Accounting for X chromosome and allele frequencies in genomic inbreeding estimation

Juan P Nani & Paul M VanRaden

USDA, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD

Email: juanonani@gmail.com

https://aipl.arsusda.gov/

Inbreeding can affect the **genetic progress** by increasing the prevalence of **harmful** or even **lethal recessive alleles** or by decreasing health, performance, and profitability through **inbreeding depression**

Breeders used pedigrees to **control** inbreeding, but genomics can provide more precise control

To measure and control inbreeding, **relationships** of each animal with the existing population are calculated when the genotype arrives

Genotypes are not available for all animals: The **correlation** between **G** and **A** is dependent on the use of different **allele frequencies** for the population

- Genomic inbreeding estimates computed using **0.5** or **base population** allele frequency may be correlated very highly for some breeds but poorly for others
- Allele frequency of 0.5 has been used in U.S. evaluations since 2010
- New testing of options for assigning allele frequencies were needed
- Methods for calculating **F** generally ignored **X-Chromosome**
- Low marker density for the X-chromosome
- Pedigree and genomic relationships can both accurately account for the X-chromosome
- The SNPs in the **X-specific region are coded as 100% homozygous** in males (F_{gen} 3% lower in females)

1) To examine the impact of **allele frequency** on genomic inbreeding computation

2) To adjust for the X-chromosome to better account for differences between males and females and to better match the scale of genomic- to pedigree-based inbreeding and

3) To **improve the computational efficiency** of the procedure as the

population of genotyped animals continues to grow

Methods

- X-Chromosome corrections and allele frequencies
- scaling of G to A used only diagonal and off-diagonal genomic relationships among males
- 2,397 markers on the X-chromosome are 3.0% of the 79,060 total markers currently used

(1) statistical adjustment for females $F_{gen} \sim = 0.97(F_{gen} + 0.03)$

(2) male-female or female-female off-diagonals $G_{ii}^{2} = 1.03 G_{ii}^{*}$

Genomic haplotype-based inbreeding (F_{hap}) was calculated using fixped.f90

(https://www.ars.usda.gov/northeast-area/beltsville-md-barc/beltsville-agricultural-research-center/agil/aip/software/fixped/)

National cooperator database of the **Council on Dairy Cattle Breeding**: 3.5 million genotyped dairy cattle and 88 million animals in the pedigree file (Dec.2020)

Sex	Ayrshire	Brown Swiss	Guernsey	Holstein	Jersey
Females	7,228	11,958	4,162	3,313,344	422,700
Males	2,214	37,402	1,197	336,386	37,084

Genotypes from 44 different chips were imputed to ~80k markers using Findhap v.3 (<u>https://aipl.arsusda.gov/software/findhap/</u>)

Results

Mean F and EFI of dairy cattle across breeds by birth year

OAK RIDGE INSTITUTE FOR SCIENCE AND EDUCATION Managed by ORAU for DOE USDA

Agricultural Research Service

Results: Inbreeding and EFI for all purebred genotyped animals

		Female		Male					
F/EFI	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
F _{ped}	0	49.1	7.65	0	34.6	8.09			
F _{gen}	-22.40	46.7	7.92	-14.90	40.1	8.81			
F _{hap}	0	44.3	7.14	0	37.13	7.84			
EFI _{ped}	0.4	11.8	7.57	0.4	11.6	7.04			
EFI gen	-16.50	12.9	7.69	-8.10	12.8	7.3			

average F_{gen} sex difference was 0.9 and 0.7 for F_{hap}

Agricultural Research Service

Results

OAK RIDGE INSTITUTE FOR

SCIENCE AND EDUCATION Managed by ORAU for DOE

Inbreeding by breed

Agricultural Research Service

Results

Effects of different allele frequencies

Mean F and EFI for genotyped animals by breed and sex

	Ayrshire		Brown Swiss			Guernsey			Holstein			Jersey			
F/EFI	F (5 <i>,</i> 957)	M (1,823)	Dif.	F (9,161)	M (27,853)	Dif.	F (3,893)	M (1,172)	Dif.	F (2,687,038)	M (313,394)	Dif	F (206,034)	M (24,428)	Dif
F _{ped}	6.00	5.80	-0.2	6.91	4.81	-2.1	6.87	6.26	-0.61	7.78	8.63	0.85	7.87	7.42	-0.45
F _{gen0.5}	2.72	5.88	3.16	5.81	5.61	-0.2	5.85	8.83	2.98	5.62	9.66	4.04	4.28	7.15	2.87
F _{genbase}	6.61	7.72	1.11	4.68	6.81	2.13	5.47	7.02	1.55	5.89	9.73	3.84	5.17	7.95	2.78
F _{genX}	5.55	5.88	0.33	8.55	5.61	-2.94	5.70	5.79	0.09	8.36	9.66	1.3	7.06	7.15	0.09
F _{hap}	6.23	6.39	0.16	10.12	7.95	-2.17	7.64	7.61	-0.03	7.04	7.88	0.84	9.23	9.07	-0.16
EFI _{ped}	7.04	6.73	-0.31	7.18	5.26	-1.92	7.60	7.42	-0.18	7.95	8.15	0.2	8.05	7.63	-0.42
EFI _{gen0.5}	6.83	6.55	-0.28	7.29	5.67	-1.62	7.42	7.47	0.05	8.68	9.08	0.4	7.76	7.47	-0.29
EFI _{genbase}	9.51	8.68	-0.83	7.03	5.98	-1.05	8.17	7.84	-0.33	9.06	9.41	0.35	8.18	7.85	-0.33
EFI _{genX}	7.01	6.65	-0.36	7.42	5.72	-1.7	7.18	7.22	0.04	8.88	9.27	0.39	7.98	7.64	-0.34

Results: Across breeds and sexes correlations for the different inbreeding definitions

Pedigree (F_{ped}), genomic with 0.5 ($F_{gen0.5}$), base population ($F_{genbase}$), 0.5 + X correction (F_{genX})

	Ayrshire		Brown Swiss		Guernsey		Holstein		Jersey	
F/EFI correlation	Females	Males	Females	Males	Females	Males	Females	Males	Females	Males
F _{genbase} , F _{ped}	0.31	0.38	0.59	0.28	0.54	0.65	0.71	0.81	0.54	0.57
F _{gen0.5} , F _{ped}	0.67	0.70	0.61	0.68	0.64	0.62	0.72	0.83	0.56	0.69
F _{genX} , F _{ped}	0.67	0.70	0.61	0.68	0.64	0.62	0.72	0.83	0.56	0.69
F _{hap} , F _{ped}	0.66	0.70	0.51	0.62	0.64	0.60	0.66	0.77	0.59	0.69
Fgenbase, Fgen0.5	0.29	0.26	0.82	0.22	0.65	0.56	0.95	0.96	0.59	0.58
F _{genX} , F _{gen0.5}	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
F _{hap} , F _{gen0.5}	0.93	0.95	0.87	0.94	0.90	0.89	0.93	0.94	0.91	0.93
EFI _{gen0.5} , EFI _{ped}	0.88	0.92	0.68	0.85	0.84	0.85	0.84	0.91	0.65	0.85
EFI _{genbase} , EFI _{ped}	0.67	0.81	0.78	0.87	0.87	0.93	0.86	0.91	0.85	0.90
EFI _{genX} , EFI _{ped}	0.88	0.93	0.67	0.85	0.83	0.85	0.84	0.91	0.65	0.85
EFI _{gen0.5} , EFI _{genbase}	0.63	0.77	0.76	0.93	0.83	0.82	0.97	0.98	0.74	0.83
EFI _{gen0.5} , EFI _{genX}	1.00	1.00	1.00	1.00	0.99	0.99	1.00	1.00	1.00	1.00

Agricultural

Research Service

- Correlations of F_{gen} with F_{ped} were higher for most breeds by centering the genotypes using 0.5
- Correlations of EFI_{gen} with EFI_{ped} tended to be higher using the base population frequencies
- F_{hap} had lower correlations with F_{ped} than using genotypes centered by 0.5
- X-chromosome corrections allowed the averaged differences between male and female to be smaller
- Corrections for the X-chromosome contribution also eliminated the differences within full-sib families
- Improving of computation efficiency by CDCB's Gerald Jansen

Conclusions

- Genomic measures of relationship and inbreeding **differ** for males and females.
- Adjustments to scale genomic measures to match pedigree relationships were developed and applied.
- Adjusting pedigree relationships for variation on the X-chromosome is feasible
- Inbreeding calculated from haplotypes did not give higher correlations with F_{ped}
- Improvements in computation efficiency resulted in **rapid calculations** allowing more frequent updates to account for changing pedigrees and genotypes.

Acknowledgments

- Council on Dairy Cattle Breeding (CDCB) and its industry suppliers for data
- Agricultural Research Service (ARS) Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE; Oak Ridge, TN)

