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ABSTRACT: Liquid chromatography and mass spectrometry
methods, especially ultrahigh-performance liquid chromatogra-
phy coupled with diode array detection and high-resolution
accurate-mass multistage mass spectrometry (UHPLC-DAD-
HRAM/MSn), have become the tool-of-the-trade for profiling
flavonoids in foods. However, manually processing acquired
UHPLC-DAD-HRAM/MSn data for flavonoid analysis is very
challenging and highly expertise-dependent due to the complex-
ities of the chemical structures of the flavonoids and the food
matrixes. A computational expert data analysis program,
FlavonQ-2.0v, has been developed to facilitate this process.
The program first uses UV−vis spectra for an initial stepwise
classification of flavonoids into classes and then identifies
individual flavonoids in each class based on their mass spectra.
Step-wise identification of flavonoid classes is based on a UV−vis
spectral library compiled from 146 flavonoid reference standards
and a novel chemometric model that uses stepwise strategy and
projected distance resolution (PDR) method. Further identi-
fication of the flavonoids in each class is based on an in-house database that contains 5686 flavonoids analyzed in-house or
previously reported in the literature. Quantitation is based on the UV−vis spectra. The stepwise classification strategy to identify
classes significantly improved the performance of the program and resulted in more accurate and reliable classification results.
The program was validated by analyzing data from a variety of samples, including mixed flavonoid standards, blueberry, mizuna,
purple mustard, red cabbage, and red mustard green. Accuracies of identification for all samples were above 88%. FlavonQ-2.0v
greatly facilitates the identification and quantitation of flavonoids from UHPLC-HRAM-MSn data. It saves time and resources
and allows less experienced people to analyze the data.

Flavonoids are a group of phenolic compounds with various
bioactivities and are widely distributed in plants. In various

in vitro and in vivo models, they have exhibited diverse
biological activities including anti-inflammatory, antiathero-
sclerotic, antitumor, antithrombogenic, antiosteoporotic, and
antiviral effects.1 Although dietary flavonoids may play an
important role in human health, making recommendations on
daily flavonoid intakes is very difficult. One of the important
issues that limit progress in dietary flavonoid recommendations
for consumers is the lack of appropriate analytical methods for
the determination of flavonoids in foods and dietary intake
levels.2

Profiling flavonoids in foods is challenging due to the fact
that their structures are complex, their distribution and
concentrations in plants vary greatly, and commercially
available reference standards are limited.3 Liquid chromatog-
raphy/mass spectrometry (LC/MS) has become the most
commonly employed method in flavonoid identification and

quantification.2,4 While technical advances such as ultrahigh-
performance liquid chromatography-diode array detection-
high-resolution accurate-mass multistage mass spectrometry
(UHPLC-DAD-HRAM-MSn) can provide much more detailed
information for a sample, it also brings us a new challenge: the
tremendous amounts of data to be analyzed. In recent years, the
emergence of a few “omics” tools such as XCMS,5 MZmine,6,7

MetSign,8 and MET-COFEA9 have greatly facilitated data
analysis using automated peak picking, peak alignment, peak
integration, and database searching. However, they are designed
for nontargeted metabolomics or metabolite profiling. They are
inadequate for the analysis of a specific class of targeted plant
secondary metabolites, such as flavonoids, due to the lack of
specificity. Herein, FlavonQ-2.0v, a software program specifi-
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cally designed for the analysis of flavonoids, has been
developed.
FlavonQ-2.0v has made several important advances com-

pared with its predecessor, FlavonQ. Like FlavonQ,10 FlavonQ-
2.0v features all the functions necessary to detect chromato-
graphic peaks, integrate peak areas, interpret MS spectra, and
produce qualitative and quantitative results. The important
advance of FlavonQ-2.0v are (1) it is capable of analysis of all
the major classes of flavonoids, including flavone/flavonol,
flavan/flavanol, flavanone/flavanonol, isoflavone, anthocyani-
dins, and hydroxycinnamic acids (nonflavonoids) (Figure 1);
(2) the program uses a chemometric pattern recognition
method to classify the classes of the flavonoids by comparing
the UV spectrum of a chromatographic peak to an UV−vis
spectra library of 146 flavonoid and hydroxycinnamic acid
standards; (3) the result obtained from the above-mentioned
step is correlated with HRAM/MSn spectra of that peak and
searched against an in-house flavonoid database for tentative
identification.
In this study, the stepwise approach of FlavonQ-v2.0 is

explained and illustrated. The advantages of stepwise strategy
with the projected difference resolution (PDR) method over
conventional classification strategy is demonstrated. The
program is validated with the analysis of samples spiked with
flavonoids, mix standards, and plant extracts. The improved
approach used in FlavonQ-2.0v is innovative, efficient, and
highly effective.

■ MATERIALS AND METHODS
Chemicals and Plant Materials. Formic acid, HPLC grade

methanol, and acetonitrile were purchased from Fisher
Scientific. (Pittsburgh, PA). HPLC grade water was prepared
from distilled water using a Milli-Q system (Millipore
Laboratory, Bedford, MA). The reference standards for

flavonoids and hydroxycinnamic acid derivatives were obtained
from Sigma-Aldrich (St. Louis, MO), Chromadex, Inc. (Irvine,
CA), Indofine Chemical Co. (Somerville, NJ), and Extra-
synthese (Genay, Cedex, France). A list of 146 reference
standards can be found in the Supporting Information.
Blueberry (Vaccinium corymbosum L.), mizuna (Brassica

juncea), purple mustard (Chorispora tenella), red cabbage
(Brassica oleracea L.), and red mustard green (Brassica juncea)
were purchased from local grocery stores, and lyophilized
immediately upon arrival and then ground and powdered.

UHPLC-DAD-MS Instrument. The UHPLC coupled with
a diode array detector and LTQ Orbitrap XL mass
spectrometer (Thermo Fisher Scientific, San Jose, CA) was
used. The chromatographic separation was achieved using a
UHPLC column (200 mm × 2.1 mm i.d., 1.9 μm, Hypersil
Gold AQ RP-C18) (Thermo Fisher Scientific, Inc., Waltham,
MA) with an HPLC/UHPLC precolumn filter (UltraShield
Analytical Scientific Instruments, Richmond, CA) at a flow rate
of 0.3 mL/min. UHPLC gradient and MS parameter settings
were adapted from a previous study,10 and the details can be
found in the Supporting Information.

Sample Preparation. Each powdered sample (250 mg)
was extracted with 5.00 mL of methanol/water (60:40, v/v)
using sonication for 60 min at room temperature and the slurry
mixture was centrifuged at 5000g for 15 min (IEC Clinical
Centrifuge, Damon/IEC Division, Needham, MA). The
supernatant was filtered through a 17 mm (0.45 μm) PVDF
syringe filter (VWR Scientific, Seattle, WA), and 2 μL of the
extract was used for each injection.

Data Format. MATLAB R2012b (MathWorks Inc., Natick,
MA) was used to develop the program. All the calculations
were performed on an Intel Core i7-4770 CPU at 3.4 GHz
personal computer with 16 GB RAM running a Microsoft

Figure 1. Core structures of the main flavonoid classes and hydroxycinnamic acid derivatives.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.7b00771
Anal. Chem. 2017, 89, 7388−7397

7389

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b00771/suppl_file/ac7b00771_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b00771/suppl_file/ac7b00771_si_001.pdf
http://dx.doi.org/10.1021/acs.analchem.7b00771


Windows 7 Professional x64 operation system (Microsoft
Corp., Redmond, WA).
The UHPLC-DAD HRAM MS data sets were acquired as

RAW files. The DAD data were converted to text files from
RAW files by Xcalibur plug-in tool, MSGet.11 With an in-house
algorithm, text files were read into MATLAB. For the MS data,
the RAW files were first converted to mzXML by an open-
source software package, ProteoWizard,12 and then read into
MATLAB by the built-in “mzxmlread” function in MATLAB
bioinformatics toolbox.

■ RESULTS AND DISCUSSION

UV−vis Spectral Library of 146 Flavonoid Standards.
First, 146 flavonoid and hydroxycinnamic acid derivative
standards were analyzed using the UHPLC-DAD method and
their UV−vis spectra were compiled into a UV−vis spectral
library after they were normalized to unit vector length.13 The
146 UV−vis spectra are shown in Figure 2A. As discussed in
the previous paper,10 flavonoid identification cannot be solely
relied upon MS spectra and often requires the combination of
multiple techniques such as chromatographic behavior, UV−vis
spectrum, and HRAM-MS, and MS fragmentation information.
Flavonoids have characteristic UV−vis absorbance profiles

which come from different conjugated systems in the structures
and can be used to distinguish isomers. For example,
pelargonidin 3-O-glucoside (an anthocyanin), genistein 4′-O-
glucoside (an isoflavone), and apigenin 7-O-glucoside (a
flavonol glycoside) have exactly the same protonated or
deprotonated ions in full scan MS spectra, and their
fragmentation mass spectra are dominated by one or only a
few fragments simply do not contain enough information to
distinguish between them. The representative MS/MS spectra
for the three flavonoids mentioned above are shown in Figure
S1. However, they can be differentiated by their UV−vis spectra
since the cinnamoyl structure in flavone, flavonol, and
hydroxycinnamic acid derivatives have a strong UV absorbance
band between 305 and 390 nm; however, anthocyanins are
cations with a strong visible absorbance band at 450−550 nm
(Figure 2A).14,15

The assignment of classes for flavonoids based on their UV−
vis spectrum is a crucial step, especially for the identification of
flavonoid isomers which belong to different flavonoid classes. In
our previous study, UV−vis spectrum similarity analysis was
used to assign the class of flavonoids for each chromatographic
peak.10 The UV−vis spectrum of a reference peak, either a
spiked standard or an endogenous flavonoid peak, was selected
and compared with that of all other chromatographic peaks. A
threshold was set based on a trial-and-error procedure to filter
out nondesired peaks. Particular care is needed to be taken for
that method: (1) the reference peak had to be representative of
the class of flavonoid as selection of a reference peak sometimes
can be difficult especially for the classes of flavonoids which
contain a great variety of substitution groups; (2) plant samples
usually contain different classes of flavonoids; therefore,
multiple reference peaks need to be selected to represent the
different classes of flavonoids and multiple calculations are
required since only one class of flavonoids could be classified by
each calculation; and (3) the threshold for UV−vis spectral
similarity analysis varies case by case. For example, the
thresholds ranged from 50% to 90% for leek, curry leaf,
chive, giant green onion, and red mustard green samples.10

Thus, although the similarity analysis of FlavonQ worked well
for the class of flavonols and their glycosides,10 it is
inconvenient to use the approach for identification of multiple
classes.

Grouping 146 Reference Standards into Four Classes.
A new strategy was developed in FlavonQ-2.0v to improve the
similarity approach by using chemometric modeling and a UV−
vis spectral library. The UV−vis spectral library was compiled
from the UV−vis data of 134 flavonoids and 12 hydroxycin-
namic acid derivatives (HADs) standards. Although HADs do
not belong to flavonoid family, they were also included because
their structures are similar to flavonoids and they are ubiquitous
in plant with various bioactivities.16 The standards were divided
into four classes on the basis of the structural similarities of the
aglycones (Figure 1): flavone/flavonol/HAD (class A), flavan/
flavanol/flavanone/flavanonol (class B), anthocyanin (class C),
and isoflavone (class D). Chemometric methods were
employed to construct models for classification of different
flavonoid classes based on the UV−vis spectral library, and the
classifiers were used to predict the class of the flavonoid in
unknown chromatographic peaks.

Options for Chemometric Models in FlavonQ-2.0v.
Two methods, including soft independent modeling of class
analogy (SIMCA)17 and fuzzy optimal associative memory
(FOAM),18 were evaluated. Classification methods such as

Figure 2. A total of 146 UV−vis spectra of flavonoids and HAD (A)
and principal component analysis score plot for UV−vis spectra data
of four classes (B).
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partial least-squares discriminant analysis (PLS-DA)19 and the
fuzzy rule-building expert system (FuRES)20 were not used
because they cannot be applied when only one class is known
or present.21 FlavonQ-2.0v was designed to be a versatile
program which can classify not only single-class flavonoid but
also multiclass flavonoids. Therefore, the classifiers like PLS-DA
was not adopted in this study. In this program, it is the user’s
decision as to which group(s) of flavonoids will be used to build
classification models. There are several advantages to making
the flavonoid type selection adjustable. Flavonoids are usually
synthesized through the phenylpropanoid metabolic pathway
and several enzymes are involved in the biosynthesis. It is rare
that a single plant sample contains all the enzymes for synthesis
of all the classes of flavonoids. Limiting the flavonoid types in
the sample can reduce the complexity of chemometric models
and improve the model accuracy and reliability. For example,
purple broccoli only contains flavonols and anthocyanins.22 So
if the chemometric model is built using only these two classes
for the analysis of flavonoids in broccoli, it will simplify the data
analysis and reduce the possibility of misclassifying them into
other classes of flavonoids. Moreover, in some cases, only one
class of flavonoids is the research focus (e.g., the isoflavones in
soybean samples) and a chemometric model targeting the class
of interest can be very efficient.
SIMICA and FOAM are commonly used as modeling

methods, but they can be used in classification mode as well.
Modeling methods exploit the similarities of the features within
each independent class, therefore the test sample could belongs
to none of the existing classes in the training sets. However, in
classification mode, the test sample must be assigned to one of
the classes in the training sets. When classifying an unknown
UV−vis spectrum by the constructed SIMCA/FOAM models
with more than one flavonoid class, three situations could be
encountered: (a) it only belongs to one class; (b) it belongs to
none of any classes; (c) it belongs to more than one class. The
UV−vis spectra from real sample could be different from the
UV−vis spectra in the library attributed to influence of
environment (e.g., temperature, solvent) and possible coeluted
compounds. In addition, the accuracy of classification also
highly relied on the quality of the training set: the number and
representativeness of flavonoids in the library (The in-house
UV−vis library may not be able to represent all flavonoids in
the tested plant materials). If modeling mode was used, some
flavonoids that were not included in the library or their UV−vis
spectra were distorted by other background influences could be
misclassified as nonflavonoids which resulted in false negatives.
Therefore, the winner-takes-all mode (classification mode) was
used in both SIMCA and FOAM models to avoid situation (b).
Statistic values (i.e., the combination of X-residuals and
Hotelling’s T2 value for SIMCA and F-value for FOAM
model) were calculated between the variance of an unknown
UV−vis spectrum in chromatographic peak and each flavonoid
class, and the unknown UV−vis spectrum was assigned to the
best fit class of flavonoids (in another word, the most “similar”
class of flavonoids with smaller X-residuals and Hotelling’s T2

value for SIMCA model or F-value for FOAM model).
Although the winner-takes-all mode may result false positives,
the result will be refined by using MS spectra. Similarly, for
situation c, only the most “similar” class instead of multiple
classes was assigned to an unknown UV−vis spectrum.
When only one class of flavonoids was selected to construct

chemometric models, the statistic criteria (X-residuals and
Hotelling’s T2 with 95% confidence intervals for SIMCA and F

0.05 for FOAM model) was used to define the limit of the class
and reject nonflavonoids.

Projected Difference Resolution Method to Optimize
Wavelength Range of UV−Visible Data. UV−vis spectra
contain characteristic regions and noninformative regions.
Chemometric models built directly using the UV−vis spectral
data over the full scan range (200−600 nm) were not effective
as shown in Figure 2B. Overlaps of the four classes were
observed. It can be advantageous to identify and remove the
noninformative regions because it improves the predictive
ability and reduces complexity for chemometric models.23 For
example, dropping off the wavelength range between 200 and
220 nm in the UV region is a common practice to avoid the
interferences caused by mobile phase and retain the most
obvious features for flavonoids between 220 and 600 nm.24

Selection of the wavelength range used in chemometric
models can affect the classification and is a challenging task
because the spectra may have imperceptible distinctive features.
Therefore, the wavelength range of UV−vis spectrum needs to
be optimized in this study. One straightforward way to achieve
this is to build chemometric models for different wavelength
ranges, evaluate the models by cross-validation methods such as
leave-one-sample-out method25,26 and bootstrapped Latin
partition method,21 calculate the classification rates for the
different wavelength ranges, and select the optimum range
which gives the best classification rate. However, this
calculation required hours to execute depending on which
chemometric models and validation method were chosen and is
not practical to use in the data processing program.
In this study, the projected difference resolution (PDR)

method27 was applied as an alternative to determine the
optimum wavelength range. The PDR method measures the
separation of two classes in multivariate data space and has
been used successfully for selecting the optimal parameters for
baseline correction, wavelet filters, and data transforma-
tion.13,27,28 The larger the PDR values, the better the separation
between two classes in the multivariate data space. For the
assessment of multiple classes, the minimum PDR value of all
the pairwise combinations was used to optimize the wavelength
range.13 The two most similar classes among multiple classes
were considered as the most critical pairs for classification, so
their PDR values were calculated under different wavelength
ranges. For example, when we have four classes, for a specific
wavelength range their PDR values in pairs (6 pairs) were
measured, and the minimum PDR value of 6 pairs was used to
indicate the separation of the two most similar classes among
the four classes. Since the UV range is easily influenced by
conjugated bonds and the higher range of UV−vis spectra
(wavelength ≥250 nm) usually represents characteristic
information for the structure of each flavonoid class, only the
starting wavelengths (WLs) of UV−vis spectra was optimized
in our study. Therefore, a series of test UV−vis spectral data
sets were constructed with different starting WLs: Test-set-1
(200−600 nm), Test-Set-2 (201−600 nm), Test-Set-3 (202−
600 nm)...Test-Set-301 (500−600 nm). For each wavelength
range, the PDR values were calculated for the different classes
of flavonoids. The wavelength range with the maximum PDR
value represented the optimum wavelength range for the
classification of the flavonoid classes. Compared to the
optimization of wavelength range with chemometric models
which required hours to execute, the PDR method only took
seconds which saved considerable time.
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Classification of Flavonoids by Step-Wise Strategy.
Step-wise classification was devised in this study to classify the

UV−vis spectra of flavonoids in a novel way and the starting
WLs of each step was optimized, respectively. A flowchart for

Figure 3. Flowchart for stepwise classification strategy and conventional classification strategy.

Figure 4. UV−vis spectra after wavelength range optimization (left) and dendrogramatic representations (right) of differentiation for four classes of
flavonoids by conventional classification strategy (A) and stepwise classification strategy (B).
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the two strategies of classification of four classes of flavonoids
and the HADs is shown in Figure 3. Conventional classification
strategy optimized universal parameters in data preprocessing
and constructed one chemometric model by using all the data
for the different classes. Step-wise classification strategy
optimized data representation for each pair of classes and
constructed multiple chemometric models. In each step, only
two classes were defined and one group of flavonoids (class 1)
was differentiated from other flavonoids (class 2). It is worth
noting that either SIMCA or FOAM model can be selected for
the classification, and the same model is used throughout the
steps in stepwise classification.
Figure 4 shows the dendrograms based on Euclidean

distances between spectra for two strategies outlined in Figure
3. Figure 4A shows that for a conventional classification
strategy, even after the starting WL was optimized, the four
classes were mixed with each other and none of classes was
completely separated from others. However, the three dendro-
grams for a stepwise classification strategy (Figure 4B)
demonstrated classification of each group of flavonoids into
well-defined clusters. The benefit of stepwise classification
strategy was proven by classification rates of SIMCA/FOAM
models through leave-one sample out cross validation. With the
conventional strategy, the best classification rates for the
SIMCA and FOAM models were 99.3% and 95.6%,
respectively. The classification rates were 100% for both the
SIMCA and FOAM models using the stepwise classification
strategy.
The order of flavonoid classes in stepwise classification

process has great impact on the classification. For the four
classes of flavonoids in Figure 2, 12 sequences were evaluated
and their PDR values in each step were calculated based on the
method in “Projected Difference Resolution Method to
Optimize Wavelength Range of UV−vis Data” section. The
results shown in Table S1 demonstrate that the flavonoid
classification sequence used in Figures 3 and 4 is the optimal
order in stepwise classification process: a relatively larger PDR

value was achieved for the two most similar classes which
indicates the better separation of the two classes in multivariate
data space. Therefore, FlavonQ-2.0v separates anthocyanidins
from the rest classes in the first step, then flavan/flavanone, and
finally flavone/HAD and isoflavone in the stepwise classi-
fication process.
The application of the stepwise strategy eliminates some

misclassifications of flavonoids in real samples. For example,
peak no. 12 in blueberry sample (Figure S2) was manually
identified as petunidin-3-O-arabinoside by the study of its mass
spectra in both the positive and negative ionization modes.29

When conventional classification was used, it was misclassified
as flavone/HAD group (Figure 5A). The absorption band at
525 nm indicates that it is an anthocyanin instead of a flavone
(Figure 5C). Peak no. 12 was successfully classified as
anthocyanin when the stepwise classification strategy was
applied (Figure 5B). Higher weight was given to the
characteristic UV−vis band (525 nm) for anthocyanin by this
strategy (Figure 5D). The stepwise strategy was more effective
for classifying flavonoids based on their UV−vis spectra and,
therefore, was adopted in this program. It is worth noting that
isoflavones were not included in the chemometric model to
study the flavonoids in this example because isoflavones are
usually not found in blueberry.

Identification of Flavonoids Using In-House Data-
base. After the chromatographic peaks were categorized into
different classes of flavonoids, HRAM/MSn data were used for
putative identification of flavonoids and HAD. An in-house
database was established in our lab which contained 5686
flavonoids and related compounds categorized into the four
classes. The information for each compound such as chemical
name, formula, accurate monoisotopic mass, protonated mass,
deprotonated mass, and major product ions were included.
Major product ions assigned to 4283 compounds were obtained
by the observation of fragmentation mass spectra of flavonoids
in our lab, METLIN mass spectrum database,30 and the mass
spectral library from Sumner’s group31 or by predictions based

Figure 5. Principal component analysis score plot for UV−vis spectra data of three classes by conventional classification strategy (A) and by stepwise
classification strategy-step 1 (B). Average UV−vis spectra of flavone/HAD and anthocyanidin and UV−vis spectrum of peak no. 12 in blueberry
sample after starting WL optimization in conventional classification strategy (C) and in stepwise classification strategy-step 1 (D).
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on experience of experts and in silico fragmentation patterns
using commercial software package HighChem Mass Frontier
(Thermo Fisher Scientific Inc., San Jose, CA).
A selected number (user defined) of the most intense ions

from the MS full scan spectrum of unknown chromatographic
peaks were screened and matched with ions in the positive or
negative mode from the in-house database. If the MSn spectra
for the ions in full scan spectrum were available in the data, the
major product ions were searched through the MSn spectra for
matches. Multiple hits could be found after this searching
process and all these candidate compounds were ranked in the
result table based on the following priorities: candidate
compounds with both precursor ions and product ions matched
were ranked higher than others which were then ranked by
mass errors in ascending order.
The program may provide multiple flavonoid candidates for a

chromatographic peak and expertise in the field of flavonoid
research is needed for affirmative identification (see examples in
Tables S2 and S3). In the previous version of FlavonQ, the
identification of flavonoids was based on a virtual mass
spectrum database which was constructed by theoretically
combining common aglycones and substitution groups.10 For a
single class of flavone/flavonol glycosides, it contained over 1.5
million possible combinations which, in most cases, have never
occurred in the real world. In this study, all 5686 flavonoids and
related compounds in the in-house database have been reported
before. With this database, the computation speed of the
program was faster and the identification results were more
accurate. Flavonoids not included in this database could not be
identified. However, potential flavonoid peaks (based on UV
data) are flagged and can be manually identified and added to
the database if needed.
Comparison with METLIN and MegFrag Using

Flavonoid UHPLC-DAD-MS Data Set. Two sets of mix
reference standards (25 flavonoids and hydroxycinnamic acids)
were analyzed by UHPLC-DAD-MS method as described
previously. Their precursor ions and MS/MS spectra were
manually input into METLIN database (http://metlin.scripps.
edu) and MegFrag Web tool (https://msbi.ipb-halle.de/
MetFragBeta). For METLIN, the precursor ions were searched
under “Simple Search” function with 20 ppm tolerance;
fragment search were performed under “Fragment Search”
function with “Precursor M/Z” selected and up to 3 fragment
ions were input for each search. KEGG database was selected in
MegFrag Web tool and 20 ppm tolerance was set for “Parent
Ion” search and “Fragmentation Processing”. Besides of the
proposed FlavonQ-2.0v data process pipeline, the data set were
also processed in FlavonQ-2.0v by only searching precursor
ions and characteristic product ion in MS spectra through in-
house database without flavonoid classification based on UV−
vis spectra. The results, given in Table 1, show that FlavonQ-
2.0v generally performed better, indicated by higher number of
correct first ranked candidates, a lower number of “none of
correct candidates available”, and a lower number of output
candidates for each search. Take puerarin (an isoflavone) as an
example, by searching [M − H]− (m/z 415.1029), METLIN
outputs a list of 39 candidate compounds (puerarin ranked
28th) and MetFrag outputs 7 candidate (puerarin ranked fifth).
For the 39 candidates from METLIN, 11 of them are
nonflavonoids, with 22 flavone glucosides, 1 anthocyanidin,
and 5 isoflavones. If “Fragment search” is applied, puerarin was
not found because it has not been analyzed in METLIN. The 7
candidates from MetFrag includes 1 flavone, 2 isoflavones, and

4 nonflavonoids, and the MS/MS spectrum improved the
ranking of puerarin from the fifth to the third out of 7. For
FlavonQ-2.0v, 19 candidates were found without the use of
UV−vis data (12 flavones, 5 isoflavones, and 2 anthocyanidins);
only 5 candidates were found if UV−vis spectra were used for
flavonoid classification and they were all isoflavones. The
results were not unexpected due to the specificity of the
FlavonQ program.32 For example, METLIN includes 961 829
molecules among which about 14 000 metabolites have been
individually analyzed and another 200 000 has in silico MS/MS
data by May 2017. For the “Fragment Search” in METLIN,
about half of the queries (13 of 25) in Table 1 returned “0
candidate” due to the lack of MS/MS data in the database.
From Table 1, it has been observed that flavonoid classification
based on UV−vis spectra can effectively narrow down the list of
candidate compounds because there are some limitations for
compound identification solely relied on MS/MS spectral
comparison: for example, sometimes mass spectra are
dominated by one or only a few fragments (e.g., a glycoside
group loss, Figure S1) that can be explained by several
candidates. Further examples and limitations of MS spectral
library search are discussed extensively by Stephen Stein.33

Expansion of UV−Visible Library and In-House Data-
base. As discussed in the previous sections, the accuracy of
flavonoid identification based on UV−vis spectra and MS
spectra can be improved by expanding the UV−vis library and
in-house database. In our lab, the number of flavonoid UV−vis
spectra continues to increase from several resources: acquisition
of more flavonoid reference standards, isolated chromato-
graphic peaks from plant materials, and reported spectra from
peer-reviewed journals. The isolated chromatographic peaks
should be pure and be identified and confirmed by mass
spectrometric (HRMS, MSn) and/or NMR methods,34 the

Table 1. Comparison of Search Results for 25 Flavonoid and
Hydroxycinnamic Acid Derivatives UHPLC-DAD-MS Data

METLINa MetFrag (KEGG)b FlavonQ-2.0vc

simple
search

fragment
search

parent
ion

search
fragment
search

MS
search

UV−vis
and MS
match

top 1 ranksd 2 3 5 6 18
top 5 ranks 10 12 15 18 8 25
no. of NAe 0 13 2 2 0 0
no. of
candidate
compoundsf

663 54 221 213 162 113

avg no. of
candidate
compounds

26.5 2.2 8.8 8.5 6.5 4.5

a“Simple Search” and “Fragment Search” are two functions for
METLIN database: “Simple Search” matches up precursor ions (20
ppm tolerance); “Fragment Search” matches up both precursor ions
and selected fragment ions (up to 5 fragment ions) (http://metlin.
scripps.edu). bKEGG database was selected for MetFrag search.
“Parent Ion Search” and “Fragment Search” are functions for MetFrag
Web tool: “Parent Ion Search” matches up precursor ions (20 ppm
tolerance); “Fragment Search” matches up both precursor ions and
MS/MS spectra (https://msbi.ipb-halle.de/MetFragBeta/). c“MS
Search” matches up precursor ions and characteristic product ions
(up to 1 for each precursor ion) in the MS spectra with in-house
database; “UV−vis and MS Match” uses chemometric methods to
determine the type of flavonoids before “MS Search”. dNumber of
correct first ranked candidates. eNumber of “none of correct
candidates available”. fNumber of total candidate compound for all
queries.
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reported UV−vis spectra should be validated by other
independent laboratories. In this study, the UV−vis spectra in
the library were exclusively collected from flavonoid reference
standards, and more UV−vis data from other sources will be
updated in the future release.
The product ions information in the in-house database can

effectively target the correct hit of flavonoids especially when
multiple isomers exist in the database for a particular precursor
ion. Ideally the mass spectra library should contain MSn spectra
in both positive/negative modes and different collision
energies. Such a library will be able to provide the most
accurate identification of a compound such as Sumner’s plant
natural product MS library31 and Compound Discoverer from
Thermo Fisher Scientific. However, to construct such a library
for over 5 000 flavonoids is not feasible for any single
laboratory. Therefore, we are enhancing our in-house databases
gradually by adding more characteristic product ions based on
experiments and literatures. As the UV−vis library and in-house
database expands, it will be effective automatically because
FlavonQ-2.0v recalculates its chemometric models and
searching results based on the updated library and database
every time it executes.
Quantitation. The quantitation of flavonoids was per-

formed using an external calibration curve with flavonoid
reference standards and molar response factors as previously
reported.14,35 Ideally separate calibration curves should be used
to quantify the flavonoids of each flavonoid class. For example,
quercetin 3-O-rutinoside (rutin) for HADs and flavone/
flavonol glycosides, catechin for flavan-3-ols and proanthocya-
nidins, hesperetin for flavanones, cyanidin 3-O-glucoside for
anthocyanins, and genistein for isoflavones. The peak area
integration method was demonstrated in the sample chromato-
gram (Figure S2) and different classes of flavonoids are
represented by different colors. A brief identification, including
major ion and formula, is provided for each flavonoid candidate
chromatographic peak. The identification, peak areas, and
tentative quantitation information were output automatically
into spreadsheet which allowed the user to further analyze the
results.
Performance of FlavonQ-2.0v. The performance of

FlavonQ-2.0v was validated on samples spiked with flavonoid
mixed standards and samples of plant extracts. FlavonQ-2.0v

successfully identified all the flavonoid peaks in the flavonoid
spiked mix standard samples. The results are shown in Tables
S2 and S3. The results demonstrate the effectiveness of
flavonoid identification by UV−vis and MS spectra. For
example, apigenin was first classified by chemometric models
in FlavonQ-2.0v as flavone/flavonol/HAD based on its UV−vis
spectrum, so other isoflavone or anthocyanin isomers were
excluded after this step. It was then identified as “Apigenin” in
the flavonoid candidate list based on its precursor ion (m/z
269.0450 with error −1.59 ppm) and characteristic product ion
(m/z 151, 1,3A−) and it was distinguished from Baicalein which
has characteristic product ion of m/z 169, 1,3A−). In some cases,
multiple candidate flavonoids were listed for a single peak since
some flavonoid isomers with common product ions cannot be
differentiated by the program. For example, quercetin, morin,
and hieracin (Figure 6) are all flavonols and they have exact the
same precursor ion (m/z 301.0348) and common characteristic
product ion (m/z 151, 1,3A−), so they were all reported in the
result table.
FlavonQ-2.0v was also applied to the analysis of flavonoids in

blueberry, mizuna, purple mustard, red cabbage, and red
mustard green. The data were also analyzed manually. The
FlavonQ-2.0v identification results were compared to those
identified manually (Table S4). Among the 39 flavonoid
candidate peaks, two anthocyanins, petunidin-3-O-arabinoside,
and petunidin-3-O-glucoside, were misidentified by FlavonQ-
2.0v as flavonol glucosides and flavanone glycoside, respec-
tively. They were all small shoulder peaks (Peak no. 9 and no.
10 in Figure S2) and their UV−vis spectra were distorted by
the close major peaks which led to the misclassification. This
indicates that the chromatographic separation is critical for the
correct identification of flavonoids. Another two peaks were
labeled as “uncertain peaks” as the spectral data could not
provide enough information for identification (peak no. 21 and
no. 24 in Figure S2 and Table S4). The identification accuracy
of flavonoids by FlavonQ-2.0v for plant materials is shown in
Table 2. Overall, positive identifications were achieved for more
than 88% of the flavonoid peaks using FlavonQ-2.0v.
The execution time of FlavonQ-2.0v was about 1 min for

each sample after data format conversion. Construction of
chemometric models using all 146 UV−vis spectra took about
30 s and the time was significantly reduced when fewer classes

Figure 6. Chemical structures for quercetin (A), morin (B), hieracin (C), and pentahydroxyflavone (D).
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of flavonoids were selected and fewer steps were conducted in
the stepwise classification strategy. FlavonQ-2.0v was developed
in MATLAB 2012b, but it is not necessary for the end user to
install MATLAB to use FlavonQ-2.0v. MATLAB Compiler
Runtime (MCR) is required to run FlavonQ-2.0v standalone
application and is freely available at https://www.mathworks.
com/products/compiler/mcr.html. The graphic user interface
is shown in Figure S3. The UV−vis spectra of 146 flavonoid
and HAD reference standards and in-house flavonoid database
were compiled into FlavonQ-2.0v. This database will be
continuously expanded and the chemometric models will
become more reliable. Other common food constituents, such
as simple phenolic compounds, phenyl alcohols, stilbenes, and
lignans will also be included in the future. The in-house
flavonoid database will be updated regularly as new flavonoids
are found and reported.

■ CONCLUSIONS
A data processing tool for flavonoid analysis, FlavonQ-2.0v, was
developed in this study. The program can classify the flavonoids
using a chemometric model based on the UV−vis reference
spectral library. The chemometric model used a novel stepwise
classification strategy and data representation in each step was
optimized by projected distance resolution (PDR) method.
The stepwise classification strategy significantly improved the
performance of the classifiers which resulted in more accurate
and reliable classification of flavonoids. An in-house flavonoid
database was implemented in the program for identification of
flavonoids. FlavonQ-2.0v was validated by analyzing data from
samples spiked with flavonoid mixed standards and blueberry,
mizuna, purple mustard, red cabbage, and red mustard green
extract samples. Accuracies of identification for all samples were
above 88%. FlavonQ-2.0v greatly facilitates the identification
and quantitation of flavonoids from UHPLC-HRAM-MS data.
The automated computational tool is developed to assist, rather
than replace, human expert. The result shows that it not only
saves tremendous efforts for human experts but also allows less-
experienced chemists to perform data analysis on flavonoids
with reasonable results.
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