Considerations in using quantitative measurements of milking speed for genetic evaluations for all dairy breeds in the USA

Asha Miles, Robert Fourdraine, Steven Sievert, Kristen Gaddis, Jeffrey Bewley, Sophie Eaglen, Jay Weiker, Jana Hutchison, and João Dürr

Council on Dairy Cattle Breeding Milking Speed Task Force

Scope of Task Force

- Evaluate the economic importance of providing milk speed evaluations
- Review the existing data types and develop a clear definition of the trait to be adopted by CDCB and member sectors
- Assess the status of milking speed data availability and access within the DRP/DRPCs
- Identify the steps needed to develop a milking speed data pipeline into the National Cooperator Database
- Suggest quality standards for milking speed data
- Provide a full implementation plan, defining roles and responsibilities, costs, timeline, and deliverables

Existing Evaluations for Milking Speed

- Interbull-participating countries (N = 14) include milking speed in their "workability" evaluations
 - Australia, Canada, Denmark/Sweden/Finland, France,
 Germany/Austria/Luxembourg, Great Britain, Italy, Japan, the
 Netherlands, New Zealand, Norway, Poland, Slovenia, and Switzerland

- Nearly all phenotypes collected during first parity only and sometimes from a single classification
- If milk flow rates were available, classification data were discarded

From April 2022 MACE "Workability" Report

LAPPENDIX I. Sire standard deviations for milking speed in diagonal and genetic correlations below diagonal

HOL	msp														
	CAN	CHE	DEU	DFS	FRA	NLD	AUS	GBR	SVN	NZL	ITA	JPN	ESP	CZE	POL
CAN	7.59														
CHE	0.93	12.40													
DEU	0.89	0.96	12.55												
DFS	0.94	0.95	0.95	14.41											
FRA	0.95	0.98	0.94	0.96	1.07										
NLD	0.95	0.98	0.94	0.97	0.98	5.12									
AUS	0.83	0.84	0.79	0.81	0.85	0.84	0.25								1
GBR	0.76	0.77	0.76	0.77	0.80	0.78	0.75	0.20							ļ
SVN	0.71	0.81	0.84	0.80	0.79	0.81	0.70	0.73	23.26						l
NZL	0.87	0.88	0.81	0.83	0.88	0.87	0.89	0.73	0.68	0.33					
ITA	0.76	0.83	0.81	0.83	0.84	0.84	0.71	0.61	0.75	0.72	5.61				
JPN	0.96	0.93	0.88	0.93	0.97	0.96	0.86	0.80	0.75	0.85	0.82	2.16			
ESP	0.94	0.93	0.90	0.93	0.95	0.95	0.82	0.75	0.75	0.83	0.80	0.94	13.60		ļ
CZE	0.88	0.91	0.92	0.90	0.89	0.91	0.78	0.68	0.74	0.78	0.75	0.84	0.89	17.73	ļ
POL	0.56	0.57	0.54	0.56	0.56	0.57	0.57	0.54	0.57	0.53	0.48	0.57	0.57	0.57	14.91

Literature Review

Regarding quantitative milking speed

- Heritabilities range from 0.02 0.42
 depending on the trait definition
- Repeatabilities range from 0.40 0.54
- Conflicting evidence of variation in milking speed across lactations
- Favorable correlations between milking speed and milk yield
- Unclear relationship between udder health and milking speed

Trait Definitions

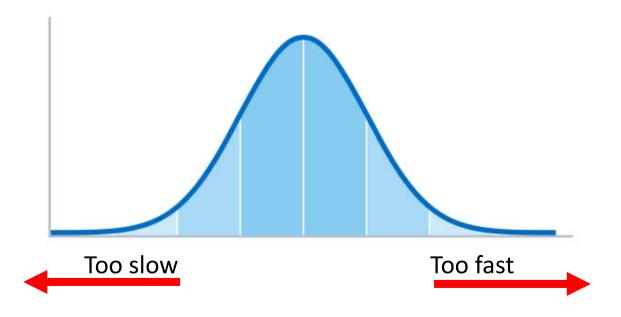
Milking Duration

Milking Speed

Ascending Time

Average Milk Flow

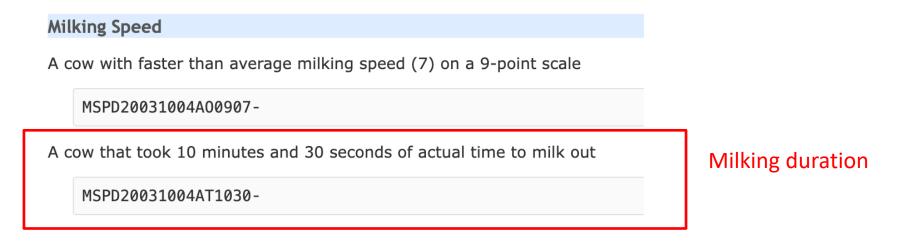
Maximum Milk Flow


Plateau Time

Descending Time

Literature Review

Milking Speed is an intermediate-optimum trait



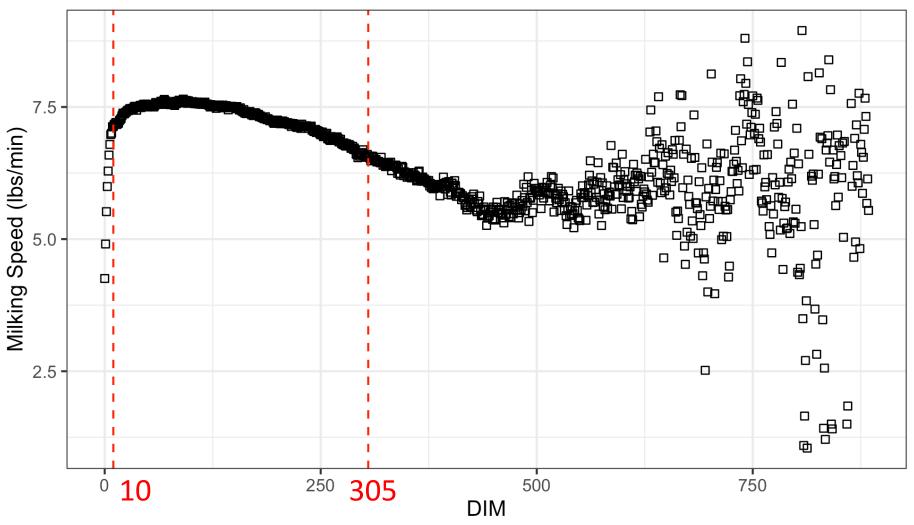
- How does milking speed change by stage in lactation?
- How many times should a cow be sampled to get an accurate phenotype?
- How would producers use milking speed data?
- Can conventional and AMS herds be evaluated together?

Data Types & Availability

 Format 6 includes milking "speed", but there have only been 21 records submitted to the NCD since 2006

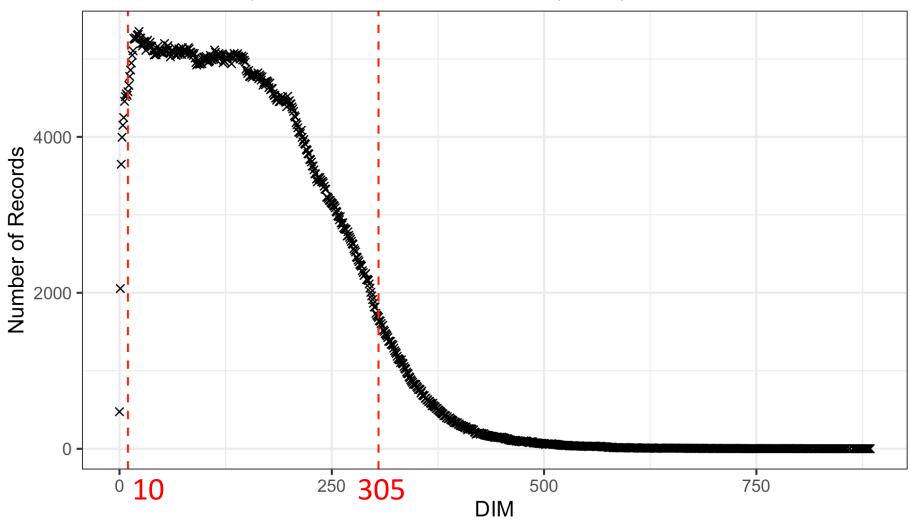
• Limited archival data in herd management software

Trait Definition & Quality Standards


Milking Speed = lbs/min

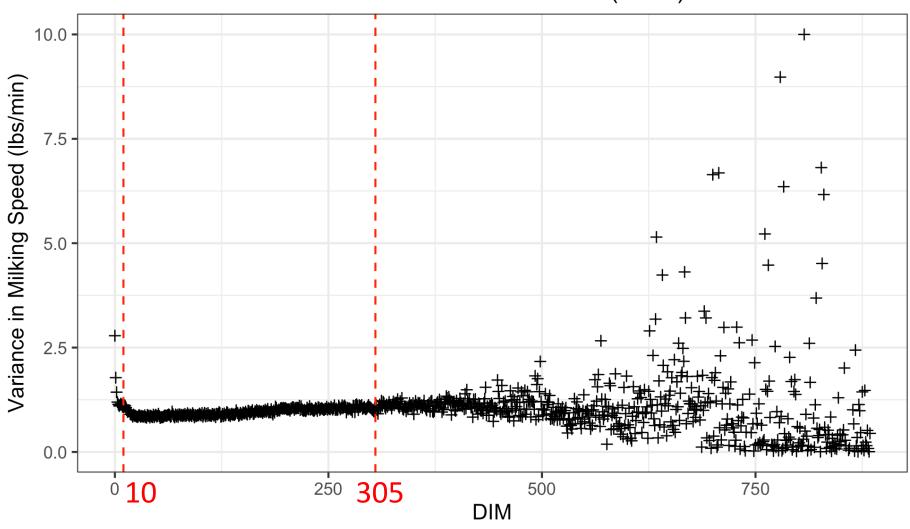
Quality Control Edits					
	Holstein Only				
Data Sparsity	Last 150 d Only				
	> 10 records per cow				
	15 min > DURATION > 0 min				
Recording errors	60 lbs > WEIGHT > 0 lbs				
	15 lbs/min > SPEED > 0 lbs/min				
Biological phenomena	10 > DIM > 305				

Conventional Herds (n = 7)

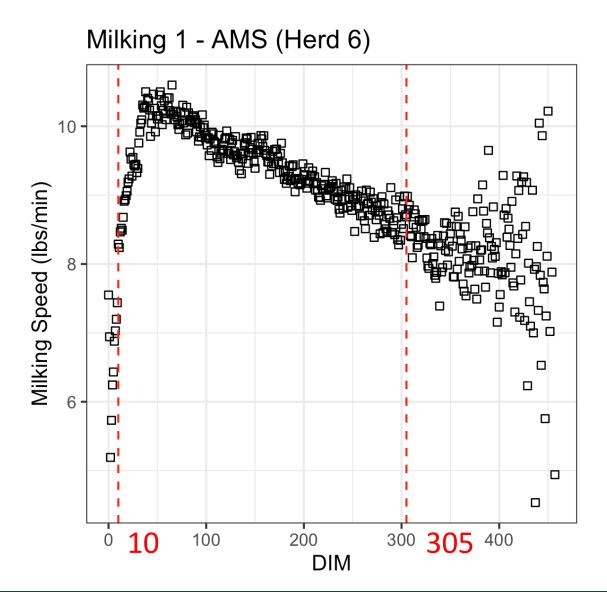

Milking Speed: Milk Yield Correlations 0.52 – 0.58

Milking 1 - CONVENTIONAL (n = 7)

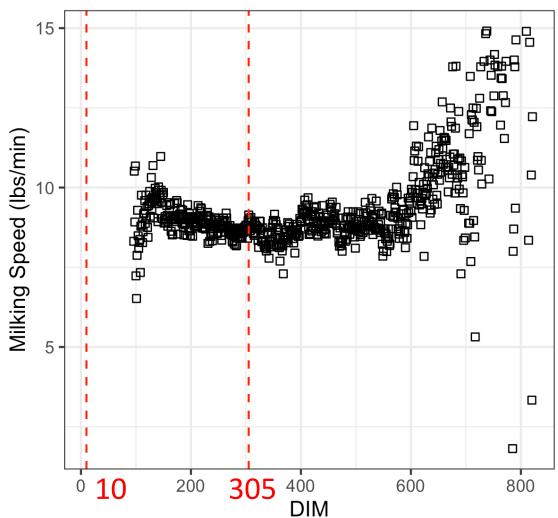
Conventional Herds



Conventional Herds


DEN/FIN/SWE: 30 – 240 DIM NOR: 20-300 DIM

Cow-level Variance in MS - CONVENTIONAL (n = 7)



AMS Herds (n = 2)

Milking Speed: Milk Yield Correlation ~0.5 - 0.6

Milking 1 - AMS (Herd 7)

What else do we know?

- AMS cows milk faster than conventional cows
- MS is slightly faster for milkings earlier in the day
- Milking interval is not correlated with milking speed in conventional herds; more investigation is needed regarding AMS herds
- First lactation cows have slower average MS than multiparous cows

What don't we know?

Other Considerations						
	Meter manufacturer	Time in parlor				
	Automatic take-off	Incomplete udder evac				
System Effects	Variable pulsation ratios	Automatic ID detection & validation				
	Milking frequency	Milking interval				
	Individual meter effect	Calibration protocol				
	Stage in lactation	Season/Region effects				
Biological Effects	Breed	Cow effects				
	Parity					

Proposed Research

- **Obj. 1:** Assemble a high-quality dataset pertinent to milking speed and capturing U.S. dairy systems demographics, especially relating to different dairy breeds and milking management
- **Obj. 2:** Develop clear definition for milking speed considering availability of data types, their respective heritabilities, and suitability for selection purposes
- **Obj. 3:** Characterize any biological effects that impact milking speed, especially the relationship of milking speed to udder health
- **Obj. 4**: Quantify the influence of system effects on milking speed, including milking system (conventional v. AMS), meter manufacturer, and milking management factors

Thank you. Questions?

Special thanks to task force members for their efforts

Jeffrey Bewley | Holstein Association USA
Sophie Eaglen | NAAB
Robert Fourdraine | DRMS
Kristen Gaddis | CDCB
Steven Sievert | National DHIA
Asha Miles | USDA-ARS-AGIL

And task force advisory

João Dürr | CDCB Jay Weiker | NAAB, CDCB BOD

And to

Jana Hutchison | USDA-ARS-AGIL for supportive analysis of preliminary data

