that are primarily responsible
for the separation of the clusters. Fig. 2C shows the loadings for the ions
for PC1 and PC2. The further an ion is from the origin (in either the
positive or negative direction), the more influence it has on the se-
paration of the clusters. Thus m/z 307, 320, and 473 and m/z 307, 487,
and 785 had the strongest influence on the horizontal and vertical
dispersion of the data, respectively. The other ions had influences
proportional to their distance from the origin. An alternative to the PCA
loadings is to use ANOVA for each ion to compute an F-test spectrum
(Harnly and Harrington, 2013). This approach is based on the signal-to-
noise ratio rather than just variance, as is the case for PCA. In addition,
the noise is based on the total variance of the data rather than parsing it
between the PCs. Fig. 3 (negative going plot) shows the F-test spectrum
for the EPA and EPAS and EPAL samples. The most influential ions were
m/z 377, 201, 215, and 539, in descending order.

A one-class model fit to just the fingerprints of the EPA samples
allows an evaluation of the statistical significance of the separation of
the clusters. Fig. 2D presents the influence plot for the EPA samples
shown in the PCA score plot of Fig. 2A. All the EPAS and EPAL samples
fell within the 95% confidence limit for the Hotelling T2 statistic, but
were outside (above) the 95% confidence limit for the Q statistic. Thus,
it is not possible to verify the label claim that E. purpurea aerial material

was present in the EPAS and EPAL supplements, since the BSs were
statistically different in chemical composition from the BIs.

If it is assumed that the labels are correct and E. purpurea BIs were
used in the preparation of the supplements, how is it possible to verify
the presence of components from the ingredients? One approach is
targeted analysis of specific components that the literature has docu-
mented as being present in E. purpurea aerial parts. Obviously, the more
components that can be targeted, the more robust the method, and the
more confidence the analyst will have in the presence of E purpurea
aerial parts. The logical extrapolation of this approach would be a non-
targeted comparison of all the components in the BSs that should be
extracted from the BI.

The simplest means of establishing common components in the BIs
and BSs is multiplication of their spectra or chromatograms. In a cor-
relation spectrum, common peaks will show a relative increase and
peaks with no match will show a relative decrease or disappear. Fig. 3
shows the correlation spectrum for the average EPA BI fingerprints and
the average BS (EPAS and EPAL) fingerprints. The strongest common
ions are m/z 473, 311, 387, 487, and 785.

Fig. 3 compares the F-test and correlation spectra for the averaged
BI fingerprints (EPA1-EPA16) and the averaged BS fingerprints (EPAS1-
EPAS5 and EPAL1). Since the values in the two spectra were computed
in dramatically different ways, the spectra in Fig. 3 have been nor-
malized (the sum of squares for each point in the spectrum is equal to
1.0) for comparison. It can be seen that the correlation spectrum is less
complex than the F-test spectrum with relatively fewer ions but higher
counts. Conversely the F-test spectrum is more complex with more ions
at lower counts. The significant ions for each spectrum (those ions
providing 25% of the total counts) are listed in Table 2. More ions are
necessary for the F-test spectrum to provide 25% of the total counts. Of
the 60 ions listed in Table 2, only eight were found in both spectra
(shaded ions). The fact that they were useful in discriminating between
the BIs and BSs indicates that they were present at consistently different
levels.

Fig. 4 shows the individual correlation spectrum for each of the 6
BSs, i.e. the average fingerprint for each single-ingredient supplement
(EPAS1-EPAS5 and EPAL) was multiplied by the average EPA finger-
print. In addition, the average EPA fingerprint was correlated with itself
(autocorrelated). It can be seen that the correlation spectrum for the
EPA fingerprint is similar to the spectra for 5 of the supplements
(EPAS1-EPAS4 and EPAL). Only the correlation spectrum for EPAS5
was significantly different. However, it is visually difficult to compare
all the correlation spectra in detail. A PCA score plot (data not shown)
of the correlation spectra showed that EPA, EPAS1-EPAS4, and EPAL
fell in a single cluster while EPAS5 was considerably distant.

These results provide some interesting conclusions. First, since the
correlation spectra for EPAS1-EPAS4, and EPAL were similar, the sup-
plements contained similar extracted components. This means that the
starting ingredients and the processes used by the manufacturers were
similar. Second, since the autocorrelation spectrum of EPA was similar
to the correlation spectra of EPA with EPAS1-EPAS4 and EPAL, the BIs
in this study were similar to the BIs used by the manufacturers. Finally,
since the extracted compounds were the same, the analytical extraction
process used in this study was similar to the preparation method em-
ployed by the manufacturers. These data also indicate that supplement
EPAS5 was produced using either a different starting ingredient or a
different extraction process.

The last phase of the project was to examine the 13 BSs with mixed
or unidentified BIs. According to the labels on these BSs, they contained
mixtures of E. purpurea, E. angustifolia, and E. pallida and mixtures of
aerial and root parts (Table 1). However, in 3 cases the species for the
aerial parts were not listed, in 3 cases the species for the root parts were
not listed, and in 2 cases the plant parts were not listed. Still, there was
the possibility that each of these BSs contained E. purpurea aerial in-
gredients. PCA of the correlation spectra was used to verify the presence
of EPA.
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Fig. 2. Analysis of FIMS fingerprints for E. purpurea aerial botanical ingredients (EPA, ), E. pupurea aerial single-ingredient solid botanical supplements (EPAS, *), and E. pupurea aerial
single-ingredient liquid botanical supplements (EPAL, ): A) 2 dimensional PCA score plot for PC1 and PC2, B) 3 dimensional PCA score plot for PC1, PC2, and PC3, C) PCA loadings for
PC1 and PC2, and D) influence plot for one-class modeling of E. purpurea aerial botanical ingredients.

Fig. 3. F-test spectrum (lower trace, negative direc-
tion) and correlation spectrum (upper trace, positive
direction) obtained using average fingerprints for E.
purpurea aerial botanical ingredients (EPA) and
average fingerprints for E. purpurea aerial single-in-
gredient botanical supplements (EPAS and EPAL).
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Fig. 5A shows the PCA score plot for all the correlation spectra for
the BSs, with the exception of EPAS5. The central cluster is too dense to
permit labeling so only the outliers have been labeled. This problem
was remedied in Fig. 5B where all the data points in the influence plot
have been labeled. Fig. 5A shows that 5 of the mixed or unidentified BSs
appear to not contain EPA. However, the Q statistic in Fig. 5B shows
that 7 of the BSs fall above the 95% confidence limit. Thus, 7 of the BSs
do not have EPA present at sufficient levels to produce a qualifying
correlation spectrum. Of these 7 BSs, the labels for 2 did not specify the

species and the label for a third BS did not specify the plant part. The
other 4 contained either mixtures of species or plant parts.

The test described above positively verifies the presence of EPA in
the 5 single-ingredient BSs and 7 mixed or unidentified BSs lying within
the 95% confidence limit in Fig. 5B but does not prove the absence of
EPA in the BSs lying outside the 95% confidence limit. Variations in the
correlation spectra are determined by the ions present and by the
counts for those ions. If the differences in the correlation spectra arise
from missing ions, the probability is high that EPA is not present. In
other words, key ions present in the BI fingerprint are not found in the
BS fingerprint. If the difference in the correlation spectra arise from
differences in the count level, EPA may still be present.

Differences in counts for individual ions in the fingerprint can occur
in two different ways. First, the concentration of the BI in the BS may be
low. Thus, the counts for the ions in the normalized fingerprints will be
lower and will produce a correlation spectrum with EPA that is different
from EPA fingerprint correlated with itself. Second, the relative counts
for the ions in the fingerprint may vary. This can occur with different
sources of BIs or as a result of a difference in extraction conditions.
Either condition would result in a correlation spectrum that is statisti-
cally different from the autocorrelated EPA fingerprint. The solution to
the latter condition with different relative counts can be minimized
using binary spectra. This is done by normalizing the fingerprints, es-
tablishing an arbitrary threshold, and determining if an ion is present
(1) or not (0). This is an area for future work and would address the
current limitation of the method that is associated with relative ion
counts.

The general principles of this method are applicable to all botanical
supplements. Spectral multiplication is the easiest way to identify
common components. Application of PCA to the correlated spectra
eliminates the need for normalization, provides easy visual inspection
of the results, allows statistical evaluation of class separation, and
permits identification of key components that are the basis for dis-
crimination.

4. Conclusions

Flow injection mass spectrometry coupled with chemometric one-

Table 2
Comparison of Botanical Ingredient and Supplement Spectra.a

a m/z – mass to charge ratio, D- different as determined by an F-test, S − similar as
determined by a correlation spectra.

Fig. 4. Correlation spectra obtained using average
fingerprints for E. purpurea aerial botanical in-
gredients (EPA) and individual fingerprints for E.
purpurea aerial single-ingredient botanical supple-
ments (EPAS1, EPAS2, EPAS3, EPAS4, EPAS5, and
EPAL1).
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class modeling is a powerful method for comparison of botanical in-
gredients and commercial botanical supplements. This study demon-
strated that spectral fingerprints for 16 botanical ingredients of aerial E.
Purpurea could be used to positively verify its presence in 5 of the 6
single ingredient botanical supplements and 7 of the 13 mixed or uni-
dentified ingredient botanical supplements. The key to the success of
this method was the use of correlation spectra acquired by multi-
plication of fingerprints to identify ions found in both the ingredients
and supplements. PCA of correlation spectra and one-class modeling
were used to statistically verify the presence of compounds from the
botanical ingredients in the commercial botanical supplements.
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